Магнитные свойства вещества
Классификация веществ по магнитным свойствам. Классификация и разновидности, основные требования к магнитным материалам. Понятие и назначение ферромагнетиков, их характерные свойства. Диамагнетики и парамагнетики в магнитном поле, характер их движения.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.03.2011 |
Размер файла | 33,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Реферат
«Магнитные свойства вещества»
Классификация веществ по магнитным свойствам
По реакции на внешнее магнитное поле и характеру внутреннего магнитного упорядочения все вещества в природе можно подразделить на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм.
К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий, соединения АЗВ5, А2В6) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.
К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов.
К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106), которая сильно зависит от напряженности магнитного поля и температуры.
Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Се, Nd, Sm, Тm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п.
К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов.
Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом, - различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты.
Классификация магнитных материалов
магнитный ферромагнетик диамагнетик поле
Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие. В отдельную группу выделяют материалы специального назначения.
К магнитотвердым относят материалы с большой коэрцитивной силой Нс. Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.
К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т.п.
Условно магнитомягкими считают материалы, у которых Нс < 800 А/м, а магнитотвердыми - с Нс > 4 кА/м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А/м, а лучших магнитотвердых материалах ее значение превышает 500 кА/м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.
Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства.
Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, а потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения. Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.
Основные требования к материалам
Помимо высокой магнитной проницаемости и малой коэрцитивной силы магнитомягкие материалы должны обладать большой индукцией насыщения, т.е. пропускать максимальный магнитный поток через заданную площадь поперечного сечения магнитопровода. Выполнение этого требования позволяет уменьшить габаритные размеры и массу магнитной системы.
Магнитный материал, используемый в переменных полях, должен иметь, возможно, меньшие потери на перемагничивание, которые складываются в основном из потерь на гистерезис и вихревые токи.
Для уменьшения потерь на вихревые токи в трансформаторах выбирают магнитомягкие материалы с повышенным удельным сопротивлением. Обычно магнитопроводы собирают из отдельных изолированных друг от друга тонких листов. Широкое применение получили ленточные сердечники, навиваемые из тонкой ленты с межвитковой изоляцией из диэлектрического лака. К листовым и ленточным материалам предъявляется требование высокой пластичности, благодаря которой облегчается процесс изготовления изделий из них.
Важным требованием к магнитомягким материалам является обеспечение стабильности их свойств, как во времени, так и по отношению к внешним воздействиям, таким, как температура и механические напряжения. Из всех магнитных характеристик наибольшим изменениям в процессе эксплуатации материала подвержены магнитная проницаемость (особенно в слабых полях) и коэрцитивная сила.
Ферромагнетики
Разделение веществ на диа-, пара- и ферромагнетики носит в значительной степени условный характер, т. к. первые два вида веществ отличаются по магнитным свойствам от вакуума менее чем на 0,05%. На практике все вещества обычно разделяют на ферромагнитные (ферромагнетики) и неферромагнитные, для которых относительная магнитная проницаемость ? может быть принятой равной 1,0.
К ферромагнетикам относятся железо, кобальт, никель и сплавы на их основе. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.
Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. Функции B(H) имеют особое значение, т. к. только с их помощью можно исследовать электромагнитные процессы в цепях, содержащих элементы, в которых магнитный поток проходит в ферромагнитной среде. Эти функции бывают двух видов: кривые намагничивания и петли гистерезиса.
Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.
Если в процессе намагничивания довести напряженность поля до некоторого значения, а затем начать уменьшать, то уменьшение индукции будет происходить медленнее, чем при намагничивании и новая кривая будет отличаться от первоначальной. Кривая изменения индукции при увеличении напряженности поля для предварительно полностью размагниченного вещества называется начальной кривой намагничивания. На рис. 1 она показана утолщенной линией.
После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B=f(H) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса. Гистерезисом называют отставание изменения индукции от напряженности магнитного поля. Явление гистерезиса характерно вообще для всех процессов, в которых наблюдается зависимость какой-либо величины от значения другой не только в текущем, но и в предыдущем состоянии, т.е. B2=f(H2, H1) - где H2 и H1 - соответственно текущее и предыдущее значения напряженности.
Петли гистерезиса можно получить при различных значениях максимальной напряженности внешнего поля Hm. Геометрическое место точек вершин симметричных циклов гистерезиса называется основной кривой намагничивания. Основная кривая намагничивания практически совпадает с начальной кривой.
Симметричная петля гистерезиса, полученная при максимальной напряженности поля Hm (рис. 2), соответствующей насыщению ферромагнетика, называется предельным циклом.
Для предельного цикла устанавливают также значения индукции Br при H = 0, которое называется остаточной индукцией, и значение Hc при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.
Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис. 3) называются магнитнотвердыми. Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.
При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.
Пусть магнитное поле создается обмоткой, по которой протекает ток i. Тогда работа источника питания обмотки, затрачиваемая на элементарное изменение магнитного потока равна
. |
(1) |
Если отнести эту работу на единицу объема вещества, получим
. |
(2) |
Полная работа по перемагничиванию единицы объема вещества определится в виде интеграла по контуру петли гистерезиса
.
Контур интегрирования можно разделить на два участка, соответствующих изменению индукции от - Bm до Bm и изменению от Bm до - Bm. Интегралы на этих участках соответствуют заштрихованным площадям рис. 4 а) и б). На каждом участке часть площади соответствует отрицательной работе и после вычитания ее из положительной части мы на обоих участках получим площадь, ограниченную кривой петли гистерезиса (рис. 4 в)).
Обозначая энергию, отнесенную к единице объема вещества, затрачиваемую на перемагничивание за один полный симметричный цикл, через W'h=A' получим
.
Существует эмпирическая зависимость для вычисления удельных потерь энергии на перемагничивание
,
n=1,6 при 0,1Тл < Bm < 1,0 Тл и n=2 при 0 <Bm < 0,1 Тл или 1,0 Тл <Bm< 1,6 Тл.
Явление гистерезиса и связанные с ним потери энергии могут быть объяснены гипотезой элементарных магнитиков. Элементарными магнитиками в веществе являются частицы, обладающие магнитным моментом. Это могут быть магнитные поля вращающихся по орбитам электронов, а также их спиновые магнитные моменты. Причем последние играют в магнитных явлениях наиболее существенную роль.
При нормальной температуре вещество ферромагнетика состоит из самопроизвольно намагниченных в определенном направлении областей (доменов), в которых элементарные магнитики расположены почти параллельно один другому и удерживаются в таком положении магнитными силами и силами электрического взаимодействия.
Магнитные поля отдельных областей не обнаруживаются во внешнем пространстве, т. к. все они намагничены в разных направлениях. Интенсивность самопроизвольного намагничивания доменов J зависит от температуры и при абсолютном нуле равна интенсивности полного насыщения. Тепловое движение разрушает упорядоченную структуру и при некоторой температуре ?, характерной для данного вещества, упорядоченное расположение полностью разрушается. Эта температура называется точкой Кюри. Выше точки Кюри вещество обладает свойствами парамагнетика.
Под влиянием внешнего поля состояние вещества может изменяться двумя способами. Намагниченность может меняться либо за счет переориентации доменов, либо за счет смещения их границ в направлении области с меньшей составляющей намагниченности, совпадающей по направлению с внешним полем. Смещение границы домена совершается обратимо только до определенного предела, после чего часть или вся область необратимо переориентируется. При быстрой скачкообразной переориентации домена создаются вихревые токи, вызывающие потери энергии при перемагничивании.
Исследования показывают, что второй способ изменения ориентации характерен для крутого участка кривой намагничивания, а первый - для участка области насыщения.
После уменьшения напряженности внешнего магнитного поля до нуля часть доменов сохраняет новое направление преимущественного намагничивания, что проявляется как остаточная намагниченность.
Диамагнетики и парамагнетики в магнитном поле
Микроскопические плотности токов в намагниченном веществе чрезвычайно сложны и сильно изменяются даже в пределах одного атома. Но во многих практических задачах столь детальное описание является излишним, и нас интересуют средние магнитные поля, созданные большим числом атомов.
Как мы уже говорили, магнетики можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.
Диамагнетизм (от греч. dia - расхождение и магнетизм) - свойство веществ намагничиваться навстречу приложенному магнитному полю.
Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т. к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.).
При внесении диамагнитного вещества в магнитное поле его атомы приобретают наведенные магнитные моменты. В пределах малого объема ?V изотропного диамагнетика наведенные магнитные моменты всех атомов одинаковы и направлены противоположно вектору .
Вектор намагниченности диамагнетика равен:
, |
(6.4.2) |
где n0 - концентрация атомов, - магнитная постоянная, - магнитная восприимчивость среды.
Для всех диамагнетиков Таким образом, вектор магнитной индукции собственного магнитного поля, создаваемого диамагнетиком при его намагничивании во внешнем поле направлен в сторону, противоположную . (В отличие от диэлектрика в электрическом поле).
У диамагнетиков
Парамагнетизм (от греч. para - возле, рядом и магнетизм) - свойство веществ во внешнем магнитном поле намагничиваться в направлении этого поля, поэтому внутри парамагнетика к действию внешнего поля прибавляется действие наведенного внутреннего поля.
Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент .
Эти вещества намагничиваются в направлении вектора .
К парамагнетикам относятся многие щелочные металлы, кислород , оксид азота NO, хлорное железо и др.
В отсутствие внешнего магнитного поля намагниченность парамагнетика , так как векторы разных атомов ориентированы беспорядочно.
При внесении парамагнетика во внешнее магнитное поле происходит преимущественная ориентация собственных магнитных моментов атомов по направлению поля, так что парамагнетик намагничивается. Значения для парамагнетиков положительны () и находятся в пределах , то есть примерно как и у диамагнетиков.
Размещено на Allbest.ru
Подобные документы
Сущность магнитного поля, его основные характеристики. Понятия и классификация магнетиков - веществ, способных намагничиваться во внешнем магнитном поле. Структура и свойства материалов. Постоянные и электрические магниты и области их применения.
реферат [1,2 M], добавлен 02.12.2012Магнитные моменты электронов и атомов. Намагничивание материалов за счет токов, циркулирующих внутри атомов. Общий орбитальный момент атома в магнитном поле. Микроскопические плотности тока в намагниченном веществе. Направление вектора магнитной индукции.
презентация [2,3 M], добавлен 07.03.2016Строение, особенности и классификация ферромагнетиков. Магнитные и механические свойства железоникелевых сплавов. Краткая теория гальваномагнитных явлений в ферромагнетиках. Описание экспериментальной установки, результаты измерений и их обсуждение.
дипломная работа [7,5 M], добавлен 21.10.2010Основные понятия, виды (диамагнетики, ферримагнетики, парамагнетики, антиферромагнетики) и условия проявления магнетизма. Природа ферромагнитного состояния веществ. Сущность явления магнитострикции. Описание доменных структур в тонких магнитных пленках.
реферат [25,6 K], добавлен 30.08.2010Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.
лекция [894,8 K], добавлен 19.10.2014Кристаллическая структура и магнитные свойства манганитов. Теплоемкость манганитов в области фазовых переходов. Основные результаты исследования температурной зависимости теплоемкости монокристаллов системы в различных магнитных полях и их обсуждение.
курсовая работа [795,4 K], добавлен 21.05.2019Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.
презентация [293,1 K], добавлен 16.11.2011Исследование особенностей движения заряженной частицы в однородном магнитном поле. Установление функциональной зависимости радиуса траектории от свойств частицы и поля. Определение угловой скорости движения заряженной частицы по круговой траектории.
лабораторная работа [1,5 M], добавлен 26.10.2014Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них.
курсовая работа [40,5 K], добавлен 15.08.2011Эквивалентность движения проводника с током в магнитном поле. Закон Фарадея. Угловая скорость вращения магнитного поля в тороидальном магнитном зазоре. Фактор "вмороженности" магнитных силовых линий в соответствующие домены ферромагнетика ротора, статора.
доклад [15,5 K], добавлен 23.07.2015