Виды энергии. Получение, преобразование и использование энергии
Энергия и ее виды. Общая характеристика современного энергетического производства. Основные типы электростанций и их характеристики. Виды нетрадиционной энергетики. Транспорт и распределение энергии. Основные показатели эффективности энергосбережения.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 21.02.2011 |
Размер файла | 938,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Виды энергии. Получение, преобразование и использование энергии
Энергия и ее виды
Энергия - всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое - действие, деятельность) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую.
Согласно представлениям физической науки, энергия - это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.
Если энергия - результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.
Если энергия - результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.
Энергию в естествознании в зависимости от природы делят на следующие виды.
Механическая энергия - проявляется при взаимодействии, движении отдельных тел или частиц.
К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических.
Тепловая энергия - энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.
Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).
Электрическая энергия - энергия движущихся по электрической цепи электронов (электрического тока).
Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).
Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.
Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.
Магнитная энергия - энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.
Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой. Электромагнитная энергия - это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.
Таким образом, электромагнитная энергия - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.
Ядерная энергия - энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).
Бытует и старое название данного вида энергии - атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.
Гравитационная энергия - энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли - энергия силы тяжести.
Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира - гравитационную, энергию взаимодействия тел - механическую, энергию молекулярных взаимодействий - тепловую, энергию атомных взаимодействий - химическую, энергию излучения - электромагнитную, энергию, заключенную в ядрах атомов - ядерную.
Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.
В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен 1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.
Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной. В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.
Рис. 2.1. Классификация первичной энергии
энергия энергетика нетрадиционный энергосбережение
При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.
К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).
Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).
Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.
Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет (рис. 2.2).
Электрическая энергия - более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.
Электрификация - основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии - электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество - очень удобный для применения и экономичный вид энергии.
Рис. 2.2. Динамика потребления электрической энергии
Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:
1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.
2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.
3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.
Закон сохранения энергии
При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.
Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.
Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.
Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.
В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.
Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.
Закон сохранения энергии нашел подтверждение в различных областях - от механики Ньютона до ядерной физики. Причем закон сохранения энергии - это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».
Учитывая вышеизложенное, терминологически правильно было бы говорить не «энергосбережение», так как «сберечь» энергию невозможно, а «эффективное энергоиспользование».
Общая характеристика современного энергетического производства
Энергетика - область общественного производства, охватывающая добычу энергетических ресурсов, выработку, преобразование, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках созданных соответствующих энергосистем.
Энергосистема - совокупность энергетических ресурсов; всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.
В энергосистему входят:
· электроэнергетическая система;
· система нефте- и газоснабжения;
· система угольной промышленности;
· ядерная энергетика;
· нетрадиционная энергетика.
Из всех вышеперечисленных в Республике Беларусь наиболее представлена электроэнергетическая система.
Электроэнергетическая система - совокупность взаимосвязанных единством схем и режимов оборудования и установок по производству, преобразованию и доставке конечным потребителям электрической энергии. Электроэнергетическая система включает в себя электрические станции подстанции, линии электропередачи, центры потребления электрической энергии.
Энергетика - одна из форм природопользования. В перспективе, с точки зрения технологии, технически возможный объем получаемой энергии практически неограничен, однако энергетика имеет существенные ограничения по термодинамическим (тепловым) лимитам биосферы. Размеры этих ограничений близки к количеству энергии, усваиваемой живыми организмами биосферы в совокупности с другими энергетическим процессами, идущими на поверхности Земли. Увеличение этих количеств энергии, вероятно, катастрофично или, во всяком случае, кризисно отразится на биосфере.
Наиболее часто в современной энергетике выделяют традиционную энергетику, основанную на использовании органического и ядерного топлива, и нетрадиционную энергетику, основанную на использовании возобновляемых и неисчерпаемых источников энергии.
Традиционная энергетика и ее характеристика
Традиционную энергетику главным образом разделяют на электроэнергетику и теплоэнергетику.
Наиболее удобный вид энергии - электрическая, которая может считаться основой цивилизации. Преобразование первичной энергии в электрическую производится на электростанциях: ТЭС, ГЭС, АЭС.
Производство энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделить пять стадий:
1. Получение и концентрация энергетических ресурсов: добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т.д.;
2. Передача энергетических ресурсов к установкам, преобразующим энергию; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т.д.;
3. Преобразование первичной энергии во вторичную, имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию);
4. Передача и распределение преобразованной энергии;
5. Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной форме.
Потребителями энергии являются: промышленность, транспорт, сельское хозяйство, жилищно-коммунальное хозяйство, сфера быта и обслуживания.
Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35-40%, остальная часть теряется, причем большая часть - в виде теплоты.
Основные типы электростанций и их характеристики
Преобразование первичной энергии во вторичную, в частности в электрическую, осуществляется на станциях, которые в своем названии содержат указание на то, какой вид первичной энергии в какой вид вторичной преобразуется на них:
· ТЭС - тепловая электрическая станция преобразует тепловую энергию в электрическую;
· ГЭС - гидроэлектростанция преобразует механическую энергию движения воды в электрическую;
· ГАЭС - гидроаккумулирующая электростанция преобразует механическую энергию движения предварительно накопленной в искусственном водоеме воды в электрическую;
· АЭС - атомная электростанция преобразует атомную энергию ядерного топлива в электрическую;
· ПЭС - приливная электростанция преобразует энергию океанических приливов и отливов в электрическую;
· ВЭС - ветряная электростанция преобразует энергию ветра в электрическую;
· СЭС - солнечная электростанция преобразует энергию солнечного света в электрическую, и т.д.
В Беларуси более 95% энергии вырабатывается на ТЭС. Поэтому рассмотрим процесс преобразования энергии на ТЭС. По назначению ТЭС делятся на два типа:
· КЭС - конденсационные тепловые электростанции, вырабатывающие только электрическую энергию;
· ТЭЦ - теплоэлектроцентрали, на которых осуществляется совместное производство электрической и тепловой энергии.
ТЭС могут работать как на органическом (газ, мазут, уголь), так и на ядерном топливе.
Основное оборудование ТЭС (рис. 2.3) состоит из котла-парогенератора ПГ, турбины Т и генератора Г. В котле при сжигании топлива выделяется тепловая энергия, которая преобразуется в энергию водяного пара. В турбине Т водяной пар превращается в механическую энергию вращения - турбина со скоростью 3000 оборотов в минуту (50 Герц) вращает электрогенератор Г, который превращает энергию вращения в электрическую. Тепловая энергия для нужд потребления может быть взята в виде пара из турбины или котла. На рисунке, кроме основного оборудования ТЭС, показаны конденсатор пара К, где отработанный пар охлаждается внешней водой и конденсируется (при этом от пара отводится некоторое количество теплоты и выбрасывается в окружающую среду) и циркуляционный насос Н, который подает конденсат снова в котел. Таким образом, цикл замыкается. Схема ТЭЦ отличается тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.
Рассмотренная схема ТЭС является основной, в ней используется парогенератор, в котором водяной пар служит носителем энергии. Имеются тепловые станции с газотурбинными установками. Носитель энергии в таких установках в таких установках - газ с воздухом. Газ выделяется при сгорании органического топлива и смешивается с нагретым воздухом. Газовоздушная смесь при температуре 750-770о С подается в турбину, которая вращает генератор. ТЭС с газотурбинными установками более маневренна, чем паротурбинная: легко пускается, останавливается и регулируется; пока мощности таких турбин в 5-8 раз меньше, чем паровых, и они должны работать на высокосортном топливе.
Сочетание паротурбинной и газотурбинной установок образует парогазовые установки, в них используются два энергоносителя - пар и газ.
Процесс производства электроэнергии на ТЭС можно разделить на три цикла: химический - процесс горения, в результате которого теплота передается пару; механический - тепловая энергия пара превращается в энергию вращения; электрический - механическая энергия вращения превращается в электрическую.
Общий коэффициент полезного действия ТЭС состоит из произведения коэффициентов полезного действия всех перечисленных циклов:
зтэс = зх · зм · зэ
КПД ТЭС теоретически равен:
зтэс = 0,9 · 0,63 · 0,9 = 0,5.
Практически с учетом потерь КПД ТЭС находится в пределах 36-39%. Это означает, что 64-61% топлива используется «впустую», загрязняя окружающую среду в виде тепловых выбросов в атмосферу. КПД ТЭЦ примерно в 2 раза выше, чем КПД ТЭС. Поэтому использование ТЭЦ является существенным фактором энергосбережения.
Атомная электростанция отличается от ТЭС тем, что котел заменен ядерным реактором. Теплота ядерной реакции используется для получения пара.
Рис. 2.4. Принципиальная схема атомной электростанции
1 - реактор; 2 - парогенератор; 3- турбина;
4 - генератор; 5 - трансформатор; б - электролинии
Первичной энергией на АЭС является внутренняя ядерная энергия, которая при делении ядра выделяется в виде колоссальной кинетической энергии, которая, в свою очередь, превращается в тепловую. Установка, где идут эти превращения, называется реактором.
Через активную зону реактора проходит вещество теплоноситель, которое служит для отвода тепла (вода, инертные газы и т.д.). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Регулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изменяют поток нейтронов, а значит, и интенсивность ядерной реакции.
Природное ядерное горючее атомной электрической станции - уран. Для биологической защиты от радиации используется слой бетона в несколько метров толщиной.
При сжигании 1 кг каменного угля можно получить 8 кВт·ч электроэнергии, а при расходе 1 кг ядерного топлива вырабатывается 23 млн. кВт·ч электроэнергии. Более 2000 лет человечество использует водную энергию Земли. Теперь энергия воды используется на гидроэнергетических установках (ГЭУ) трех видов:
1) гидравлические электростанции (ГЭС), использующие энергию рек;
2) приливные электростанции (ПЭС), использующие энергию приливов и отливов морей и океанов;
3) гидроаккумулирующие станции (ГАЭС), накапливающие и использующие энергию водоемов и озер.
Гидроэнергетические ресурсы в турбине ГЭУ преобразуются в механическую энергию, которая в генераторе превращается в электрическую. Таким образом, основными источниками энергии являются твердое топливо, нефть, газ, вода, энергия распада ядер урана и других радиоактивных веществ.
Нетрадиционная энергетика и ее характеристика
Главным фактором роста энергопроизводства является рост численности населения и прогресс качества жизни общества, который тесно связан с потреблением энергии на душу населения. Сейчас на каждого жителя Земли приходится 2 кВт, а признанная норма качества - 10 кВт (в развитых странах). Если все население Земли рано или поздно должно иметь душевое потребление 10 кВт, то с учетом теплового барьера численность населения не должна превышать 10 млрд. чел. Таким образом, развитие энергетики на невозобновляемых ресурсах ставит жесткий предел численности населения планеты. Однако уже через 75 лет население Земли может достигнуть 20 млрд. чел. Отсюда видно: уже сейчас надо думать о сокращении темпов прироста населения примерно вдвое, к чему цивилизация совсем не готова. Очевиден надвигающийся энергодемографический кризис. Это еще один веский аргумент в пользу развития нетрадиционной энергетики.
Многие специалисты энергетики считают, что единственный способ преодоления кризиса - это масштабное использование возобновляемых источников энергии: солнечной, ветровой, океанической, или как их еще называют нетрадиционных. Правда, ветряные и водяные мельницы известны с незапамятных времен, и в этом смысле они - самые, что ни есть традиционные. В наши дни поворот к использованию энергии ветра, солнца, воды происходит на новом более высоком уровне развития науки и техники.
Использование традиционных энергоресурсов, кроме поглощения кислорода, приводит к значительному загрязнению окружающей среды. Ограниченность энергоресурсов, влияние их использования на состав атмосферного воздуха и другие негативные воздействия на окружающую среду (образование отходов, нарушение пластов земной коры, изменение климата) вызывают повышенный интерес во всем мире к нетрадиционным источникам энергии, к которым относятся: солнечная энергия; энергия ветра; геотермальная энергия; энергия океанов и морей в виде аккумулированной теплоты, морских течений, морских волн, приливов и отливов, использование водорослей, сельскохозяйственных и городских отходов, биомассы.
Экономическое сравнение электростанций разного типа (на 1991 год) представлено в табл. 2.1.
Таблица 2.1
Экономическое сравнение электростанций разного типа
Тип электростанции |
Затраты на строительство, USD/кВт |
Стоимость произведенной энергии, цент/кВт·ч |
|
ТЭС на угле |
1000 - 1400 |
5,2 - 6,3 |
|
АЭС |
2000 - 3500 |
3,6 - 4,5 |
|
ГЭС |
1000 - 2500 |
2,1 - 6 |
|
ВЭС |
300 - 1000 |
4,7 - 7,2 |
|
Приливные (ПЭС) |
1000 - 3500 |
5 - 9 |
|
Волновые |
От 13000 |
от 15 |
|
Солнечные (СЭС) |
От 14000 |
от 20 |
Экономически целесообразным считается строительство электростанций с удельными капитальными затратами до 2000 USD/кВт.
К 2010 году страны Европейского союза (ЕС) планируют увеличить использование нетрадиционных источников энергии до 8% в общем объеме энергопотребления.
Удельные мощности нетрадиционных возобновляемых источников энергии (НВИЭ) для сопоставления и сравнения с традиционными источниками представлены в табл. 2.2.
Таблица 2.2 - Удельные мощности нетрадиционных возобновляемых источников энергии
Источник |
Мощность, Вт/м2 |
Примечание |
|
Солнце |
100 - 250 |
||
Ветер |
1500 - 5000 |
При скорости 8-12 м/с, может быть и больше в зависимости от скорости ветра |
|
Геотермальное тепло |
0.06 |
||
Ветровые океанические волны |
3000 Вт/пог.м |
Может достигать 10000 Вт/пог.м |
|
Для сравнения: Двигатель внутреннего сгорания Турбореактивный двигатель Ядерный реактор |
Около 100 кВт/л До 1 МВт/л До 1 МВт/л |
Говоря о НВИЭ, необходимо также отметить, что многие из них на единицу произведенной электроэнергии и обеспечение функционирования требуют расхода природных источников энергии (табл. 2.3).
Таблица 2.3 - Энергетические потребности для производства электроэнергии при использовании возобновляемых источников
Тип энергетической установки |
Расход энергии природного источника на единицу произведенной электроэнергии, отн.ед. |
|
Установка на биомассе |
0,82 - 1,13 |
|
ГеоТЭС |
0,08 - 0,37 |
|
ГЭС малой мощности большой мощности |
0,03 - 0,12 0,09 - 0,39 |
|
Солнечная фотоэлектрическая установка: наземная спутниковая |
0,47 0,11 - 0,48 |
|
Солнечная теплоустановка (зеркала) |
0,15 - 0,24 |
|
Приливная станция |
0,07 |
|
Ветроэнергетическая установка |
0,06 - 1,92 |
|
Волновая станция |
0,3 - 0,58 |
Ветроэнергетика. Ветровая энергетика - это получение механической энергии от ветра с последующим преобразованием ее в электрическую. Имеются ветровые двигатели с вертикальной и горизонтальной осью вращения. Энергию ветра можно успешно использовать при скорости ветра 5 и более м/с. Недостатком является шум.
Ориентиром в определении технического потенциала Республики Беларусь могут служить официальные оценки возможной доли ветроэнергетики в сложившейся структуре электропотребления таких стран, как Великобритания и Германия. Доля ветроэнергетики в этих странах оценена в 20%.
Потенциал энергии ветра в мире огромен. Теоретически эта энергия могла бы удовлетворить все потребности Европы. Последние инженерные успехи в строительстве ветровых генераторов, способных работать при низких скоростях, делают ис-пользование ветра экономически оправданным. Однако, ограничения на строительство ВЭС, особенно в густонаселенных районах, значительно снижают потенциал этого источника энергии.
Наибольшая доля (до 3%) в производстве электроэнергии ВЭС получена в 1993 г. в Дании, где ветровые турбины рассеяны по всей стране. Строительство современных ВЭС началось здесь в конце 70-х годов. А в начале 80-х в штате Калифорния (США) наблюдался особенно интенсивный рост ВЭС. Принятие здесь закона о налоговых льготах на инвестиции в возобновляемые источники энергии в дополнение к федеральным налоговым льготам создало благоприятную обстановку. В результате Калифорния превратилась в мирового лидера по производству электроэнергии из ветра. США могут потерять это лидерство, так как в ЕС поставили цель вырабатывать в 2005 г. 8 тыс. МВт ветровой электроэнергии, что составляет 1% потребностей ЕС в электроэнергии. Дания, Германия и Нидерланды должны довести к этому времени выработку электроэнергии из ветра по крайней мере до 5000 МВт.
Стоимость ветровой энергии снижается на 15% в год и даже сегодня может конкурировать на рынке, а главное - имеет перспективы дальнейшего снижения в отличие от стоимости энергии, получаемой на АЭС (последняя повышается на 5% в год); при этом темпы роста ветроэнергетики в настоящее время превышают 25% в год. Использование энергии ветра в различных государствах набирает силу, что находит подтверждение в табл. 2.4.
Опыт освоения энергии ветра в развитых государствах показывает, что наиболее оптимальными являются ветроустановки мощностью более 100 кВт, особенно в диапазоне 200--500 кВт. При этом в Дании, например, стоимость 1 кВт·ч. электроэнергии, произведенной на ветроэлектростанции, дешевле, чем на теплоэлектростанции.
Гелиоэнергетика - получение энергии от Солнца. Имеется несколько технологий солнечной энергетики. Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца, собранные из большого числа последовательно и параллельно соединенных элементов, получили название солнечных батарей.
Таблица 2.4 - Развитие ветроэнергетики в странах
Государство |
Мощности ветроэлектростанций, введенных в 1995 г., МВт |
Суммарные действующие мощности ветро-электростанций по состоянию на 1996 г., МВт |
|
Германия |
500 |
1132 |
|
Индия |
375 |
576 |
|
Дания |
98 |
637 |
|
Нидерланды |
95 |
219 |
|
Испания |
58 |
133 |
|
США |
53 |
1654 |
|
Швеция |
29 |
69 |
|
Китай |
14 |
44 |
|
Италия |
11 |
33 |
|
Другие |
57 |
370 |
|
Всего |
1289 |
4897 |
Получение электроэнергии от лучей Солнца не дает вредных выбросов в атмосферу, производство стандартных силиконовых солнечных батарей также причиняет мало вреда. Но производство в широких масштабах многослойных элементов с использованием таких экзотических материалов, как арсенид галлия или сульфид кадмия, сопровождается вредными выбросами.
Солнечные батареи занимают много места. Однако в сравнении с другими источниками, например с углем, они вполне приемлемы. Более того, солнечные батареи могут помещаться на крышах домов, вдоль шоссейных дорог, а также использоваться в богатых солнцем пустынях.
Особенности солнечных батарей позволяют располагать их на значительном расстоянии, а модульные конструкции можно легко транспортировать и устанавливать в другом месте. Поэтому солнечные батареи, применяемые в сельской местности и в отдаленных районах, дают более дешевую электроэнергию. И, конечно, солнечных лучей по всему земному шару найдется больше, чем других источников энергии.
Жители отдаленных районов используют энергию солнечных батарей для освещения, радиовещания и других бытовых нужд. Практическое применение солнечной энергии следует отметить также при подъеме воды из скважин и на нужды здравоохранения.
Главной причиной, сдерживающей использование солнечных батарей, является их высокая стоимость, которая в будущем, вероятно, снизится благодаря развитию более эффективных и дешевых технологий. Нынешняя стоимость солнечной электроэнергии равняется 4,5 долларов за 1 Вт мощности и, как результат, цена 1 кВт·ч электроэнергии в 6 раз дороже энергии, полученной традиционным путем сжигания топлива. Когда же цена производства солнечной энергии сравняется с ценой энергии от сжигания топлива, оно получит еще более широкое распространение, причем с начала 90-х гг. темпы роста гелио-энергетики составляют 6% в год, в то время как мировое потребление нефти растет на 1,5% в год.
Возможно использование солнечной энергии для получения тепловой, в частности, для отопления жилищ.
Интересны примеры использования солнечной энергии в разных странах. В условиях Великобритании жители сельской местности покрывают потребность в тепловой энергии на 40-50% за счет использования энергии Солнца.
В Германии (под Дюссельдорфом) проводились испытания солнечной водонагревательной установки площадью коллекторов 65 м2. Эксплуатация установки показала, что средняя экономия тепла, расходуемого на обогрев, составила 60%, а в летний период - 80-90%. Для условий Германии семья из 4 человек может обеспечить себя теплом при наличии энергетической крыши площадью 6-9 м2.
Современные солнечные коллекторы могут обеспечить нужды сельского хозяйства в теплой воде в летний период на 90%, в переходный период - на 55-65%, в зимний - на 30%.
В Австрии установлено, что для обеспечения 80% теплой водой в жилых сельских домах на 1 человека требуется установка солнечных коллекторов с поверхностью 2-3 м2 и емкостью бака для воды 100-150 л. Установка площадью 25 м2 с емкостью для нагретой воды на 1000-1500 л обеспечивает теплой водой 12 человек или небольшой сельский двор.
Наиболее эффективно в странах ЕС солнечные энергоустановки эксплуатируются в Греции, Португалии, Испании, Франции: выработка энергии солнечными энергоустановками составляет соответственно 870000, 290000, 255200, 174000 МВт ч в год.
В целом по Европейскому союзу вырабатывается 185600 МВт·ч в год (по данным 1992 г.).
Наибольшей суммарной площадью установленных солнечных коллекторов располагают: США - 10 млн. м2, Япония - 8 млн. м2, Израиль - 1,7 млн. м2, Австралия - 1,2 млн. м2. В настоящее время 1 м2 солнечного коллектора вырабатывает электрической энергий:
· 4,86-6,48 кВт·в сутки;
· 1070-1426 кВт·ч в год.
Нагревает воды в сутки:
· 420-360 л (при 30°С);
· 210-280 л (при 40°С);
· 130-175 л (при 50°С);
· 90-120 л (при 60°С).
Экономит в год:
· электроэнергии - 1070-1426 кВт·ч;
· условного топлива - 0,14-0,19 т;
· природного газа - 110-145 нм3;
· угля - 0,18-0,24 т;
· древесного топлива - 0,95-1,26 т.
Площадь солнечных коллекторов 2-6 млн. м2 обеспечивает выработку 3,2--8,6 млрд. кВт·ч энергии и экономит 0,42-1,14 млн. т.у.т. в год.
Биоэнергетика - это энергетика, основанная на использовании биотоплива. Она включает использование растительных отходов, искусственное выращивание биомассы (водорослей, быстрорастущих деревьев) и получение биогаза. Биогаз - смесь горючих газов (примерный состав: метан - 55-65% , углекислый газ - 35-45% , примеси азота, водорода, кислорода и сероводорода), образующаяся в процессе биологического разложения биомассы или органических бытовых расходов. Способы промышленного получения биогаза известны с конца прошлого века (1885 г.). В мире эксплуатируется более 8 млн. установок для получения биогаза.
Биомасса - наиболее дешевая и крупномасштабная форма аккумулирования возобновляемой энергии. Под термином «биомасса» подразумеваются любые материалы биологического происхождения, продукты жизнедеятельности и отходы органического происхождения. Биомасса будет на Земле, пока на ней существует жизнь. Ежегодный прирост органического вещества на Земле эквивалентен производству такого количества энергии, которое в десять раз больше годового потребления энергии всем человечеством на современном этапе.
Источники биомассы, характерные для нашей республики, могут быть разделены на несколько основных групп:
1. Продукты естественной вегетации (древесина, древесные отходы, торф, листья и т.п.).
2. Отходы жизнедеятельности людей, включая производственную деятельность (твердые бытовые отходы, отходы промышленного производства и др.).
3. Отходы сельскохозяйственного производства (навоз, куриный помет, стебли, ботва и т.д.).
4. Специально выращиваемые высокоурожайные агрокультуры и растения.
Переработка биомассы в топливо осуществляется по трем направлениям.
Первое: биоконверсия, или разложение органических веществ растительного или животного происхождения в анаэробных (без доступа воздуха) условиях специальными видами бактерий с образованием газообразного топлива (биогаза) и/или жидкого топлива (этанола, бутанола и т.д.). В настоящее время в Бразилии на этаноле, полученном в результате разложения биомассы из отходов сахарного тростника, работает городской автотранспорт и многие личные автомобили. В США этанол получают из отходов кукурузы. Этанол является хорошим заменителем бензина, при этом в отличие от нефти биомасса является достаточно быстро возобновляемым ресурсом. К биоконверсии относится также получение тепловой энергии при аэробном микробиологическом окислении органических веществ. Так по научному называется компостирование и биоподогрев, о чем знает каждый огородник.
Второе: термохимическая конверсия (пиролиз, газификация, быстрый пиролиз, синтез) твердых органических веществ (дерева, торфа, угля) в «синтез-газ», метанол, искусственный бензин, древесный уголь.
Третье: сжигание отходов в котлах и печах специальных конструкций. В мире сотни миллионов тонн таких отходов сжигаются с регенерацией энергии. Прессованные брикеты из бумаги, картона, древесины, полимеров по теплотворной способности сравнимы с бурым углем.
Малая гидроэнергетика. В настоящее время признанных единых критериев причисления ГЭС к категории малых гидростанций не существует. У нас принято считать малыми гидростанции мощностью от 0,1 до 30 МВт, при этом введено ограничение по диаметру рабочего колеса гидротурбины до 2 м и по единичной мощности гидроагрегата - до 10 МВт. ГЭС установленной мощностью менее 0,1 МВт выделены в категории микро-ГЭС.
Малая гидроэнергетика в мире в настоящее время переживает третий виток в истории своего развития. Строительство первых ГЭС началось еще в прошлом веке, когда они предназначались для энергоснабжения отдельных заводов и поселков. Затем темпы их строительства замедлились из-за конкуренции небольших тепловых электростанций. Второй этап массового строительства малых ГЭС пришелся на конец 40-х - начало 50-х гг., когда тысячи малых гидростанций строились колхозами, совхозами, предприятиями и государством. В 70-80-х гг. сотни и тысячи малых ГЭС были выведены из эксплуатации либо законсервированы, либо ликвидированы из-за быстрого развития большой энергетики на базе крупных тепловых гидравлических и атомных станций. На третьем витке возрождение малых ГЭС, естественно, происходит на новом техническом уровне основного энергетического оборудования, степени автоматизации и компьютеризации.
Другие виды нетрадиционной энергетики
Геотермальная энергетика - получение энергии от внутреннего тепла Земли. Различают естественную и искусственную геотермальную энергию - от природных термальных источников и от закачки в недра Земли воды, других жидкостей или газообразных веществ («сухая» и «мокрая» геотермальная энергетика). Данный вид энергетики широко применяется для бытовых целей и отопления теплиц. Имеются геотермальные ТЭС. Недостаток - токсичность термальных вод и химическая агрессивность жидкостей и газов.
Космическая энергетика - получение солнечной энергии на специальных геостационарных спутниках Земли с узконаправленной передачей энергии на наземные приемники.
На этих спутниках солнечная энергия трансформируется в электрическую и в виде электромагнитного луча сверхвысокой частоты передается на приемные станции на Земле, где преобразуется в электрическую энергию. Мощность одной орбитальной станции может составить от 3000 до 15000 МВт.
Морская энергетика базируется на энергии приливов и отливов (Кислогубская ЭС на Кольском полуострове), морских течений и разности температур в различных слоях морской воды. Иногда к ней относят волновую энергетику. Пока морская энергетика малорентабельна из-за разрушающего воздействия на оборудование морской воды. Приливная энергетика рентабельна па побережьях морей с исключительно высокими приливами.
Низкотемпературная энергетика - получение энергии с использованием низкотемпературного тепла Земли, воды и воздуха, вернее разности в температурах их различных слоев. Промышленное получение энергии с использованием разности температур на поверхности и в глубинах океана пока не выходит за рамки опытных установок.
«Холодная» энергетика - способы получения энергоносителей путем физико-химических процессов, идущих при низких температурах и сходных с происходящими в растениях. Например, разложение воды на асимметричных мембранах под воздействием солнечного света. Молекула воды распадается на водород и кислород, скапливающиеся по разные стороны этой мембраны. Водород затем используют как энергоноситель. КПД таких мембран в последние годы удалось заметно повысить, а цену - понизить. Вероятно, это перспективный путь. Предполагается, что водород будет широко использоваться в авиации, водном и наземном транспорте, промышленности, сельскохозяйственном производстве. Сжигание водорода не дает вредных выбросов, но он взрывоопасен.
Управляемая термоядерная реакция. Физики работают над освоением управляемой термоядерной реакции синтеза ядер тяжелого водорода с образованием гелия. При таком соединении выделяется громадное количество энергии, гораздо больше, чем при делении ядер урана.
Доказано, что основная доля энергии Солнца и звезд выделяется именно при синтезе легких элементов. Если удастся осуществить управляемую реакцию синтеза, появится неограниченный источник энергии.
Ученые уверены, что в начале следующего тысячелетия получение энергии за счет термоядерного синтеза превратится из чисто теоретической концепции в обыденную реальность.
Весьма перспективными являются энергетические установки, преобразующие одни виды энергии в другие нетрадиционными способами с высоким КПД.
Тепловую энергию в электрическую преобразует магнито-гидродинамический генератор (МГД), который относится к перспективным устройствам (рис. 2.5).
В настоящее время имеется практика эксплуатации магнитогидродинамичекой (МГД) установки, КПД которой превышает 45%. Чтобы понять принцип действия МГД генераторов, следует вспомнить два положения физики:
- при высоких температурах (2500 - 3000о С) газы ионизируются, образуется так называемая плазма;
- электрический ток - это направленное движение электронов в металлах или ионов в жидкостях и газах.
Рис. 2.5. Схема МГД-генератора. 1 - камера сгорания; 2 - МГД-канал; 3 - электроды; 4 - магнитная система
Следовательно, движение плазмы представляет собой электрический ток. Для разделения положительных и отрицательных ионов плазма должна пересекать магнитное поле, в котором положительные ионы отклоняются в одну сторону, а отрицательные - в другую. Концентрация положительных и отрицательных ионов на металлических пластинах придает им положительный и отрицательный потенциал; пластины становятся источником электродвижущей силы (ЭДС). В МГД установках в качестве энергоносителя используется низкотемпературная плазма (около 2700о С), образующаяся при сгорании органического топлива - природного газа или твердого топлива.
Большой интерес уделяют непосредственному преобразованию химической энергии органического топлива в электрическую - созданию топливных элементов. Распространение получили низкотемпературные (t=150°С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей КОН). Топливом в элементах служит водород, окислителем - кислород из воздуха.
Ведутся работы по созданию энергетических установок, использующих энергию гравитации, вакуума, низких температур окружающего воздуха для обогревания помещений по принципу теплового насоса («холодильник наоборот», морозильное отделение которого помещено на улице).
Графики нагрузки
Производство электрической и тепловой энергии на электростанциях и их потребление различными пользователями - процессы взаимосвязанные. В силу физических закономерностей мощность потребления энергии в какой-либо момент времени должна быть равна генерируемой мощности. В этом заключается особенность энергетического производства. К сожалению, отсутствуют возможности складирования электрической и тепловой энергии. Практическое применение известных способов аккумулирования (накопления) различных видов энергии весьма затруднительно.
В то же время работа отдельных приемников электрической и тепловой энергии неравномерна и суммарное потребление энергии также неравномерно.
Потребителю требуется электроэнергии днем больше, чем ночью, в рабочий день недели больше, чем в субботу и воскресенье, зимой больше, чем летом. Режим потребления электрической или тепловой энергии потребителем: предприятием, районом, городом, страной - в течение определенного отрезка времени: суток, месяца, года - отражается с помощью графика нагрузки. Соответственно, различают суточный, месячный, годовой графики нагрузки.
Подобные документы
Энергия солнца, ветра, вод, термоядерного синтеза как новые источники энергии. Преобразование солнечной энергии в электрическую посредством использования фотоэлементов. Использование ветродвигателей различной мощности. Спирт, получаемый из биоресурсов.
реферат [20,0 K], добавлен 16.09.2010Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.
реферат [27,7 K], добавлен 16.09.2010Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.
презентация [911,5 K], добавлен 20.12.2009Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.
презентация [1,1 M], добавлен 25.05.2016Солнечная энергетика — использование солнечного излучения для получения энергии; общедоступность и неисчерпаемость источника, полная безопасность для окружающей среды. Применение нетрадиционной энергии: световые колодцы; кухня, транспорт, электростанции.
презентация [4,5 M], добавлен 05.12.2013Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.
курсовая работа [419,7 K], добавлен 06.05.2016Источники энергии и их виды. Способы экономии энергии. Основные условия снижения энергозатрат в зданиях: приборный учет ресурсов, комплексное использование энергосберегающего оборудования и автоматизация управления всех инженерных систем здания.
контрольная работа [123,3 K], добавлен 12.04.2012Применение энергии термоядерного синтеза. Радиоактивный распад. Получение ядерной энергии. Расщепление атома. Деление ядер тяжелых элементов, получение новых нейронов. Преобразование кинетической энергии в тепло. Открытие новых элементарных частиц.
презентация [877,4 K], добавлен 08.04.2015Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.
контрольная работа [4,0 M], добавлен 31.10.2011Понятие первичной энергии, способы ее получения. Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная). Традиционные, нетрадиционные виды энергетики, их характеристика. Создание топливных элементов.
реферат [688,6 K], добавлен 04.02.2015