Факторы надёжности электрооборудования

Раскрытие понятия надежности электрооборудования и характеристика показателя MTBF как показателя среднего времени работы на отказ. Методы расчета показателя MTBF. Диагностика надежности и анализ факторов, влияющих на надежность работы электрооборудования.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 04.02.2011
Размер файла 100,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Технологический институт

Федерального государственного автономного образовательного учреждения высшего профессионального образования

«Южный федеральный университет» в г. Таганроге

Кафедра Электротехники и Мехатроники

Реферат

на тему:

Факторы надёжность электрооборудования

Выполнил:

студент группы ЗКС-358

Максимов М.А.

Проверил:

Титаренко А.Д.

Таганрог 2011

Содержание

Введение

Надежность электрооборудования и показатель MTBF

Методика расчета MTBF

Надежность и диагностика электрооборудования

Факторы, влияющие на надежность работы электрооборудования

Список литературы

ВВЕДЕНИЕ

Надежность любого электрооборудования и аппаратуры автоматики существенным образом зависит от условий эксплуатации. Условия эксплуатации в производственных помещениях характеризуются климатическими и электромеханическими воздействиями, режимами работы и отсутствием рационального технического обслуживания.

К климатическим воздействиям относятся температура, влажность, запыленность и загазованность окружающего воздуха, атмосферное давление, интенсивность дождя, выпадение росы и инея, скорость движения воздушной струи, ночные и дневные перепады температуры.

К электромеханическим воздействиям относятся вибрационные и ударные нагрузки при работе и перемещениях, колебаниях частоты и напряжения питания.

Повышенная температура вызывает перегрев электрооборудования, ускоряет старение изоляции, смазочных материалов и уплотнителей. Наоборот, пониженная температура снижает прочности пластмасс, резины, металла. Колебания температуры приводят к деформациям и заклиниванию подвижных элементов, нарушению теплообмена, снижению прочности паяных соединений. Повышенная влажность вызывает коррозию металлов, рост плесневых грибков, снижает диэлектрические свойства изоляции.

Повышенная запыленность и наличие агрессивных газов приводят к загрязнению смазки, снижают поверхностное сопротивление и вызывают коррозию изоляционных материалов. Наличие в атмосфере углекислого газа, окислов серы и азоты, а также высокая влажность приводят к образованию кислотных вод и капель конденсата, что также увеличивает скорость коррозии материалов, является одной из причин короткого замыкания токоведущих частей. Ориентировочный расчет надежности проводят в простейших предположениях и не учитывают эксплуатационных режимов использования элементов изделия.

Уточненный расчет надежности отличается от ориентировочного тем, что в нем учитывают электрические, тепловые и прочие эксплуатационные режимы элементов изделия.

Как ориентировочный, так и утоненный расчет приводят в предположении экспоненциальной надежности всех элементов и независимости отказов. Расчеты неизмеримо возрастают, когда модели надежности элементов, блоков и узлов отличны от экспоненциальной. В этих условиях, особенно для сложных и ответственных систем, используют методы статистического моделирования с применением ЭВМ.

Надежность работы электрооборудования и показатель MTBF

Важнейшей характеристикой любого электрооборудования, в том числе трансформаторов, является надежность его работы. Тем более этот показатель важен для системы энергообеспечения города, области или страны.

Для обеспечения бесперебойного функционирования электротехнических предприятий часто используется методика составления пользовательских отчетов с детальной статистикой по оборудованию и группам оборудования. При этом рассчитываются такие параметры, как:

* простои оборудования;

* стоимость технического обслуживания оборудования;

* коэффициент использования оборудования;

* средняя наработка на отказ;

* средний период между ремонтами;

* фактический износ оборудования;

* прогноз полного износа;

* другие показатели.

Такой подход позволяет наладить учет и техническое обслуживание производственного оборудования, перейти от аварийного к планово-предупредительному техобслуживанию, а также получить информацию для расследования причин отказов, наладить материально-техническое снабжение работ, вести планирование людских, материальных и энергетических ресурсов.

Благодаря этому, предприятие может продлить срок эксплуатации производственного оборудования, сократить простои, связанные с отказами, повысить производительность труда.

Это особенно важно для таких предприятий, например, как энергоснабжающая компания, для которых внеплановая остановка оборудования означает крупную аварию и обесточивание десятков населенных пунктов. Важнейшим параметром для определения сроков проведения регламентных и ремонтных работ является показатель «средняя наработка оборудования на отказ» -- Тер. Т.е. время, в течение которого отказывает половина данного оборудования. Этот показатель будет различен для различного оборудования и уменьшается по мере роста сложности оборудования. Для определения Тер используются сложные расчеты, учитывающие состав данного устройства и надежность его составных частей.

Тер = 1 / X ,

где X - вероятность безотказной работы изделия [1/час] и, для разных элементов, имеющий величину порядка 0,1...25х

В последнее время для описания характеристик надежности того или иного устройства (даже таких простых, как DC/DC-преобразователь, сетевой источник питания и т.п.) широко используют показатель MTBF.

Показатель MTBF

Изначально показатель MTBF (Mean Time Between Failure) - в прямом переводе «среднее время наработки на отказ» был введен для характеристики надежности компьютерных систем. Поскольку производить расчеты надежности системы, включающей в себя многие сотни и даже тысячи компонентов, достаточно сложно, то был предложен упрощенный эмпирический подход для определения их надежности. Производители компьютерных компонентов, а теперь зачастую и производители электротехнических изделий, как правило, определяют их надежность на основании испытаний партии изделий по следующей формуле:

MTBF = TxN/No,

где

Т - время проведения испытаний;

N - количество испытуемых изделий;

No - количество изделий, вышедших из строя.

Например, если испытывалось 100 изделий в течение месяца и за это время 10 из них вышло из строя, то MTBF будет равно 10 месяцам. Т.е. предполагается, что через 10 месяцев все изделия выйдут из строя. В этой упрощенной формуле заложены главные недостатки методики определения MTBF.

1. Само понятие MTBF отражает совсем не то, что следует из его названия - «среднее время наработки на отказ». Реальное среднее время наработки на отказ составляет только половину MTBF, поскольку по определению за время MTBF все изделия выйдут из строя. Так, в рассмотренном выше примере это «среднее время» будет не 10 месяцев, а пять, поскольку в среднем все экземпляры изделия проработают не 10 месяцев, а вполовину меньше.

2. Методика расчета MTBF предполагает, что число отказов в единицу времени постоянно на протяжении всего срока эксплуатации. В реальности это, конечно, совершенно не так. На самом деле кривая отказов имеет вид, показанный на рисунке 1.

Рисунок 1 - Кривая отказов

В зоне 1 проявляются отказы изделий, имеющие дефекты изготовления. Здесь отказов много. В зоне 2 ( отt1 до t2) количество отказов в единицу времени постоянно. В зоне 3 начинают проявляться износовые отказы.

Как видим, только в зоне 2 отказы вызываются случайными факторами, и их число постоянно в единицу времени. Однако изготовители электрооборудования распространяют эту зону на весь срок эксплуатации производимых ими устройств. Но реальная статистика отказов на протяжении всего срока эксплуатации подтверждает, что эта теоретическая модель расчета MTBF далека от действительности.

3. Показатель MTBF никак не связан со временем t2, а это важнейший показатель надежности работы системы. При достижении времени t2 необходимо вывести оборудование из эксплуатации и произвести регламентные работы либо заменить оборудование новым. Иначе надежность работы системы при переходе ее в зону 3 резко уменьшится.
Таким образом, MTBF, заявляемый производителем (если он честно произвел тестирование своих изделий), - это время, в течение которого изделие выйдет из строя со 100% вероятностью. Т.е. уже здесь очевидно стремление фирм - производителей ввести потребителя в заблуждения, увеличивая вдвое цифру, характеризующую время безотказной работы изделия.

На рисунке 2 приведены соотношения между MTBF и PPM для некоторых изделий. На рисунке шкала MTBF приведена в часах, а шкала

PPM - в отказах на миллион.

Рисунок 2 - Соотношения между MTBF и PPM

Кроме того, что показатель MTBF является эмпирическим, в настоящее время существует несколько методик его расчета. Наиболее часто используют расчет по методикам IEC61709, MIL-STD 217F или MIL-HDBK 217F. Тонкость здесь в том, что для одного и того же устройства, например DC/DC-преобразователя, показатель MTBF, рассчитанный по разным методикам может отличаться более чем в 10 раз. Это само по себе наводит на мысли о несовершенстве способа определения надежности устройства путем вычисления MTBF.

Методика расчета MTBF

Рассмотрим стандартное описание методики расчета MTBF, например, силовых трансформаторов по методике MIL-STD 217F, которое приводят производители этого оборудования.

1. Регистрируется дата включения в работу каждого трансформатора.

2. От этой даты отнимается 30 дней для компенсации времени приработки.

3. Умножаем количество трансформаторов на количество отработанных дней (-30) и умножаем на 24 часа в сутках. Количество часов работы делим на количество трансформаторов, отказавших за время испытаний.

4. Умножаем полученное значение на 0,95, чтобы учесть не включенные трансформаторы, т.е. трансформаторы, находящиеся в ремонте или в резерве.

Расчет производится по следующей формуле:

MTBF = {[(N1 х (D1 -30) х 24) + (N2 х (D2 (D3-30)x24)....]/Nf}x0,95,

где

N1, N2, N3 - количество включенных трансформаторов;

Dl, D2, D3 - число дней работы;

30 - число дней, отводимых на приработку;

0,95 - фактор компенсации для неработающих трансформаторов (в ремонте, на складе и т.п.);

24 - число часов в сутках;

Nf - количество трансформаторов, отказавших во время испытаний.

Пример:

* 50 трансформаторов испытывались 360 дней;

* 30 трансформаторов испытывались 250 дней;

* 20 трансформаторов испытывались 200 дней.

* во время испытаний отказал 1 трансформатор.

Произведя расчеты, получим MTBF, равный 604200 часам или 69 годам.

В заключение описания методики расчета, как правило, приводится следующая фраза: «Этот метод расчета является эмпирическим и, насколько нам известно, не описан в каких-либо стандартах».

Как относиться к заявляемым производителями MTBF?

Указывая в технической документации то или иное значение MTBF, производители электротехнического оборудования зачастую не задумываются, что указываемая ими цифра во многие миллионы часов противоречит не только законам физики, но и здравому смыслу. В самом деле, MTBF, равный 2,5 млн. часов, означает, что устройство до отказа должно проработать 285 лет. Понятно, что эта цифра абсурдная: за такой срок не только проржавеет корпус трансформатора, но и его обмотки превратятся в прах. В то же время, производители электротехнических изделий часто заявляют MTBF своих изделий равный 3 и даже 3,5 млн. часов. Причем такие результаты они получают в ходе честных испытаний своих изделий по приведенной выше методике. В чем здесь дело? Очевидно, что в самой упрощенной методике определения надежности, имеющей весьма узкие границы применимости. Действительно, как можно на основании 3- или даже 9-месячных испытаний изделия утверждать, что оно проработает 200 лет?

Расчет надежности электрооборудования -- это сложный и кропотливый процесс, связанный с анализом внутренней структуры устройства, с учетом характеристик используемых в нем компонентов, учетом напряженности режима работы каждой из составных частей устройства и т.д. Следует учитывать также резко ограниченный срок службы некоторых компонентов изделия. При определении MTBF все это игнорируется.

Так о чем же говорит тот факт, что заявляемый производителем MTBF у трансформатора 1 равен 2 млн. часов, а у трансформатора 2 - 1 млн. часов? Только о том, что в некоторой зоне работы трансформатора, после 100...300 часов приработки, но до 5...30 тыс. часов работы (т.е. до начала износовых отказов), вероятность отказа трансформатора 1 будет ниже. Но только при том условии, что оба трансформатора собраны на одной и той же элементной базе и имеют схожее схемное решение.

Таким образом, MTBF пригоден только для сравнения однородной продукции одного и того же производителя и только иногда может быть использован для сравнения аналогичной продукции разных производителей, при условии, что она тестировалась в одинаковых условиях. Но в любом случае MTBF ничего не говорит о средней наработке изделия на отказ Тср и о значении t2 . Соответственно, использование MTBF для расчетов надежности функционирования электрооборудования выглядит более чем сомнительно. Для решения задач, о которых говорилось в начале статьи, следует использовать Тер, а не MTBF.

Надежность и диагностика электрооборудования

Пониженная температура снижает прочности пластмасс, резины, металла. Колебания температуры приводят к деформациям и заклиниванию подвижных элементов, нарушению теплообмена, снижению прочности паяных соединений. Повышенная влажность вызывает коррозию металлов, рост плесневых грибков, снижает диэлектрические свойства изоляции. Повышенная запыленность и наличие агрессивных газов приводят к загрязнению смазки, снижают поверхностное сопротивление и вызывают коррозию изоляционных материалов. Наличие в атмосфере углекислого газа, окислов серы и азоты, а также высокая влажность приводят к образованию кислотных вод и капель конденсата, что также увеличивает скорость коррозии материалов, является одной из причин короткого замыкания токоведущих частей.

Ориентировочный расчет надежности проводят в простейших предположениях и не учитывают эксплуатационных режимов использования элементов изделия. Уточненный расчет надежности отличается от ориентировочного тем, что в нем учитывают электрические, тепловые и прочие эксплуатационные режимы элементов изделия. Как ориентировочный, так и утоненный расчет приводят в предположении экспоненциальной надежности всех элементов и независимости отказов. Расчеты неизмеримо возрастают, когда модели надежности элементов, блоков и узлов отличны от экспоненциальной. В этих условиях, особенно для сложных и ответственных систем, используют методы статистического моделирования с применением ЭВМ.

Определим надежность всей системы с учетом условий эксплуатации и без них. При проведении ориентированных расчетов надежности без учета условий эксплуатации необходимо считать, что анализируемый блок управления и защиты (БУ и З) структурно является последовательным, отказы элементов независимы и отказ одного элемента приводит к отказу всего БУ и З в целом. В этом случае математическая модель отказов будет иметь экспоненциальный вид. Определяем интенсивность отказа lі каждого элемента по Таблице 1.2 - Интенсивности отказов элементов при температуре окружающей среды 20°С и относительной влажности 50-70 %. Таблица 1.2 - Интенсивности отказов элементов при температуре окружающей среды 20°С и относительной влажности 50-70 %.

Наименование элемента lіЧ10-6, ч-1 Наименование элемента lіЧ10-6, ч-1 Диоды: кремниевые 0,2 Трансформаторы: силовые 1,0 Контакторы (на один контакт) 2,5 Дроссели 0,35 Разъемы штепсельные: на один штырек 0,3 Интегральные микросхемы 0,25 Реле (на одну контактную группу): Электромагнитные времени 0,3 1,2 Конденсаторы: Слюдяные электролитические 0,25 0,35 Транзисторы: Германиевые кремниевые 0,3 0,5 Резисторы: металлопленочные, 0,04 Для каждой группы, определяем групповое значение интенсивности отказов: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: Интенсивность отказов БУ и З в целом определяется суммой интенсивностей отказов всех групп составляющих элементов: Результирующая вероятность безотказной работы без учета условий эксплуатации определяется по формуле: Среднее время безотказной работы БУ и З (Тср) без учета условий эксплуатации определяется по формуле: Расчет надежности анализируемого блока управления и защиты без учета условий эксплуатации показал, что результирующая вероятность безотказной работы всей системы равна 0,751, что является низкой величиной. Это является следствием высокого значения интенсивности отказа некоторых элементов системы (например, контактор, реле времени). Для увеличения вероятности безотказной работы рекомендуется, либо заменить эти элементы более надежными (например, контактор заменить пускателем), либо зарезервировать их элементами с более большей вероятностью безотказной работы. Но на практике данные рекомендации выполнить не всегда является возможным. Уточненный расчет (с учетом условий эксплуатации) При проведении уточненного расчета надежности с учетом условий эксплуатации необходимо учитывать воздействия внешней среды, в которой функционирует БУ и З (температура, влажность, давление, вибрация, запыленность и т.п.), а также особенности энергетического режима работы самого БУ и З (выделяемой элементами БУ и З тепловой энергии, величин электромагнитных нагрузок, механических напряжений и т.п.). Степень влияния различных факторов условий эксплуатации на показатели надежности различна.

При приближенных расчетах учет влияния условий эксплуатации на надежность работы БУ и З производят путем введения следующих показателей: температура поверхности элемента t°; коэффициент внешних условий kэ, суммарно учитывающий остальные внешние условия эксплуатации; коэффициент нагрузки элемента kн, представляющий отношение фактических значений нагрузки к номинальным. Параметры электрических нагрузок для различных элементов БУ и З различны. Так, для резисторов параметром нагрузки является мощность рассеивания; для конденсаторов - рабочее напряжение; для полупроводниковых диодов - выпрямленный ток и обратное напряжение; для транзисторов - суммарная мощность рассеивания на переходах в непрерывном и импульсном режимах; для трансформаторов - мощность первичной обмотки; для дросселей - плотность тока в обмотках; для электрических машин - рабочая мощность; для пускателей, переключателей, штепсельных разъемов - ток, протекающий через контакты; для реле - ток через контакты и время нахождения обмотки под напряжением. Поэтому при расчете показателей надежности БУ и З с учетом условий эксплуатации следует различать коэффициент нагрузки по току , коэффициент нагрузки по напряжению и коэффициент нагрузки по мощности . Таблица 1.3 - Коэффициенты нагрузки электротехнических устройств Наименование элемента Коэффициент нагрузки Рекомендуемое значение Диоды Дроссели Конденсаторы Коммутационные элементы Резисторы Реле, контакторов, магнитные пускатели Транзисторы, интегральные микросхемы Трансформаторы силовые Трансформаторы вращающиеся Электрические машины kнi, kнv kнi kнv kнi kнw kнi kнw kнw kнv kнw 0,7 0,9 0,85 0,9 0,8 0,8 0,85 0,9 0,95 0,9 Результирующее значение интенсивности отказов элементов БУ и З с учетом условий эксплуатации ljэ можно определить по формуле: при температуре t1?=40?С внутри блока управления и защиты: для силового трансформатора : для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: 150%'>для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: при температуре t2?=50?С внутри блока управления и защиты: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: при температуре t3?=60?С внутри блока управления и защиты: для силового трансформатора: для штепсельного разъема: для контактора трехполюсного: для реле электромагнитного (три контактные группы): для реле пневматического (две контактные группы): для конденсатора электролитического: для конденсатора слюдяного: для резистора металлопленочного: для резистора проволочного: для транзистора германиевого: для транзистора кремниевого: для диода кремниевого: для интегральной микросхемы: для дросселя: Значения коэффициента, учитывающего условия эксплуатации для элементов БУ и З в зависимости от коэффициента нагрузки и температуры элементов определены по зависимостям представленным на Рисунке 1.2 - Семейство кривых . Суммарная интенсивность отказов Sljэ и интенсивность отказов всего БУ и З, с учетом условий эксплуатации lsэ определяется по формуле: для 40°С: для 50°С: для 60°С: Рассчитываем результирующую вероятность безотказной работы Рэ(t) и среднее время безотказной работы для Тср.э БУ и З по формулам: для 40°С: для 50°С: ign:justify;text-indent:36.0pt;line-height: 150%'>для 60°С: Результаты расчета всех параметров элементов блока управления и защиты приведены в Таблице 1.3 - Результаты расчета. Температурные зависимости и представлены на рисунке 1.1 - Зависимость результирующей интенсивности отказа а) и результирующей вероятности безотказной работы б) БУ и З от температуры. Расчет надежности анализируемого блока управления и защиты с учетом условий эксплуатации показал, что результирующая вероятность безотказной работы всей системы уменьшается при увеличении температуры элементов и вследствие влияния условий окружающей среды. Для увеличения вероятности безотказной работы системы рекомендуется уменьшить влияние окружающей среды на элементы системы, увеличив герметичность оболочек элементов, а также недопущение перегрева элементов путем применения более лучших систем охлаждения. Надежность всех объектов также зависит от коэффициента нагрузки, чем он больше, тем надежность объекта меньше.

Решить эту проблему можно либо путем уменьшения коэффициента нагрузки для этого же объекта, либо заменой этого объекта объектом большей мощности при том же коэффициенте нагрузки, но это сопряжено с увеличением экономических затрат, объемов, веса, габаритов, затрат электроэнергии. Поэтому находят такую структуру, которая в условиях экономических ограничений обладает наибольшей надежностью, или находят такой вариант структуры, для которого при ограничении на надежность стоимость затрат наименьшая.

Какие факторы влияют на надежность работы электрооборудования

Опыт эксплуатации показывает, что надежность работы электрооборудования зависит от многочисленных и разнообразных факторов, которые условно могут быть разделены на четыре группы; конструктивные, производственные, монтажные, эксплуатационные.

Конструктивные факторы обусловлены установкой в устройство малонадежных элементов; недостатками схемных и конструктивных решений, принятых при проектировании; применением комплектующих элементов, не соответствующих условиям окружающей среды.

Производственные факторы обусловлены нарушениями технологических процессов, загрязненностью окружающего воздуха, рабочих мест и приспособлений, слабым контролем качества изготовления и монтажа и др.

В процессе монтажа электротехнических устройств их надежность может быть снижена при несоблюдении требований технологии.

Условия эксплуатации оказывают наибольшее влияние на надежность электротехнических устройств. Удары, вибрация, перегрузки, температура, влажность, солнечная радиация, песок, пыль, плесень, коррозирующие жидкости и газы, электрические и магнитные поля -- все влияет на работу устройств. Различные условия эксплуатации по-разному могут сказываться на сроке службы и надежности работы электроустановок.

Ударно-вибрационные нагрузки значительно снижают надежность электротехнических устройств. Воздействие ударно-вибрационных нагрузок может в ряде случае быть значительнее воздействия других механических, а также электрических и тепловых нагрузок. В результате длительного знакопеременного воздействия даже небольших ударно-вибрационных нагрузок происходит накопление усталости в элементах, что приводит обычно к внезапным отказам. Под воздействием вибраций и ударов возникают многочисленные механические повреждения элементов конструкции, ослабляются их крепления и нарушаются контакты электрических соединений.

Нагрузки при циклических режимах работы, связанных с частыми включениями и выключениями электротехнического устройства, так же как и ударно-вибрационные нагрузки, способствуют возникновению и развитию признаков усталости элементов. Физическая природа повышения опасности отказов устройств при их включении и выключении заключается в том, что во время переходных процессов в их элементах возникают сверхтоки и перенапряжения, значение которых часто намного превосходит (хотя и кратковременно) значения, допустимые техническими условиями.

Электрические и механические перегрузки происходят в результате неисправности механизмов, значительных изменений частоты или напряжения питающей сети, загустения смазки механизмов в холодную погоду, превышения номинальной расчетной температуры окружающей среды в отдельные периоды года и дня и т. д.Перегрузки приводят к повышению температуры нагрева изоляции электротехнических устройств выше допустимой и резкому снижению срока ее службы.

Климатические воздействия, более всего температура и влажность, влияют на надежность и долговечность любого электротехнического устройства.

При низких температурах снижается ударная вязкость металлических деталей электротехнических устройств: меняются значения технических параметров полупроводниковых элементов; происходит «залипание» контактов реле; разрушается резина.

Вследствие замерзания или загустения смазочных материалов затрудняется работа переключателей, ручек управления и других элементов. Высокие температуры также вызывают механические и электрические повреждения элементов электротехнического устройства, ускоряя его износ и старение.

Влияние повышенной температуры на надежность работы электротехнических устройств проявляется в самых разнообразных формах: образуются трещины в изоляционных материалах, уменьшается сопротивление изоляции, а значит, увеличивается опасность электрических пробоев, нарушается герметичность (начинают вытекать заливочные и пропиточные компаунды. В результате нарушения изоляции в обмотках электромагнитов, электродвигателей и трансформаторов возникают повреждения. Заметное влияние оказывает повышенная температура на работу механических элементов электротехнических устройств.

Под влиянием влаги происходит очень быстрая коррозия металлических деталей электротехнических устройств, уменьшается поверхностное и объемное сопротивление изоляционных материалов, появляются различные утечки, резко увеличивается опасность поверхностных пробоев, образуется грибковая плесень, под воздействием которой поверхность материалов разъедается и электрические свойства устройств ухудшаются.

Пыль, попадая в смазку, оседает на частях и механизмах электротехнических устройств и вызывает быстрый износ трущихся частей и загрязнение изоляции. Пыль наиболее опасна для электродвигателей, в которые она попадает с засасываемым для вентиляции воздухом. Однако и в других элементах электротехнических устройств износ намного ускоряется, если пыль проникает сквозь уплотнения к поверхности трения. Поэтому при большой запыленности особое значение приобретает качество уплотнений элементов электрических устройств и уход за ними.

Качество эксплуатации электротехнических устройств зависит от степени научной обоснованности применяемых методов эксплуатации и квалификации обслуживающего персонала (знание материальной части, теории и практики надежности, умение быстро находить и устранять неисправности и т.п.). Применение профилактических мероприятий (регламентные работы, осмотры, испытания), ремонта, использование опыта эксплуатации электротехнических устройств обеспечивают их более высокую эксплуатационную надежность.

надежность работа электрооборудование показатель mtbf

Список литературы

1. Сборник задач по теории надежности /А.Н. Половко, И.М. Маликов.-М: Сов. Радио, 1972.-408 с., ил. 2. Певзнер Л.Д. Надежность горного электрооборудования и технических средств шахтной автоматики. - М.: Недра, 1983. - 198 с., ил.

Размещено на Allbest.ru


Подобные документы

  • Основные показатели надежности электрооборудования, показатели безотказности объектов, ремонтопригодность, долговечность и сохраняемость электрооборудования. Определение резервного фонда электрооборудования, особенности его технической диагностики.

    учебное пособие [152,9 K], добавлен 26.04.2010

  • Показатели безотказности работы электрооборудования: вероятность безотказной работы, плотность распределения и интенсивность отказов. Средняя наработка до отказа. Показатели наработки оборудования, рассеивания величины. Расчет показателей надежности.

    курсовая работа [788,7 K], добавлен 25.09.2014

  • Задание по нахождению вероятности безотказной работы электроустановки со всеми входящими в нее элементами. Надежность как важнейший технико-экономический показатель качества любого технического устройства. Структурная надежность электрической машины.

    контрольная работа [21,9 K], добавлен 31.03.2009

  • Описание основных мероприятий, направленных на повышение эксплуатационной надежности электрооборудования. Формы контроля состояния токоведущих частей и контактных соединений. Обслуживание потребительских подстанций. Эксплуатация трансформаторного масла.

    реферат [37,0 K], добавлен 24.12.2008

  • Обоснование периодичности текущего ремонта электрооборудования. Описание технологии текущего ремонта электродвигателя. Компоновка участка по проведению ТО и ТР электрооборудования. Выбор оборудования для диагностирования и ремонта. Задачи проектирования.

    курсовая работа [227,3 K], добавлен 27.02.2009

  • Принципы выбора рационального напряжения, режима нейтрали сети и схемы электроснабжения подстанции. Организация эксплуатации и ремонта трансформаторной подстанции "Новая ". Оценка технического состояния и эксплуатационной надежности электрооборудования.

    курсовая работа [390,2 K], добавлен 02.11.2009

  • Организация эксплуатации энергосистемы для обеспечения бесперебойного снабжения потребителей электроэнергией. Основные мероприятия, выполняемые при обслуживании электрооборудования для повышения эффективности его работы, виды профилактических работ.

    реферат [23,8 K], добавлен 05.12.2009

  • Модернизация трансформаторной подстанции инструментального цеха ОАО НПК "Уралвагонзавод"; обеспечение надежности системы электроснабжения и электрооборудования: выбор оптимального числа трансформаторов, защитной аппаратуры, расчет кабелей и проводов.

    дипломная работа [677,0 K], добавлен 25.11.2011

  • Определение объема работ по эксплуатации электрооборудования предприятия. Перечень и трудоемкость выполнения работ по обслуживанию и ремонту электрооборудования. Система планово-предупредительного ремонта и технического обслуживания электрооборудования.

    курсовая работа [782,9 K], добавлен 30.09.2013

  • Расход электроэнергии всего и по видам потребления. Присоединенная мощность электроприемников. Характеристика и экономические показатели работы. Периодичность технического обслуживания и ремонта электрооборудования. Расчёт потребности в материалах.

    курсовая работа [386,6 K], добавлен 19.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.