Электронные вольтметры
Характеристика принципа действия аналогового и дискретного электронного вольтметра, прибора для измерения напряжения. Исследование составляющих электронного вольтметра: преобразователя переменного напряжения, усилителя и магнитоэлектрического индикатора.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 03.02.2011 |
Размер файла | 339,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ
Определение и классификация
Электронным вольтметром называется прибор, показания которого вызываются током электронных приборов, т. е. энергией источника питания вольтметра. Измеряемое напряжение управляет током электронных приборов, благодаря чему входное сопротивление электронных вольтметров достигает весьма больших значений и они допускают значительные перегрузки.
Электронные вольтметры делятся на аналоговые и дискретные. В аналоговых вольтметрах измеряемое напряжение преобразуется в пропорциональное значение постоянного тока, измеряемое магнитоэлектрическим микроамперметром, шкала которого градуируется в единицах напряжения (вольты, милливольты, микровольты). В дискретных вольтметрах измеряемое напряжение подвергается ряду преобразований, в результате которых аналоговая измеряемая величина преобразуется в дискретный сигнал, значение которого отображается на индикаторном устройстве в виде светящихся цифр. Аналоговые и дискретные вольтметры часто называют стрелочными и цифровыми соответственно.
По роду тока электронные вольтметры делятся на вольтметры постоянного напряжения, переменного напряжения, Универсальные и импульсные. Кроме того, имеются вольтметры с частотно-избирательными свойствами -- селективные.
При разработке электронных вольтметров учитываются следующие основные технические требования: высокая чувствительность; широкие пределы измеряемого напряжения; широкий диапазон рабочих частот; большое входное сопротивление и малая входная емкость; малая погрешность; известная зависимость показаний от формы кривой измеряемого напряжения.
Вольтметры переменного напряжения
Электронный вольтметр переменного напряжения состоит из преобразователя переменного напряжения в постоянное, усилителя и магнитоэлектрического индикатора. Часто на входе вольтметра устанавливается калиброванный делитель напряжения. с помощью которого увеличивается верхний предел измеряемого напряжения. В зависимости от вида преобразования показание вольтметра может быть пропорционально амплитудному (пиковому), средневыпрямленному или среднеквадратическому значению измеряемого напряжения.
Рис. 1. Структурная схема аналогового электронного вольтметра с амплитудным преобразователем
Однако следует иметь в виду, что шкалу любого электронного вольтметра градуируют в среднеквадратических (действующих) значениях напряжения синусоидальной формы. Исключение составляют импульсные вольтметры, шкалу которых градуируют в амплитудных значениях.
Вольтметр амплитудного (пикового) значения (рис. 1) состоит из амплитудного преобразователя АПр, усилителя постоянного тока УПТ и магнитоэлектрического индикатора, градуированного в вольтах. На входе вольтметра иногда предусматривается делитель напряжения ДН. Амплитудный преобразователь выполняют по схеме с открытым или закрытым входом.
Амплитудный преобразователь с открытым входом (рис. 2, а) представляет собой последовательное соединение вакуумного диода Д с параллельно соединенными резистором Л? и конденсатором С. Если к зажимам 1--2 приложено напряжение u = Um sint от источника с внутренним сопротивлением ri, то конденсатор через диод заряжается до некоторого значения Uc, которое приложено к электродам диода так, что он большую часть периода закрыт, т. е. работает в режиме отсечки (рис. 2, б). В течение каждого периода диод открывается на некоторый промежуток времени 't1 - 't2 тогда и>Uc и конденсатор подзаряжается импульсом тока iД до напряжения Uc * постоянная времени заряда
з = (Ri +RД ) С,
где RД -- сопротивление открытого диода. Затем диод закрывается и конденсатор разряжается через резистор R в течение интервала t2 - 't1 постоянная времени разряда p = RC.
Постоянные времени должны отвечать следующим условиям:
з < 1/fв и p > I/fн
где fв и fн -- границы частотного диапазона вольтметра. Очевидно, что з << p и R >> Ri +RД. В широкодиапазонных вольтметрах неравенство: з < 1/fв выполнить не удается, и потому на высоких частотах процесс установления длится в течение нескольких периодов измеряемого напряжения.
Рис. 2. Амплитудный преобразователь с открытым входом
Результатом амплитудного преобразования является среднее значение слабо пульсирующего напряжения Uc, которое в отличие от Um называют пиковым значением Uпик.
Uпик = Umcos
Где - угол отсечки диода.
Напряжение Uпик поступает на вход усилителя постоянного тока, входное сопротивление которого большое, а выходное -- малое. УПТ служит для согласования выходного сопротивления преобразователя с сопротивлением индикатора и для повышения чувствительности вольтметра.
Амплитудный преобразователь с закрытым входов (рис. 3) представляет собой последовательное соединение конденсатора постоянной емкости С с параллельно соединенными диодом Д и резистором R. Процесс преобразования переменного напряжения в постоянное Uпик аналогичен рассмотренному выше, с тем отличием, что на зажимах 3--4 имеются значительные пульсации напряжения, для сглаживания которых предусмотрен фильтр.
Рис. 3. Принципиальная схема амплитудного преобразователя с закрытым входом
Процессы преобразования пульсирующего напряжения преобразователем с открытым и закрытым входом различны и зависят от полярности подключения к входным зажимам /--2 постоянной составляющей пульсирующего напряжения. Если на вход амплитудного преобразователя с открытым входом включено пульсирующее напряжение так,
Рис. 4. Диаграммы напряжении в амплитудных преобразователях: а--с открытым входом; б -- с закрытым входом
что «+» постоянной составляющей приложен к аноду| диода, то выходное напряжение
UпикUmax=U0+Um+,
где Uo -- постоянная составляющая, а Um+ -- амплитуда положительного полупериода переменной составляющей (рис. 4, а). Если к аноду диода приложен «--» постоянной составляющей, то диод закрыт все время и преобразования нет. Если к аноду амплитудного преобразователя с закрытым входом приложено пульсирующее напряжение, то конденсатор С заряжен постоянной составляющей U0 преобразователь реагирует только на переменную составляющую. если к аноду диода приложен «+», то выходное напряжение Uпик Um+, a если «--», то Uпик Um- (рис. 4, б). Это полезное свойство вольтметров с закрытым входом измерять отдельно значения напряжения положительного или отрицательного полупериодов широко используется для определения симметричности амплитудной модуляции, наличия ограничения сигналов и т.д. Амплитудные (пиковые вольтметры характеризуются невысокой чувствительностью (порог чувствительности 0.1В) и широкой полосой частот (до 1 ГГц).
Вольтметр средневыпрямленного значения (рис. 6) состоит из входного делителя напряжения ДЯ, широкополосного транзисторного усилителя ШУ, выпрямительного преобразователя Пр и магнитоэлектрического индикатора.
Рис. 5. Структурная схема универсального вольтметра
Входное сопротивление делителя напряжения высокое, и если усилитель имеет низкое входное сопротивление, то между ними ставится узел согласования -- преобразователь сопротивлений (с высоким входным и низким выходным сопротивлениями). Выходное напряжение усилителя поступает на выпрямительный преобразователь, и через микроамперметр протекает постоянная составляющая выпрямленного тока, пропорциональная средневыпрямленному значению измеряемого напряжения.
Рис. 6. Структурная схема вольтметра высокой чувствительности
Шкалу индикатора градуируют в среднеквадратических значениях синусоидального напряжения.
Вольтметры, построенные по такой структурной схеме, характеризуются высокой чувствительностью (микро- и милливольты) и сравнительно узкой полосой частот измеряемых напряжений (1; 5; 10МГц). Обе эти характеристики определяются усилителем переменного напряжения.
Вольтметр среднеквадратического (действующего) значения строится по структурной схеме рис. 6. Применяются преобразователи с квадратичной характеристикой, обеспечивающей измерение среднеквадратического значения напряжения любой формы. К таким преобразователям относятся, в первую очередь, термоэлектрические и оптронные. На базе термоэлектрических преобразователей (см. рис-. 3-15, г) создан преобразователь среднеквадратического значения [б], работающий на двух идентичных элементах ТПр1 и ТПр2 (рис. 7) и дифференциальном усилителе ДУ (микросхеме). Нагреватель первого термопреобразователя подключен к выходу широкополосного усилителя, т. е. в цепь измеряемого напряжения Ux, а нагреватель второго -- к выходу дифференциального усилителя ДУ, т. е. в цепь отрицательной обратной связи. ТермоЭДС первого преобразователя
Ет1 =aтU2x
второго --
Ет2 =aтU2вых,
где Ux и (Uвых --среднеквадратические значения измеряемого и выходного напряжений соответственно.
Рис. 7. Схема термоэлектрического преобразователя среднеквадратического значения напряжения
Термопары включены встречно. Применяют дифференциальный усилитель с большим коэффициентом усиления. Выходное напряжение среднеквадратического преобразователя связано линейной зависимостью со среднеквадратическим значением измеряемого напряжения.
Основная погрешность преобразования обусловлена не идентичностью параметров термопреобразователей, увеличивающейся с их старением, и составляет 2,5--6 %.
дискретный вольтметр напряжение электрический
Вольтметры постоянного напряжения
Рассмотренный выше (рис. 5) универсальный вольтметр позволяет измерять постоянное напряжение от десятых долей вольта и выше. Для измерения меньших значений (от 0,5 мкВ) применяют высокочувствительные электронные вольтметры с преобразованием постоянного напряжения в переменное, которое после значительного усиления вновь преобразуется в постоянное и измеряется магнитоэлектрическим микроамперметром.
Цифровые электронные вольтметры
Принцип работы вольтметров дискретного действия состоит в преобразовании измеряемого постоянного или медленно меняющегося напряжения в электрический код, который отображается на табло в цифровой форме. В соответствии с этим обобщенная структурная схема цифрового вольтметра состоит из входного устройства ВхУ, аналого-цифрового преобразователя АЦП и цифрового индикатора Ц И.
Рис. 8 Обобщенная структурная схема цифрового вольтметра.
Цифровые вольтметры с время-импульсным преобразованием. Принцип работы заключается в преобразовании измеряемого напряжения Ux в пропорциональный интервал времени ДГ, измеряемый числом N заполняющих его импульсов со стабильной частотой следования.
Вольтметр (рис. 3-30, а) работает циклами, длительность которых Т устанавливается с помощью управляющего устройства УУ и обычно равна или кратна периоду питающей сети. Для единичного измерения Ux предусмотрен ручной запуск.
Погрешность измерения возникает вследствие нелинейности изменения линейно-падающего напряжения, нестабильности порога срабатывания сравнивающих устройств.
Рис. 3-30. Цифровой вольтметр с время-импульсным преобразованием и возможности потери счетного импульса, т. е. погрешности дискретности.
Основная погрешность составляет обычно 0,1 %. Помехоустойчивость вольтметров с время-импульсным преобразованием низкая, так как любая помеха вызывает изменение момента срабатывания сравнивающего устройства. Главным достоинством этих вольтметров является их сравнительная простота.
Цифровой вольтметр с частотным преобразованием. Принцип действия заключается в преобразовании измеряемого напряжения в пропорциональную ему частоту следования импульсов, измеряемую цифровым частотомером.
Цифровой вольтметр с двойным интегрированием. Принцип его работы подобен принципу время-мпульсного преобразования, с тем отличием, что здесь образуются два временных интервала в течение цикла измерения, длительность которого устанавливается кратной периоду помехи. Таким образом определяется среднее значение измеряемого напряжения, а помеха подавляется. Эти вольтметры являются более точными и помехоустойчивыми по сравнению с рассмотренными выше, однако время измерения у них больше.
Вольтметр следящего уравновешивания работает не циклами, а непрерывно реагируя на изменение измеряемого напряжения: сумма образцовых напряжений принимает большее или меньшее значение в зависимости от значения измеряемого напряжения. Когда достигается равенство
Ux=Uобр
код преобразуется в показание, а состояние прибора остается неизменным до тех пор, пока не изменится значение Ux.Преимущество вольтметров следящего уравновешивания заключается в уменьшении статической и динамической погрешности и в повышении быстродействие.
Размещено на Allbest.ru
Подобные документы
Сущность и назначение импульсного вольтметра. Технические и метрологические характеристики некоторых его видов. Структурная схема аналогового электронного импульсного вольтметра, принцип его работы. Расчет делителя, пределы измерений и погрешности.
реферат [401,8 K], добавлен 14.11.2010Метрология как наука об измерениях физических величин, методах и средствах обеспечения их единства. Знакомство с основными особенностями комбинированного вольтметра В7-40 для измерения среднеквадратических значений переменного напряжения и тока.
дипломная работа [1,5 M], добавлен 08.11.2013Измерение входных сопротивлений экземпляров вольтметров, используемых в работе. Исследование влияния входного сопротивления вольтметра на результат измерения напряжения с применением делителя напряжения. Проверка вольтметра по цифровому методу сличения.
лабораторная работа [306,7 K], добавлен 05.06.2015Выбор методов и средств измерений. Типовые метрологические характеристики вольтметра. Методика выполнения измерений переменного напряжения сложной формы на выходе резистивного делителя напряжения методом вольтметра в рабочих условиях, обработка данных.
контрольная работа [75,8 K], добавлен 25.11.2011Проектирование этапов методики выполнения измерений средневыпрямленного значения напряжения сложной формы на выходе резистивного делителя напряжения. Использование вольтметра переменного тока. Определение класса точности средства измерения (вольтметра).
курсовая работа [122,9 K], добавлен 25.11.2011Измерение напряжения на участке электрической цепи. Пути определения поправки на погрешность, обусловленную потреблением вольтметром тока. Градуировка магнитоэлектрического вольтметра. Проверка режимов работы основных каскадов электронного блока.
лабораторная работа [736,6 K], добавлен 13.03.2014Принцип действия расходомеров, их внешний вид. Явление электромагнитной индукции. Структурная схема электромагнитного преобразователя индукционного расходомера. Принцип работы счетчика жидкости с овальными шестернями. Коммерческая модель вольтметра.
курсовая работа [3,2 M], добавлен 04.04.2013Выбор измерительного прибора для допускового контроля параметров. Определение доверительных границ неисключенной доверительной погрешности результата измерения. Назначение и принцип действия цифровых универсальных вольтметров и их составных частей.
курсовая работа [1,7 M], добавлен 14.04.2019Повышение устойчивости питающего напряжения посредством применения специальных стабилизаторов напряжения. Изучение принципа действия параметрических и компенсационных стабилизаторов постоянного напряжения, определение и расчет их основных параметров.
лабораторная работа [1,8 M], добавлен 12.05.2016Расчет сопротивления внешнего шунта для измерения магнитоэлектрическим амперметром силового тока. Определение тока в антенне передатчика при помощи трансформатора тока высокой частоты. Вольтметры для измерения напряжения с относительной погрешностью.
контрольная работа [160,4 K], добавлен 12.05.2013