Экспериментальные и теоретические основы зарождения специальной теории относительности

Общая теория относительности как геометрическая теория тяготения, развивающая специальную теорию относительности, история ее разработок и опубликования Эйнштейном. Некоторые из основных теорий принципов общей теории относительности, ее следствия.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.12.2010
Размер файла 62,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

На тему:

«Экспериментальные и теоретические основы зарождения специальной теории относительности»

г. Таганрог 2009 г.

Введение

Название «теория относительности» возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени.

Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.

Название же «принцип относительности» или «постулат относительности», возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.

Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии с теорией упругости, сложилось ложное представление о необходимости существования абсолютной неподвижной системы отсчета, связанной с электромагнитным эфиром. Зародилось, таким образом, представление об абсолютном движении относительно системы, связанной с эфиром, представление, противоречащее более ранним воззрениям классической механики (принцип относительности Галилея). Опыты Майкельсона и других физиков опровергли эту теорию «неподвижного эфира» и дали основание для формулировки противоположного утверждения, которое и получило название «принципа относительности». Так это название вводится и обосновывается в первых работах Пуанкаре и Эйнштейна.

Но крупнейший советский теоретик Л.И. Мандельштам в своих лекциях по теории относительности разъяснял: «Название «принцип относительности» - одно из самых неудачных. Утверждается независимость явлений от неускоренного движения замкнутой системы. Это вводит в заблуждение многие умы». На неудачность названия указывал и один из творцов теории относительности, раскрывший ее содержание в четырехмерной геометрической форме, - Герман Минковский. В 1908 г. он утверждал: «…термин «постулат относительности» для требования инвариантности по отношению к группе , кажется слишком бедным. Так как смысл постулата сводится к тому, что в явлениях нам дается только четырехмерный в пространстве и времени мир, но что проекции этого мира на пространство и на время могут быть взяты с некоторым произволом, хотелось бы этому утверждению дать название: постулат абсолютного мира».

Таким образом, мы видим, что названия «принцип относительности» и «теория относительности» не отражают истинного содержания теории.

1. Общая теория относительности

Общая теория относительности - геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915-1916 годах. В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.

ОТО в настоящее время - самая успешная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что качественно и количественно подтвердило предсказания общей теории относительности. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности - существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этих проблем был предложен ряд альтернативных теорий, некоторые из которых также являются квантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

2. Некоторые из основных теорий принципов общей теории относительности

2.1 Принцип равенства гравитационной и инертной масс

В нерелятивистской механике существует два понятия массы: первое относится ко второму закону Ньютона, а второе - к закону всемирного тяготения. Первая масса - инертная (или инерционная) - есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса - гравитационная - определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10?3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10?9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10?12-10?13 (Брагинский, Дикке и т.д.).

Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности.

2.2 Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самогом пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела движутся по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

2.3 Кривизна пространства-времени

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны.

Аналогично, в пространстве-времени девиация геодезических линий (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой - метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно способом связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

3. Основные следствия ОТО

относительность теория тяготение эйнштейн

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:

1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.

2. Отклонение светового луча в гравитационном поле Солнца.

3. Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе - Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,01% (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

4. Экспериментальные подтверждения ОТО

4.1 Эффекты, связанные с ускорением систем отсчёта

Первый из этих эффектов - гравитационное замедление времени, из-за которого любые часы будут идти тем медленнее, чем глубже в гравитационной яме (ближе к гравитирующему телу) они находятся. Данный эффект был непосредственно подтверждён в эксперименте Хафеле - Китинга, а также в эксперименте Gravity Probe A и постоянно подтверждается в GPS.

Непосредственно связанный с этим эффект - гравитационное красное смещение света. Под этим эффектом понимают уменьшение частоты света относительно локальных часов (соответственно, смещение линий спектра к красному концу спектра относительно локальных масштабов) при распространении света из гравитационной ямы наружу (из области с меньшим гравитационным потенциалом в область с большим потенциалом). Гравитационное красное смещение было обнаружено в спектрах звёзд и Солнца и надёжно подтверждено уже в контролируемых земных условиях в эксперименте Паунда - Ребки. Гравитационное замедление времени влечёт за собой ещё один эффект, названный эффектом Шапиро (также известный как гравитационная задержка сигнала). Из-за этого эффекта в поле тяготения электромагнитные сигналы идут дольше, чем в отсутствие этого поля. Данное явление было обнаружено при радиолокации планет солнечной системы и космических кораблей, проходящих позади Солнца, а также при наблюдении сигналов от двойных пульсаров.

4.2 Гравитационное отклонение света

Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что на самом деле в ОТО угловой сдвиг направления распространения света в два раза больше, чем в ньютоновской теории, в отличие от предыдущего рассмотрения. Таким образом, это предсказание стало ещё одним способом проверки ОТО.

С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также с высокой точностью проверено радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.

Гравитационное линзирование происходит, когда один отдалённый массивный объект находится вблизи или непосредственно на линии, соединяющей наблюдателя с другим объектом, намного более удалённым. В этом случае искривление траектории света более близкой массой приводит к искажению формы удалённого объекта, которое при малом разрешении наблюдения приводит, в основном, к увеличению совокупной яркости удалённого объекта, поэтому данное явление было названо линзированием. Первым примером гравитационного линзирования было получение в 1979 году двух близких изображений одного и того же квазара QSO 0957+16 A, B (z=1,4) английскими астрономами Д. Уолшем и др. «Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу - далёкую галактику (z=0,36), лежащую между Землей и квазаром». С тех пор было найдено много других примеров отдалённых галактик и квазаров, затрагиваемых гравитационным линзированием. Например, известен так называемый Крест Эйнштейна, когда галактика учетверяет изображение далёкого квазара в виде креста.

Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и / или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу) и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд - МАСНО, EROS (англ.) и другие.

4.3 Чёрные дыры

Чёрная дыра - область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результат коллапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать.

Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу за счёт излучения, названного излучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО.

Известно много кандидатов в чёрные дыры, в частности супермассивный объект, связанный с радиоисточником Стрелеца в центре нашей Галактики. Подавляющее большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются бозонные звёзды и другие экзотические объекты.

4.4 Орбитальные эффекты

ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно связанных систем: Солнечная система, двойные звёзды и т.д.

Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую релятивистскую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия. Таким образом была решена известная в то время проблема небесной механики.

Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, астероида Икар и как более сильный эффект в системах двойных пульсаров. За открытие и исследования первого двойного пульсара PSR B1913+16 в 1974 году Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.

Другой эффект - изменение орбиты, связанное с гравитационным излучением двойной и более кратной системы тел. Этот эффект наблюдается в системах с близко расположенными звёздами и заключается в уменьшении периода обращения. Он играет важную роль в эволюции близких двойных и кратных звёзд. Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2% совпал с предсказаниями ОТО.

Ещё один эффект - геодезическая прецессия. Она представляет собой прецессию полюсов вращающегося объекта в силу эффектов параллельного перенесения в искривлённом пространстве-времени. Данный эффект отсутствует в ньютоновской теории тяготения. Предсказание геодезической прецессии было проверено в эксперименте с зондом НАСА «Грэвити Проуб Би» (Gravity Probe B). Руководитель исследований данных, полученных зондом, Фрэнсис Эверитт на пленарном заседании Американского физического общества 14 апреля 2007 года заявил о том, что анализ данных гироскопов позволил подтвердить предсказанную Эйнштейном геодезическую прецессию с точностью, превосходящей 1%.

4.5 Увлечение инерциальных систем отсчёта

Увлечение инерциальных систем отсчёта вращающимся телом заключается в том, что вращающийся массивный объект «тянет» пространство-время в направлении своего вращения: удалённый наблюдатель в покое относительно центра масс вращающегося тела обнаружит, что самыми быстрыми часами (то есть покоящимися относительно локально-инерциальной системы отсчёта) на фиксированном расстоянии от объекта являются часы, имеющие компоненту движения вокруг вращающегося объекта в направлении вращения, а не те, которые находятся в покое относительно наблюдателя, как это происходит для невращающегося массивного объекта. Точно так же удалённым наблюдателем будет установлено, что свет двигается быстрее в направлении вращения объекта, чем против его вращения. Увлечение инерциальных систем отсчёта также вызовет изменение ориентации гироскопа во времени. Для космического корабля на полярной орбите направление этого эффекта перпендикулярно геодезической прецессии, упомянутой выше.

Поскольку эффект увлечения инерциальных систем отсчёта в 170 раз слабее эффекта геодезической прецессии, стэнфордские учёные пока по-прежнему извлекают его «отпечатки» из информации, полученной зондом «Грэвити Проуб Би» (Gravity Probe B).

5. Специальная теория относительности

Теория, описывающая движение, законы механики и пространственно-временные отношения, определяющие их, при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей образует общую теорию относительности.

Отклонения в протекании физических процессов, описываемые теорией относительности, от эффектов, предсказываемых классической механикой, называют релятивистскими эффектами, скорости, при которых такие эффекты становятся существенными - релятивистскими скоростями.

6. Создание СТО

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами.

Другим следствием развития электродинамики стал переход от ньютоновской концепции дальнодействия, согласно которой взаимодействующие на расстоянии тела воздействуют друг на друга через пустоту, причём взаимодействие осуществляется с бесконечной скоростью, то есть «мгновенно», к концепции близкодействия, предложенной Майклом Фарадеем, в которой взаимодействие передаётся с помощью промежуточных агентов - полей, заполняющих пространство - и при этом встал вопрос о скоростях распространения как взаимодействий, переносимых полями, так и самих полей. Скорость распространения электромагнитного поля в пустоте вытекала из уравнений Максвелла и оказалась постоянной и равной скорости света.

Однако в связи с этим встал вопрос - относительно чего постоянна скорость света? В максвелловой электродинамике скорость распространения электромагнитных волн оказалась не зависящей от скоростей движения как источника этих волн, так и наблюдателя. Аналогичной оказалась и ситуация с магнитостатическими решениями, вытекающими из уравнений Максвелла: статические магнитные поля и силы Лоренца, действующие на движущиеся в магнитных полях заряды, зависят от скоростей зарядов по отношению к наблюдателю, то есть уравнения Максвелла оказались неинвариантными относительно принципа относительности и преобразований Галилея - что противоречило ньютоновской концепции абсолютного пространства классической механики.

Специальная теория относительности была разработана в начале XX века усилиями Г.А. Лоренца, А. Пуанкаре и А. Эйнштейна, см. ниже исторический очерк. Экспериментальной основой для создания СТО послужил опыт Майкельсона, который дал результат измерения, неожиданный для классической физики своего времени: независимость скорости света от системы отсчёта. Попытка проинтерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений не только электромагнетизма, но и всей механики вообще, и привела к созданию релятивистских физических теорий.

7. Постулаты Эйнштейна

СТО полностью выводится на физическом уровне строгости из трёх постулатов (предположений):

1. Справедлив принцип относительности Эйнштейна - расширение принципа относительности Галилея.

2. Скорость света не зависит от скорости движения источника во всех инерциальных системах отсчёта.

3. Пространство и время однородны, пространство является изотропным.

Формулировка второго постулата может быть шире: «Скорость света постоянна во всех инерциальных системах отсчёта», но для вывода СТО достаточно его исходной формулировки Эйнштейном, записанной выше. Третий постулат в явном виде обычно не фигурирует в вариантах вывода СТО, но подразумевается. Приписывание постулатов Эйнштейну правомерно в той степени, что до его работы эти уже сформулированные отдельно друг от друга (в частности, А. Пуанкаре) утверждения в совокупности явным образом никем не рассматривались.

Иногда в постулаты СТО также добавляют условие синхронизации часов по А. Эйнштейну, но принципиального значения оно не имеет: при других условиях синхронизации лишь усложняется математическое описание экспериментальной ситуации без изменения предсказываемых и измеряемых эффектов (см. по этому поводу работы в списке литературы).

Тем не менее, опора на достижения экспериментальной физики позволяет утверждать, что в пределах своей области применимости - при пренебрежении эффектами гравитационного взаимодействия тел - СТО является справедливой с очень высокой степенью точности (до 10?12 и выше) (см. список литературы). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности - нужно лишь уметь слушать».

8. Сущность СТО

Следствием постулатов СТО являются преобразования Лоренца, заменяющие собой преобразования Галилея для нерелятивистского, «классического» движения. Эти преобразования связывают между собой координаты и времена одних и тех же событий, наблюдаемых из различных инерциальных систем отсчёта.

При движении с околосветовыми скоростями видоизменяются также и законы динамики. Так, можно вывести, что второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме того, можно показать, что и выражение для импульса и кинетической энергии тела уже имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является безусловно верной теорией в своей области применимости.

Четырёхмерный континуум - пространство-время

С математической точки зрения, непривычные свойства СТО можно интерпретировать как результат того, что время и пространство не являются независимыми понятиями, а образуют пространство-время Минковского, которое является псевдоевклидовым пространством. Вращения базиса в этом четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов, выглядят для нас как переход в движущуюся систему отсчета и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходах от одного условия синхронизации часов к другому, и гарантирует независимость результатов экспериментов от принятого условия.

Аналог расстояния между событиями в пространстве Минковского, называемый интервалом, при введении наиболее простых координат, аналогичных декартовым координатам трёхмерного пространства, даётся выражением

Обратите внимание: «квадрат расстояния» между двумя разными событиями может быть не только положительным, но и отрицательным и даже нулём. Именно незнакоопределённость метрики определяет свойства пространства-времени, делая его геометрию псевдоевклидовой.

9. Эффекты СТО

Пусть система отсчёта K' движется со скоростью V относительно системы отсчёта K0, соответственно, штрихованные величины относятся к K', а величины с индексом 0 - к K0. К наиболее распространённым эффектам СТО, также называемым релятивистскими эффектами, относят:

· Замедление времени

Время в движущейся системе отсчёта течёт медленнее:

С этим эффектом связан так называемый парадокс близнецов.

· Сокращение линейных размеров

Линейные размеры тел в движущейся системе отсчёта сокращаются:

, для длины.

, для объёма.

При этом сокращаются продольные размеры тела (то есть измеряемые вдоль направления движения). Поперечные размеры не изменяются.

Такое сокращение размеров ещё называют лоренцевым сокращением.

· О релятивистской массе

Так называемая релятивистская масса движущегося объекта определяется соотношением (верным и для частиц, движущихся со скоростью света):

Релятивистская масса движущегося объекта больше массы покоя:

и возрастает с увеличением скорости. «Утяжеление» следует понимать лишь условно, так как второй закон Ньютона в форме F = m'a всё равно не выполняется (направление ускорения в общем случае не совпадает с направлением силы).

В современной физической литературе по СТО, однако, принято, что m - масса частицы (инвариантная масса) не зависит от скорости, являясь инвариантом относительно преобразований Лоренца, и является величиной неаддитивной. Понятие «релятивистской массы» не используется и не рекомендуется к применению, хотя оно и встречается в ранних работах по теории относительности.

10. Отношения теории относительности с другими физическими понятиями

Гравитация

Для описания гравитации разработано особое расширение теории относительности, в котором допускается кривизна пространства-времени. Тем не менее, динамика даже в рамках СТО может включать гравитационное взаимодействие, пока потенциал гравитационного поля много меньше c2.

Следует также заметить, что специальная теория относительности перестает работать в масштабах всей Вселенной, требуя замены на ОТО.

Классическая механика

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики. Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела. Надо отметить, что даже в классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной (как должно быть в воображаемой абсолютно твёрдой среде).

Квантовая механика

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой. Их синтезом является квантовая теория поля. Более того, такое квантовомеханическое явление как спин без привлечения теории относительности не имеет разумного объяснения. Однако, обе теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея (см. уравнение Шрёдингера), так и теорий на основе СТО, полностью игнорирующих квантовые эффекты.

Развитие квантовой теории всё ещё продолжается, и многие физики считают, что будущая полная теория ответит на все вопросы, имеющие физический смысл, и даст в пределах как СТО в сочетании с квантовой теорией поля, так и ОТО. Скорее всего СТО ожидает такая же судьба, как и механику Ньютона - будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является очень отдалённой перспективой.

Заключение

Многие предсказания теории относительности противоречат интуиции, кажутся невероятными и невозможными. Это, однако, не означает, что теория относительности неверна. В действительности, то, как мы видим (либо хотим видеть) окружающий нас мир и то, каким он является на самом деле, может сильно различаться. Уже больше века учёные всего мира пробуют опровергнуть СТО. Ни одна из этих попыток не смогла найти ни малейшего изъяна в теории. О том, что теория верна математически, свидетельствует строгая математическая форма и чёткость всех формулировок.

О том, что СТО действительно описывает наш мир, свидетельствует огромный экспериментальный опыт. Многие следствия этой теории используются на практике. Очевидно, что все попытки «опровергнуть СТО» обречены на провал потому, что сама теория опирается на три постулата Галилея (которые несколько расширены), на основе которых построена ньютонова механика, а также на дополнительный постулат о постоянстве скорости света во всех системах отсчета. Все четыре не вызывают какого-либо сомнения в пределах максимальной точности современных измерений: лучше 10 ? 12, а в некоторых аспектах - до 10 ? 15. Более того, точность их проверки является настолько высокой, что постоянство скорости света положено в основание определения метра - единицы длины, в результате чего скорость света становится константой автоматически, если измерения вести в соответствии с метрологическими требованиями.

Список литературы

1. Ландау, Л.Д., Лифшиц, Е.М. Теория поля. - Издание 7-е, исправленное. - М.: Наука, 1988. - 512 с. - («Теоретическая физика», том II). - ISBN 5-02-014420-7

2. Паули В. Теория относительности. Изд. 2-е, испр. и доп. Перев. с нем. - М.: Наука, 1983.

3. Спасский Б.И. История физики. Том 2, часть 2-я. М.: Высшая школа, 1977.

4. Эйнштейн А. Сущность теории относительности. - М.: Изд. ин. лит., 1955.

5. Уиттекер Э. История теории эфира и электричества. Современные теории 1900-1926. Пер с англ. Москва, Ижевск: ИКИ, 2004. 464 с. ISBN 5-93972-304-7 (Глава 2)

6. Визгин В.П. Релятивистская теория тяготения (истоки и формирование, 1900-1915). М.: Наука, 1981.

7. Герман Вейль. Пространство. Время. Материя. Лекции по общей теории относительности. - М.: Изд-во УРСС научной и учебной литературы, 2004.

8. Дирак П.А.М. Общая теория относительности М.: Атомиздат, 1978.

9. Фок В.А. Теория пространства, времени и тяготения / 2-е изд. М.: ГИФМЛ, 1961.

10. Толмен Р. Относительность, термодинамика и космология М.: Наука, 1974.

11. Пенроуз Р. Структура пространства-времени М.: Мир, 1972.

12. Мизнер Ч., Торн К., Уилер Дж. Гравитация. М.: Мир, 1977. Том 1 Том 2 Том 3

13. Хокинг С., Эллис Дж. Крупномасштабная структура пространства-времени М.: Мир, 1977.

14. Визгин В.П. Единые теории в 1-й трети ХХ в. М.: Наука, 1985.

Размещено на Allbest.ru


Подобные документы

  • Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.

    реферат [42,9 K], добавлен 27.07.2010

  • История создания общей теории относительности Эйнштейна. Принцип эквивалентности и геометризация тяготения. Черные дыры. Гравитационные линзы и коричневые карлики. Релятивистская и калибровочная теории гравитации. Модифицированная ньютоновская динамика.

    реферат [188,4 K], добавлен 10.12.2013

  • Экспериментальные основы специальной теории относительности, ее основные постулаты. Принцип относительности Эйнштейна. Относительность одновременности как следствие постоянства скорости света. Относительность пространственных и временных интервалов.

    презентация [1,8 M], добавлен 23.10.2013

  • Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.

    реферат [14,5 K], добавлен 24.02.2009

  • Обобщение закона тяготения Ньютона. Принцип эквивалентности сил инерции и сил тяготения. Потенциальная энергия тела. Теория тяготения Эйнштейна. Положения общей теории относительности (ОТО). Следствия из принципа эквивалентности, подтверждающие ОТО.

    презентация [6,6 M], добавлен 13.02.2016

  • Различная запись преобразования Лоренца. Следствия преобразований. Парадоксы кинематики специальной теории относительности: одногодок (модифицированный парадокс близнецов), антиподов, "n близнецов", расстояний и пешеходов. Итоги теории относительности.

    реферат [230,7 K], добавлен 03.04.2012

  • Основные положения специальной теории относительности. Проведение расчета эффекта искривления пространства на этапе математического описания гравитационного взаимодействия. Сравнительное описание математической и физической моделей гравитационного поля.

    статья [42,4 K], добавлен 17.03.2011

  • Принцип относительности Г. Галилея для механических явлений. Основные постулаты теории относительности А. Эйнштейна. Принципы относительности и инвариантности скорости света. Преобразования координат Лоренца. Основной закон релятивистской динамики.

    реферат [119,5 K], добавлен 01.11.2013

  • Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.

    реферат [16,0 K], добавлен 29.03.2003

  • Изменение формы движущегося объекта и другие явления в рамках преобразования Лоренца. Гносеологические ошибки Специальной теории относительности А. Эйнштейна. Проблема определения границ применимости альтернативной интерпретации преобразования Лоренца.

    доклад [3,1 M], добавлен 29.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.