Развитие концепции атомизма

Возникновение теории атомизма. Атомистический материализм Демокрита. Корпускулярно-кинетическая теория М.В. Ломоносова. Открытие существования молекулы и атома. Теория Дж. Дальтона, Броуновское движение. Модель атома Хантаро Нагаоки и Резерфорда.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 13.12.2010
Размер файла 419,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ

Институт психологии и социологии управления

Кафедра инновационного менеджмента

Реферат на тему

«РАЗВИТИЕ КОНЦЕПЦИИ АТОМИЗМА»

Москва 2010

ВВЕДЕНИЕ

Атомизм утверждает, что материя состоит из отдельных чрезвычайно малых частиц, называемых атомами. До конца XIX в. они считались неделимыми. Для современного атомизма характерно признание не только атомов, но и других частиц материи как более крупных, чем атомы (например, молекул), так и более мелких (атомные ядра, электроны и др.). С точки зрения современного атомизма, электроны - это «атомы» отрицательного электричества, фотоны - «атомы» света и т.д. Атомизм распространяется и на биологические явления, в том числе на явления наследственности. В более широком смысле под атомизмом понимается иногда дискретность вообще какого-нибудь предмета, свойства, процесса (социальный атомизм, логический атомизм). Атомизм выступал почти всегда как материалистическое учение. Поэтому борьба вокруг него отражала, прежде всего, борьбу между материализмом и идеализмом в науке. Атомизм уже с древности был направлен против идеалистического и религиозного взгляда на мир, ибо всё сущее он объяснял при помощи частиц материи, не прибегая к сверхъестественным причинам. Материалистическое течение в атомизме исходит из тезиса, согласно которому атомы материальны, существуют объективно и познаваемы. Идеалистическая позиция выражается в отрицании реальности атомов; в объявлении их лишь удобным средством систематизации опытных данных, в отрицании их познаваемости. Атомистические воззрения первоначально (на Др. Востоке, в античных Греции и Риме, отчасти в средние века у арабов) были лишь гениальной догадкой, превратившейся затем в научную гипотезу (XVII-XVIII вв. и первые две трети XIX в.) и, наконец, в научную теорию. С самого зарождения и до конца 1-ой четверти XX в. в основе атомизма лежала идея о тождестве строения макро- и микрокосмоса. Цель данной работы - изучить развития концепции атомизма в истории от Демокрита до наших дней.

1. РАЗВИТИЕ КОНЦЕПЦИИ АТОМИЗМА

1.1 Возникновение теории атомизма

Атомистический материализм Демокрита

Концепция атомизма была предложена представителем досократического периода развития древнегреческой философии Левкиппом ещё в V в. и развита его учеником Демокритом Абдерским. Основным предметом философствования у досократиков был космос. Согласно их учению, существуют только атомы и пустота. Атомы - мельчайшие неделимые, не возникающие и неисчезающие, качественно однородные, непроницаемые (не содержащие в себе пустоты) частицы, обладающие определённой формой. Демокрит предложил вариант объяснения строения мира Он описал мир как систему атомов в пустоте, отвергая бесконечную делимость материи, постулируя не только бесконечность числа атомов во Вселенной, но и бесконечность их форм. Атомы, согласно этой теории, движутся в пустом пространстве (Великой Пустоте, как говорил Демокрит) хаотично, сталкиваются и вследствие соответствия форм, размеров, положений и порядков либо сцепляются, либо разлетаются. Образовавшиеся соединения держатся вместе и таким образом производят возникновение сложных тел. Само же движение - свойство, естественно присущее атомам. Тела - это комбинации атомов. Разнообразие тел обусловлено как различием слагающих их атомов, так и различием порядка сборки, как из одних и тех же букв слагаются разные слова. Так, например, у огня атомы остры, поэтому огонь способен обжигать; у твёрдых тел они шероховаты, поэтому они накрепко сцепляются друг с другом; у воды - гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов. Это учение получило название «атомистический материализм».

Древнегреческий философ-материалист Эпикур (341-270 гг. до н.э.) признает, что тела состоят из атомов. Отличие физики Эпикура от физики Демокрита состоит в понимании движения атомов. Демокрит утверждал, что движение атомов в пустоте определяется внешней механической необходимостью. Эпикур же считал, что атомы свободно отклоняются от прямолинейного движения. При движении атомы самопроизвольно отклоняются от прямолинейного движения и переходят в криволинейное. В этом состоит оригинальный вклад Эпикура в развитие атомистики. Самоотклонение атомов необходимо Эпикуру для того, чтобы объяснить их столкновение между собой. Этим он объясняет свободу, которая присуща атомам: под действием тяжести атомы двигаются или по прямой, или беспорядочно, и при этом происходят случайные отклонения и столкновения.

Корпускулярно-кинетическая теория

М.В. Ломоносов утверждал, что все вещества состоят из корпускул - молекул, которые являются «собраниями» элементов - атомов. В своей диссертации «Элементы математической химии» учёный даёт такое определение: «Элемент есть часть тела, не состоящая из каких-либо других меньших и отличающихся от него тел. Корпускула есть собрание элементов, образующее одну малую массу». М.В.Ломоносов указывает на различие «однородных» корпускул, то есть состоящих из «одинакового числа одних и тех же элементов, соединенных одинаковым образом», и «разнородных» - состоящих из различных элементов. Тела, состоящие из однородных корпускул, то есть простые тела, он называет началами. На основании этих убеждений, Ломоносов создает «корпускулярно-кинетическую теорию тепла. Достаточное основание теплоты, по Ломоносову, заключается «в движении какой-то материи», так как при прекращении движения уменьшается и теплота, а движение не может произойти без материи; «во внутреннем движении материи», так как недоступно чувствам; «во внутреннем движении собственной материи» тел, то есть не посторонней и «во вращательном движении частиц собственной материи тел».

Учёный указывает на шарообразную форму элементов. Именно Ломоносову принадлежит мысль о «внутреннем вращательном» («коловратном») движении частиц», сущность которого заключается в том, что повышение температуры тела связано со скоростью вращения корпускул.

1.2 Открытие существования молекулы и атома

Теория Дж. Дальтона

Первым действительно научным обоснованием атомистической теории, убедительно продемонстрировавшим рациональность и простоту гипотезы о том, что всякий химический элемент состоит из мельчайших частиц, явилась работа английского школьного учителя математики Дж.Дальтона (1766-1844), статья которого, посвященная этой проблеме, появилась в 1803. Атомные постулаты Дальтона имели то преимущество перед абстрактными рассуждениями древнегреческих атомистов, что его законы позволяли объяснить и увязать между собой результаты реальных опытов, а также предсказать результаты новых экспериментов. Он постулировал, что: 1) все атомы одного и того же элемента тождественны во всех отношениях, в частности, одинаковы их массы; 2) атомы разных элементов имеют неодинаковые свойства, в частности, неодинаковы их массы; 3) в соединение, в отличие от элемента, входит определенное целое число атомов каждого из составляющих его элементов; 4) в химических реакциях может происходить перераспределение атомов, но ни один атом не разрушается и не создается вновь. (В действительности, как выяснилось в начале 20 в., эти постулаты не вполне строго выполняются, т.к. атомы одного и того же элемента могут иметь разные массы, например водород имеет три такие разновидности, называемые изотопами; кроме того, атомы могут претерпевать радиоактивные превращения и даже полностью разрушиться, но не в химических реакциях, рассматривавшихся Дальтоном.) Основанная на этих четырех постулатах атомная теория Дальтона давала самое простое объяснение законов постоянных и кратных отношений. Однако она не давала никаких представлений о строении самого атома.

Броуновское движение

Шотландский ботаник Роберт Броун в 1827 году проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам». Наблюдавшееся Броуном явление назвали «броуновским движением». Объяснение броуновского движения движением невидимых молекул было дано только в последней четверти XIX в., но далеко не сразу было принято всеми учеными. В 1863 году преподаватель начертательной геометрии Людвиг Кристиан Винер (1826-1896) предположил, что явление связано с колебательными движениями невидимых частиц.

Открытие электрона

Реальное существование молекул было окончательно подтверждено в 1906 году опытами по изучению закономерностей броуновского движения французского физика Жана Перрена.

В период, когда Перрен выполнял свои исследования катодных и рентгеновских лучей, еще не было выработано единого мнения относительно природы катодных лучей, испускаемых отрицательным электродом (катодом) в вакуумной трубке при электрическом разряде. Некоторые ученые полагали, что эти лучи представляют собой разновидность светового излучения, однако в 1895 году исследования Перрена показали, что они являются потоком отрицательно заряженных частиц. Атомная теория утверждала, что элементы составлены из дискретных частиц, называемых атомами, и что химические соединения состоят из молекул, частиц большего размера, содержащих два или более атомов. К концу XIX в. атомная теория получила широкое признание среди ученых, особенно среди химиков. Однако некоторые физики полагали, что атомы и молекулы - это не более чем фиктивные объекты, которые введены из соображения удобства и полезны при численной обработке результатов химических реакций. 

Джозеф Джон Томсон, модифицировав эксперимент Перрена, подтвердил его выводы и в 1897 году определил важнейшую характеристику этих частиц, измерив отношение их заряда к массе по отклонению в электрическом и магнитном полях. Масса оказалась примерно в 2 тыс. раз меньше массы атома водорода, легчайшего среди всех атомов. Вскоре стало распространяться мнение, что эти отрицательные частицы, названные электронами, представляют собой составную часть атомов.

2. Модели строения атома

атомизм теория ломоносов молекула

Модель атома Дж. Томсона

Первую модель атома в 1903 г. предложил Джозеф Джон Томсон (1856 - 1940), создав её вскоре после открытия им же в 1895 - 1897 гг. электрона. Длительность времени открытия электрона определяется продолжительностью проведения большой серии сложных экспериментов, которые он вместе со своими сотрудниками проводил в Кавендишской лаборатории, которую с 1884 г. он же и возглавлял. Представление об электроне, как мельчайшей заряженной частице созрело не сразу. Известно, что в экспериментах электроны предстают делокализованными, т.е. как бы размазанными по всему объему пространства атома. Кроме того, почти сразу же стало понятно, что масса электрона является переменной величиной; опыт Кауфмана, проведенный несколькими годами позже, подтвердил то, о чем Томсон только смутно догадывался. Позже он выведет формулу для массы электрона, движущегося со скоростью, сопоставимой со скоростью света, которая количественно давала те же результаты, что и релятивистская формула. У него же в экспериментах пока получалось так, что величина массы тесно была связана с зарядом.

Томсон выдвинул гипотезу о том, что электрон находится внутри атома. Но атом в целом нейтральный, поэтому ученый предположил, что отрицательные электроны окружены в атоме положительно заряженным веществом. Атом, по мысли Дж. Томсона, очень похож на «пудинг с изюмом»: электроны, как «изюминки», а «каша» - положительно заряженное вещество атома.

Электроны находятся на сфере, но могут совершать простые гармонические колебания относительно положения равновесия. Такие колебания могут происходить лишь с определенными частотами, которым соответствуют узкие спектральные линии, наблюдающиеся в газоразрядных трубках. Электроны можно довольно легко выбить с их позиций, в результате чего возникают положительно заряженные «ионы», из которых состоят «каналовые лучи» в опытах с масс-спектрографом. X-лучи соответствуют очень высоким обертонам основных колебаний электронов. Альфа-частицы, возникающие при радиоактивных превращениях, - это часть положительной сферы, выбитая из нее в результате какого-то энергичного разрывания атома.

При измерении величины заряда Томсон колебался, какую величину от измеренной необходимо отнести на счет массы, а какую на счет заряда. Поэтому Томсон не особенно торопился с выводами о существовании объекта, форму которого он себе плохо представлял. В 1897 г. он мог уверенно говорить лишь о том, что отношение электрического заряда к массе для частиц, которые образуют катодные лучи, намного больше, чем для ионов водорода. Если предположить, что заряды их по абсолютной величине равны, то, рассудил Томсон, масса катодных частиц должна быть намного меньше массы атомов водорода. Когда представление об электроне у него более или менее сложилось, он предложил модель «пудинга с изюмом». Согласно этой модели, отрицательные электроны, образуя правильные конфигурации, «плавают» в эфирной среде, заряженной положительно. О существовании положительного ядра атома он тогда ничего не подозревал; ядро было открыто несколько лет спустя.

Модель атома Филиппа фон Ленарда

Немецкий физик Филипп фон Ленард попытался создать модель, не предполагающую раздельного существования в атоме противоположных зарядов. Атом, согласно модели Ленарда, состоит из нейтральных частиц (т.н. динамид), каждая из которых является электрическим дуплетом. Выполненные Ленардом расчёты показали, что эти частицы должны иметь крайне малые размеры, и, следовательно, большая часть объёма атома представляет собой пустоту. Сосредоточение массы атома в небольшой части его объёма отчасти подтверждалось и проведёнными Ленардом в 1903 г. опытами, в которых пучок быстрых электронов легко проходил через тонкую металлическую фольгу.

Модель атома Хантаро Нагаоки

Научные работы Нагаоки в области физики посвящены магнетизму, атомной и ядерной физике, оптике, спектроскопии, математической физике, геофизике. В 1904 г. он предложил модель атома, согласно которой последний состоит из положительно заряженного шара, занимающего основную часть объёма атома, вокруг которого вращается кольцо, содержащее электроны («атом типа Сатурна»). Однако модель Нагаоки не обратила на себя внимания физиков, хотя ее в определенной мере можно считать предшественницей ядерной модели Э. Резерфорда.

Модель атома Резерфорда

Первые прямые эксперименты по исследованию внутренней структуры атомов были выполнены Э. Резерфордом и его сотрудниками Э. Марсденом и Х. Гейгеромв 1909-1911 годах. Резерфорд предложил применить зондирование атома с помощью б-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса б-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал б-частицы с кинетической энергией значительно меньше скорости света (б-частицы - это полностью ионизированные атомы гелия). Они были открыты Резерфордом в 1899 году при изучении явления радиоактивности. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию б-частицы. Рассеяние, то есть изменение направления движения б-частиц, может вызвать только тяжелая положительно заряженная часть атома. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Было обнаружено, что большинство б-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находились в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить б-частицы назад. Резерфорд пришел к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома.

Радикальные выводы о строении атома, следовавшие из опытов Резерфорда, заставляли многих ученых сомневаться в их справедливости. Не был исключением и сам Резерфорд, опубликовавший результаты своих исследований только в 1911 г. через два года после выполнения первых экспериментов. Опираясь на классические представления о движении микрочастиц, Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, под действием кулоновских сил со стороны ядра вращаются электроны. Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.

Модель атома Н. Бора

Боровская модель атома - полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка. В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками - с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.

Квантово-механическая модель атома

Для того, чтобы объяснить устойчивость атома, Нильс Бор соединил в своей модели классические и квантовые представления о движении электрона. Однако искусственность такого соединения была очевидна с самого начала. Развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени и т.д., что способствовало коренному преобразованию картины мира. В конце 20-х - начале 30-х годов XX века на основе квантовой теории сформировались принципиально новые теории строения атома и образования химической связи.

После создания Альбертом Эйнштейном фотонной теории света (1905) и выведения им статистических законов электронных переходов в атоме (1917) в физике обострилась проблема "волна - частица".

Недостатки теории Бора, основанной на механике классических частиц с дополнением в виде квантовых постулатов, высветили фундаментальную проблему правильного описания движения электронов на малых расстояниях, например, внутри атома. Разрешение этого противоречия предложил в 1924 г. французский физик Луи Виктор Пьер Раймон де Бройль (1892-1987), в 1923 году выдвинувший гипотезу о том, что корпускулярно-волновой дуализм свойствен также и веществу.

Де Бройль предположил наличие у материальных частиц волновых свойств, однозначно связанных с массой и энергией. Он показал, что движению электрона может соответствовать некоторая волна материи, так же как движению светового кванта соответствует световая волна.

Де Бройль предложил объяснить квантовые условия теории Бора с помощью представления о волнах материи. Волна, движущаяся вокруг ядра атома, по геометрическим соображениям может быть только стационарной волной; длина орбиты должна быть кратной целому числу длин волн. Гипотеза де Бройля о наличии у электронов волновых свойств была подтверждена обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину (позже будет обнаружена дифракция атомов и молекул).

Исходя из идеи де Бройля о волнах материи, австрийский физик Эрвин Шрёдингер в 1926 г. вывел основное уравнение т.н. волновой механики, содержащее волновую функцию и позволяющее определить возможные состояния квантовой системы и их изменение во времени. Шредингер дал общее правило преобразования классических уравнений в волновые. В рамках волновой механики атом можно было представить в виде ядра, окруженного стационарной волной материи. Волновая функция определяла плотность вероятности нахождения электрона в данной точке. В том же 1926 г. немецкий физик Вернер Гейзенберг разработал свой вариант квантовой теории атома в виде матричной механики, отталкиваясь при этом от сформулированного Бором принципа соответствия.

Результаты, к которым приводили методы, используемые в волновой механике Шрёдингера и матричной механике Гейзенберга, оказались одинаковыми, поэтому обе концепции и входят в единую квантовую теорию как эквивалентные.

Квантово-механический подход к строению атома привёл к созданию принципиально новых представлений о природе химической связи. Уже в 1927 г. Вальтер Гейтлер и Фриц Лондон начали разрабатывать кванто-вомеханическую теорию химической связи. Распространение метода Гейтлера-Лондона на многоатомные молекулы привело к созданию метода валентных связей, который разработали в 1928-1931 гг. Лайнус Карл Полинг и Джон Кларк Слэтер. Основная идея этого метода заключается в предположении, что атомные орбитали сохраняют при образовании молекулы известную индивидуальность.

Фридрих Хунд, Роберт Сандерсон Малликен и Джон Эдвард Леннард-Джонс в 1929 г. начали разработку метода молекулярных орбиталей, в основу которого заложено представление о полной потере индивидуальности атомов, соединившихся в молекулу. Молекула, таким образом, состоит не из атомов, а представляет собой новую систему, образованную несколькими атомными ядрами и движущимися в их поле электронами. Однако, несмотря на различия в подходах, оба метода приводят к практически одинаковым результатам.

ЗАКЛЮЧЕНИЕ

Концепция атомизма - одна из самых эвристичных, одна из самых плодотворных и перспективных научно-исследовательских программ в истории науки. На основе принципа атомизма, рассмотрения тел как суммы бесконечно большого числа малых неделимых атомов Демокрит сформулировал идею математического метода неделимых, позволяющего определять отношения площадей фигур или объемов тел. Метод неделимых, возрожденный в европейской математике в XVI-XVII вв., стал одной из вех на пути создания интегрального исчисления. Концепция атомизма сыграла решающую роль в развитии представлений о структуре материи, в ориентации движения естественно-научной мысли на познание все более глубоких структурных уровней организации материи. И сейчас, через 2500 лет после ее возникновения, программа атомизма (применяемая уже не к атомам, а к элементарным частицам, из которых они состоят) является одним из краеугольных оснований естествознания, современной физической картины мира.

Открытие основных составных частей атома и возможности превращений элементов привело к коренному пересмотру представлений о строении вещества.

Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами (что, кстати говоря, являлось труднейшим вопросом атомизма, начиная от Левкиппа и Демокрита). Кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности.

СПИСОК ИСПОЛЬЗУЕМЫХ ПЕРВОИСТОЧНИКОВ

1. www.physchem.chimfak.rsu.ru.

2. С.И. Левченков «Краткий очерк истории химии. Учебное пособие для студентов химфака РГУ».

3. www.physics.ru.

4. www.chemistry.narod.ru

ПРИЛОЖЕНИЕ

Рис. 1 - Модель атома Дж. Томсона «Пудинг с изюмом»

Рис. 2 - Модель атома Филиппа фон Ленарда

Рис. 3 - Модель атома Хантаро Нагаоки

Рис. 4 - Модель атома Резерфорда

Рис. 5 - Модель атома Н. Бора

Рис. 6 - Квантово-механическая модель атома

Размещено на Allbest.ru


Подобные документы

  • История зарождения и развития атомистической теории. Представления Платона и Аристотеля о непрерывности материи. Корпускулярно-кинетическая теория тепла, открытие радиоактивности. Ранняя планетарная модель атома Нагаоки. Определение заряда электрона.

    презентация [1,8 M], добавлен 28.08.2013

  • Анализ развития идей атомизма в истории науки. Роль элементарных частиц и физического вакуума в строении атома. Суть современной теории атомизма. Анализ квантовой модели атома. Введение понятия "молекула" Пьером Гассенди. Открытие эффекта Комптона.

    контрольная работа [25,2 K], добавлен 15.01.2013

  • Строение атома. Атом как целое. Структура атома: опыты Резерфорда, планетарная модель атома Резерфорда, квантовые постулаты Бора. Лазеры: история создания, устройство, свойства, применение лазера в ювелирной отрасли, в медицине.

    реферат [481,9 K], добавлен 13.04.2003

  • История открытия радиоактивности, модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Правило квантования Бора-Зоммерфельда. Боровская теория водородоподобного атома, схема его энергетических уровней. Оптические спектры испускания атомов.

    презентация [3,7 M], добавлен 23.08.2013

  • Дослідження та винаходи, які сприяли формуванню гіпотези про складну будову атома: відкриття субатомних частинок, рентгенівські промені та радіоактивність. Перша модель атома Дж.Дж. Томсона. Планетарна модель Резерфорда. Теорія та постулати Бора.

    курсовая работа [985,6 K], добавлен 26.09.2012

  • Нильс Бор ученый и человек. Успехи и недостатки теории Бора. Теория Бора позволила объяснить целый ряд сложных вопросов строения атома и фактов, чего была не в состоянии сделать классическая физика.

    реферат [41,2 K], добавлен 25.12.2002

  • Складові частини атома: ядро, протони, нейтрони та електрони. Планетарна модель атома або модель Резерфорда. Керована та некерована ланцюгова ядерна реакція. Поняття ядерного вибуху як процесу вивільнення великої кількості теплової і променевої енергії.

    презентация [2,3 M], добавлен 21.05.2012

  • Классификация элементарных частиц. Фундаментальные взаимодействия. Модель атома Резерфорда. Теория Бора для атома водорода. Атом водорода в квантовой механике. Квантово-механическое обоснование Периодического закона Д. Менделеева. Понятие радиоактивности.

    реферат [110,6 K], добавлен 21.02.2010

  • Этапы исследований строения атома учеными Томсоном, Резерфордом, Бором. Схемы их опытов и интерпретация результатов. Планетарная модель атома Резерфорда. Квантовые постулаты Бора. Схемы перехода из стационарного состояния в возбужденное и наоборот.

    презентация [283,3 K], добавлен 26.02.2011

  • Ранняя модель микрочастицы, построенная по аналогии с Сатурном, предложенная Нагаокой. Сущность и результаты опыта Резерфорда по исследованию внутренней структуры атома путем его зондирования с помощью альфа-частиц. Сущность планетарной атомной модели.

    презентация [544,6 K], добавлен 27.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.