Особенности применения биогазовых установок

История развития биогазовых технологий. Зарождение биогазовой отрасли в сельском хозяйстве, критерии оценки прибыльности ее работы. Особенности биогаза, его состав. Получение горючего газа с привлечением биохимических методов. Биогазовая установка.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.12.2010
Размер файла 194,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

23

Размещено на http://www.allbest.ru

ОГЛАВЛЕНИЕ

  • Введение
  • 1. История развития биогазовых технологий
  • 2. Зарождение биогазовой отрасли в сельском хозяйстве
  • 3. Кому выгодно строить биогазовую установку?
  • 4. Биогаз и его состав
  • 5. Получение горючего газа с привлечением биохимических методов
  • 6. Биогазовая установка
  • Заключение
  • Библиография
  • биогазовая установка биохимическая

ВВЕДЕНИЕ

В повседневной современной жизни, практически во всех сферах деятельности человека мы применяем различного рода топливо и используем полученную в результате его применения энергию, так необходимую нам!

Сегодня мы используем сырьевые ресурсы, заложенные в недрах нашей планеты, будь то нефть, газ, уголь и другое, при их переработке мы получаем топливо, используемое в различных сферах человеческой деятельности, от приготовления пищи и обогрева жилища, функционирования различной техники, до работы крупнейших современных предприятий!

К большому сожалению, при производстве и использовании топлива, человечество как правило забывает о соблюдении экологических норм, да и ресурсы полезных ископаемых далеко не безграничны! В связи с этим человечество постоянно ищет альтернативные источники энергии, что бы заменить их на традиционные и к тому же сохранить стабильную экологическую обстановку на планете!

В настоящее время, когда налицо известные трудности с традиционными видами топлива (уголь, нефтепродукты и т. п.), а о стоимости их и говорить не приходится, биогаз если не полностью, то хотя бы частично обеспечит потребности сельских жителей, владельцев дачных и садовых участков в топливе. Кроме того, при переработке отходов с целью производства биогаза они полностью идут в дело, в результате не только улучшается санитарное состояние территории, уничтожаются возбудители инфекционных заболеваний, исчезает неприятный запах гниющих растений, гибнут семена сорняков, но и образуются ценнейшие высококачественные органические удобрения, обладающие повышенным гумусным потенциалом.

Наверное, не каждый знает, что самые обычные органические отходы любого сельского подворья - навоз животных, огородная ботва, сорняки и другая «органика» - в определенных условиях могут стать источником столь необходимого в домашнем хозяйстве горючего газа, который сгодится и для приготовления пищи, и отопления помещения, и получения горячей воды. Но чтобы каждый желающий мог соорудить на своем подворье простейшую биогазовую установку собственными руками, полезно иметь представление об основных особенностях технологии получения биогаза из органических отходов, а также о факторах, влияющих на производительность биогазовых установок, и о конструкции этих установок.

Человечество научилось использовать биогаз давно. В 1 тысячелетии до н.э. на территории современной Германии уже существовали примитивные биогазовые установки. Алеманам, населявшим заболоченные земли бассейна Эльбы, чудились Драконы в корягах на болоте. Они полагали, что горючий газ, скапливающийся в ямах на болотах - это дыхание Дракона. Чтобы задобрить Дракона, в болото бросали жертвоприношения и остатки пищи. Люди верили, что Дракон приходит ночью и его дыхание остаётся в ямах. Алеманы додумались шить из кожи тенты, накрывать ими болото, отводить газ по кожаным же трубам к своему жилищу и сжигать его для приготовления пищи. Оно и понятно, ведь сухие дрова найти было трудно, а болотный газ (биогаз) отлично решал эту проблему.

1. ИСТОРИЯ РАЗВИТИЯ БИОГАЗОВЫХ ТЕХНОЛОГИЙ

Отдельные случаи использования примитивных биогазовых технологий были зафиксированы в Китае, Индии, Ассирии и Персии начиная с XVII века до нашей эры. Однако систематические научные исследования биогаза начались только в XVIII веке нашей эры, спустя почти 3,5 тысячи лет.

В 1764 году Бенджамин Франклин в своем письме Джозефу Пристли описал эксперимент, в ходе которого он смог поджечь поверхность мелкого заболоченного озера в Нью Джерси, США.

Первое научное обоснование образования воспламеняющихся газов в болотах и озерных отложениях дал Александр Вольта в 1776 г., установив наличие метана в болотном газе. После открытия химической формулы метана Дальтоном в 1804 году, европейскими учеными были сделаны первые шаги в исследованиях практического применения биогаза.

Свой вклад в изучение образования биогаза внесли и российские ученые. Влияние температуры на количество выделяемого газа изучил Попов в 1875 году. Он выяснил, что речные отложения начинают выделять биогаз при температуре около 6°С. С увеличением температуры до 50°С, количество выделяемого газа значительно увеличивалось, не меняясь по составу - 65% метана: 30% углекислого газа, 1% сероводорода и незначительное количество азота, кислорода, водорода и закиси углерода. В.Л. Омельянский детально исследовал природу анаэробного брожения и участвующие в нем бактерии.

Вскоре после этого, в 1881 году, начались опыты европейских ученых по использованию биогаза для обогрева помещений и освещения улиц. Начиная с 1895 года, уличные фонари в одном из районов города Эксетер снабжались газом, который получался в результате брожения сточных вод и собирался в закрытые емкости. Двумя годами позже появилось сообщение о получении биогаза в Бомбее, где газ собирался в коллектор и использовался в качестве моторного топлива в различных двигателях.

В начале XX века были продолжены исследования в области повышения количества биогаза путем увеличения температуры брожения. Немецкие ученые Имхофф и Бланк в 1914-1921 гг. запатентовали ряд нововведений, которые заключались во введении постоянного подогрева емкостей. В период Первой мировой войны началось распространение биогазовых установок по Европе, связанное с дефицитом топлива. Хозяйства, где имелись такие установки, находились в более благоприятных условиях, хотя установки были еще несовершенные и в них использовались далеко не оптимальные режимы.

Одним из важнейших научных шагов в истории развития биогазовых технологий являются успешные эксперименты Бусвелла по комбинированию различных видов органических отходов с навозом в качестве сырья в 30-х годах XX столетия.

Первый крупномасштабный завод по производству биогаза был построен в 1911 году в английском городе Бирмингеме и использовался для обеззараживания осадка сточных вод этого города. Вырабатываемый биогаз использовался для производства электроэнергии. Таким образом, английские ученые являются пионерами практического применения новой технологии. Уже к 1920 году они разработали несколько типов установок для переработки сточных вод. Первая биогазовая установка для переработки твердых отходов объемом 10м3 была разработана Неманом и Дюселье и построена в Алжире в 1938 году.

В годы Второй мировой войны, когда энергоносителей катастрофически не хватало, в Германии и Франции был сделан акцент на получение биогаза из отходов сельскохозяйственного производства, главным образом из навоза животных. Во Франции к середине 40-х годов эксплуатировалось около 2тыс. биогазовых установок для переработки навоза. Вполне естественно, этот опыт распространялся на соседние страны. В Венгрии существовали установки для производства биогаза. Это отмечают солдаты Советской Армии в основном, выходцы из сельских районов СССР, освобождавшие Венгрию от немецких войск и удивлявшиеся, что в крестьянских хозяйствах навоз скота не лежал в кучах, а загружался в закрытые емкости, откуда получали горючий газ.

Европейские установки довоенного периода не выдержали конкуренции в послевоенное время со стороны дешевых энергоносителей (жидкое топливо, природный газ, электроэнергия) и были демонтированы. Новым импульсом для их развития на новой основе стал энергетический кризис 70-х годов, когда началось стихийное внедрение биогазовых установок в странах юго-восточной Азии. Высокая плотность населения и интенсивное использование всех пригодных для возделывания сельскохозяйственных культур площадей земли, а также достаточно теплый климат, необходимый для использования биогазовых установок в самом простом варианте - без искусственного подогрева сырья, легли в основу различных национальных и международных программ по внедрению биогазовых технологий.

Сегодня биогазовые технологии стали стандартом очистки сточных вод и переработки сельскохозяйственных и твердых отходов и используются в большинстве стран мира.

2. ЗАРОЖДЕНИЕ БИОГАЗОВОЙ ОТРАСЛИ В СЕЛЬСКОМ ХОЗЯЙСТВЕ

Только в послевоенное время сельское хозяйство стало рассматриваться как потенциальный поставщик биогазового сырья, Имхофф в 1947 г. указывал на то, что из навоза от одной коровы можно произвести в сто раз больше газа, чем из очистного шлама одного городского жителя.

Технический университет г. Дармштадт в 1947 г. разработал биогазовую установку для небольших сельскохозяйственных предприятий с горизонтальным ферментатором (тип „бродильный канал") получивший название „система Дармштадт". По этому принципу Ройш построил в Хоенштайне/федеральная земля Вюртемберг в 1959 г. - то есть 50 лет назад - за 6000 немецких марок (соответственно сейчас 3000 евро) установку, получившую широкую известность. Другие известные типы установок были разработаны в Берлине и Мюнхене (работающие на твердом навозе).

Кураторий по вопросам сельскохозяйственной техники с самого начала взял под свою опеку работу над новой технологией производства биогаза и образовал рабочую группу по биологическому производству гумуса и метана.

В 1950 г. заработала первая большая сельскохозяйственная биогазовая установка в Аллерхопе недалеко от Целле федеральная земля Нижняя Саксония по системе Шмидта-Еггерглюса. Компания Шмидта-Еггерглюса построила около 20 установок по принципу последовательных резервуаров

Д-р. Вальтер Еггерглюс, зять Фердинанда Шмидта был одним из известнейших экспертов по биогазу той эпохи. Он придумал название „бигугаз" чтобы еще раз подчеркнуть действие переброженного удобрения. В то время как удобрение использовали исключительно твердый навоз, который смешивали в резервуаре предварительного хранения с водой и гниющим шламом, поскольку еще не существовало приспособлений для подачи жидкого навоза (пол с отверстиями, решетки). Общее количество изготовленных в 50-х гг. биогазовых установок в ФРГ составляло ок. 50, многие из них правда были закрыты из-за низкой эффективности после непродолжительной эксплуатации.

В 1955 г. началась „нефтяная лихорадка". Дизель стоил в то время 0,20 немецких марок/л (0,10 евро/л) и цены рухнули до 1972 г. до 0,08-0,10 немецких марок/л (0,04-0,05 евро/л). В то же время возросло массовое потребление минеральных удобрений. Все биогазовые установки за исключением двух были остановлены, действующими оставались только самостоятельно построенные установки Ройш-Хоенштайн и Шмидта-Еггерглюса на территории монастыря Бенедиктинцев, построенная в 1955 г. Последняя вошла в историю биогазовой техники как никакая другая.

Второй подъем в развитии биогазовых технологий начался после нефтяного кризиса 1972-1973 гг. Кураторий по вопросам сельскохозяйственной техники в марте 1974 г. под влиянием мировой тенденции поиска альтернативных источников энергии организовал профессиональную дискуссию „Насколько актуален сегодня биогаз?", которая уже включала в себя аспекты охраны окружающей среды. Многочисленные фермеры, изобретатели, компании и исследовательские институты начали после этого интенсивное развитие биогазовых технологий.

К этому процессу свои усилия приложил также д-р Еггерглус. Очень активным был также еще один пионер биогазовой сферы, который уже в 1953 г. построил биогазовую установку в Унтерзонтхайме: Фриц Вебер, фермер и депутат. В 1962 г. он построил улучшенную установку в Георгенау, частично работающую в анаэробных условиях и в ней сознательно создавались условия для образования плавающей соломенной корки, которую в случае необходимости можно было выловить грейфером.

В 1980 г. в Баварии действующими были 15 установок (для сравнения на сегодняшний день ок. 1000), а в Баден-Вюртемберге 10 установок. В изданном В. Пальцом труде в 1985 г. „Биогазовые установки в Европе" упоминались 75 объектов в Германии, некоторые из перечисленных правда никогда не были достроены. В распространении биогазовой техники на то время был значительный перевес юга над севером Германии. Большинство установок со значительным отрывом (ок. 80%) находились в Баварии и Баден-Вюртемберге, остальные распределялись между другими федеральными землями. Причина такого большого распространения на юге страны было в первую очередь связано с развитием животноводства на больших предприятиях и активном консультировании биогазовыми экспертами.

Вместе со многими полезными разработками место имели и негативные, как это уже известно сегодня: барабанный реактор, плавающий в теплой воде, биогазовые установки, расположенные под хлевами со скотом, компактная семиконтурная установка были теми ошибочными путями развития. Определяющим для этого периода было подстраивание уже существующей техники и оборудования к потребностям технологии производства биогаза, как-то напр. использование доступных резервуаров для навоза, использование моторных погруженных мешалок или оснащение серийными двигателями блочных генераторов.

Большинство установок было построено в период с 1980 до 1985 гг. Одну из наилучших и наиболее дешевых установок из расчета 165 евро/единица КРС собственными силами построил Иоганн Зедльмаер в Рудельцхофене из использованных компонентов. Самая дорогая и наименее использованная установка была установлена на предприятии Шрауфштеттер, г. Изманинг в рамках исследовательского проекта. В отличие от первой волны развития биогазовых технологий в 50-х гг., в качестве сырья для установок подавали больше не твердый навоз, а жидкий. К тому времени уже стали распространенными технологии с щелевым полом или отверстиями. Это с одной стороны облегчило смешивание, подачу и перемешивание, а с другой стороны привело к меньшей добыче газа (разбавленный субстрат). За период с 1985 по 1990 гг. строительство новых установок значительно сократилось, но не полностью. В том, что отрасль полностью не исчезла, есть значительная заслуга объединения „Bundschuh Biogasgruppe", которое проводило ежегодные выездные симпозиумы посвященные биогазовым технологиям.

3. КОМУ ВЫГОДНО СТРОИТЬ БИОГАЗОВУЮ УСТАНОВКУ?

Фермеры, строящие биогазовые установки, как правило, преследуют этим самым единую цель: производство энергии. Так же уменьшение неприятного запаха при достаточном разложении субстрата является существенным аргументом для фермеров, чьи площади расположены в густозаселенных регионах. Иногда строительство биогазовой установки вообще становится началом увеличения размеров фермы (увеличение количества поголовья скота). Иногда неприятные запахи сами по себе являются причиной демонстраций против строительства биогазовых установок.

С экологической точки зрения, большой интерес для эко-предприятий предоставляет возможность путем брожения переработать азот на подходящее для хранения вещество. Аргументом в пользу строительства биогазовой установки может быть также создание рабочего места для будущего владельца хозяйства. Для фермы например может быть важной возможность выведения своих сточных вод в биогазовую установку вместо подключения дорогой канализации. Принципиально при строительстве биогазовой установки стоит учесть такие аспекты:

1. С помощью биогазовой установки нельзя оздоровить предприятие, переживающее кризис. Биогазовые установки, однако, могут помочь поддержать эффективным предприятиям оставаться такими же эффективными.

2. Инвестиция в биогазовую установку связана с долгосрочным капиталовложением. Поэтому строительство установки должно быть хорошо рассчитано с учетом перспективы!

3. В связи с возрастанием количества биогазовых установок, в некоторых регионах возникает нехватка посадочных площадей для выращивания субстрата, что в свою очередь увеличивает цену аренды земли. Для владельцев установок, непосредственно зависящим от аренды либо покупки сырья это значит большой риск. Поэтому важно провести расчеты по долгосрочному доступу к сырьевой базе.

4. Рентабельность установок, несмотря на высокое вознаграждение за выработанную энергию все равно легко потерять. Поскольку покупка электроэнергии является гарантированной, кроме затрат на сырье и цены за аренду, решающее значение может иметь и использование тепла. Поэтому стоит разрабатывать концепции с высокой эффективностью использования тепловой энергии.

5. Метановые бактерии требуют к себе такого самого внимания как животные в хлевах. Это значит, что успешная эксплуатация биогазовой установки требует специальных знаний. Именно поэтому стоит уделять внимание образованию и повышению квалификации обслуживающего персонала, созданию у него соответствующей заинтересованности.

6. Эксплуатация невозможна без надзора и проведения профилактических работ. Кто не готов, в зависимости от типа и размера установки ежедневно минимум 1 час тратить на установку, тому лучше не браться за это дело.

7. При вывезении навоза после установки на поля существует опасность потери аммиака. Поэтому стоит использовать специальную технику с подачей на грунт через шланги.

С учетом этих обстоятельств биогазовая установка может быть интересной и целесообразной при следующих условиях:

· Законодательно урегулированная в рамках ЕС оплата электрического тока с биогаза и цены на электроэнергию, которая на сегодняшний день понижается: то есть это выгодно тогда, когда собственная цена за электричество является выше чем цена для продажи; в дальнейшем невыгодным становится преодоление или сглаживание „пиковых периодов" потребления, которые, однако, можно перекрывать с помощью биогазовых установок.

· Необходимо иметь навоз минимум от 100 голов КРС.

· Большая часть самостоятельно выполненных работ при строительстве помогает снизить потери и может существенно улучшить рентабельность и предоставит необходимые для будущего знания, которые пригодятся для устранения неполадок.

· Для установок, работающих лишь на возобновляемых ресурсах полезно иметь большие собственные площади для выращивания энергетических растений с целью избежания рисков, связанных с ценой аренды земли. Установка, работающая преимущественно на приобретаемом сырье либо на арендованной земле, может минимизировать эти риски путем заключения долгосрочных договоров про поставку и аренду.

· Если есть возможность дешево и на протяжении длительного времени получать соответствующие продовольственные отходы , то это может значительно повлиять на рентабельность установки и сэкономить на покупке удобрений. Рентабельность установки не должна пребывать в зависимости от поступления косубстратов или, по крайней мере, должна быть гарантирована долгосрочными контрактами.

· Коммуны и фирмы, имеющие проблемы с утилизацией жидких органических отходов, могут их решить с помощью биогазовой техники.

· Если есть потребность в установке резервуаров для навоза, то их с успехом можно использовать для производства биогаза.

· Фермеры, имеющие проблемы с эмиссией неприятных запахов при хранении и вывезении гноя на поля, могут иметь большую выгоду от биогазовой установки.

· Площади сельскохозяйственного применения на территориях проведения водозабора могут легче защититься от попадания нитратов в грунтовые воды.

· Фермеры, работающие в секторе экологического сельского хозяйства, безотходного хозяйства, длительного использования сельскохозяйст-венных ресурсов, защиты окружающей среды - получат в свое распоряжение наилучший инструмент для этого.

4. БИОГАЗ И ЕГО СОСТАВ

Биогаз - газ, получаемый метановым брожением биомассы. Разложение биомассы происходит под воздействием трёх видов бактерий. В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих. Первый вид - бактерии гидролизные, второй - кислото-образующие, третий - метанообразующие. В производстве биогаза участвуют не только бактерии класса метаногенов, а все три вида.

Биогаз, представляет собой смесь из 65% метана, 30% углекислого газа, 1% сероводорода (Н2S) и незначительных количеств азота, кислорода, водорода и закиси углерода. После очистки биогаза от СО2 получается биометан. Биометан - полный аналог природного газа, отличие только в происхождении.

Биогаз дает пламя синего цвета и не имеет запаха. Его бездымное горение причиняет гораздо меньше неудобств людям по сравнению со сгоранием дров, навоза жвачных животных или кухонных отбросов. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.

Поскольку только метан поставляет энергию из биогаза, целесообразно, для описания качества газа, выхода газа и количества газа все относить к метану, с его нормируемыми показателями. Объем газов зависит от температуры и давления. Высокие температуры приводят к растяжению газа и к уменьшаемому вместе с объемом уровню калорийности и наоборот. Кроме того при возрастании влажности калорийность газа также снижается. Чтобы выходы газа можно было сравнить между собой, необходимо их соотносить с нормальным состоянием (температура 0°C, атмосферное давление 1,01325 bar, относительная влажность газа 0%). В целом данные о производстве газа выражают в литрах (л) или м3 метана на кг органического сухого вещества (ОСВ), это намного точнее и красноречивее нежели данные в м3 биогаза в м3 свежего субстрата.

Получение биогаза экономически оправдано и является предпочтительным при переработке постоянного потока отходов (стоки животноводческих ферм, скотобоен, растительных отходов и т.д.). Экономичность заключается в том, что нет нужды в предварительном сборе отходов, в организации и управлении их подачей; при этом известно, сколько и когда будет получено отходов. Получение биогаза, возможное в установках самых разных масштабов, особенно эффективно на агропромышленных комплексах, где существует возможность полного экологического цикла. Биогаз используют для освещения, отопления, приготовления пищи, для приведения в действие механизмов, транспорта, электрогенераторов. Подсчитано, что годовая потребность в биогазе для обогрева жилого дома составляет около 45 м3 на 1 м2 жилой площади, суточное потребление при подогреве воды для 100 голов крупного рогатого скота - 5-6 м3. Потребление биогаза при сушке сена (1 тонна) влажностью 40% равно 100 м3, 1 тонны зерна - 15 м3.

Остаток, образующийся в процессе получения биогаза, содержит значительное количество питательных веществ и может быть использован в качестве удобрения. Состав остатка, полученного при анаэробной переработке животноводческих отходов, зависит от химического состава исходного сырья, загружаемого в реактор. В условиях, благоприятных для анаэробного сбраживания, обычно разлагается около 70% органических веществ, а 30% содержится в остатке.

5. ПОЛУЧЕНИЕ ГОРЮЧЕГО ГАЗА С ПРИВЛЕЧЕНИЕМ БИОХИМИЧЕСКИХ МЕТОДОВ

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно известным запасам энергии полезных ископаемых. Леса составляют около 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - только 8%.

Для сухого вещества простейший способ превращения биомассы в энергию заключается в сгорании - оно обеспечивает тепло, которое в свою очередь превращается в механическую или электрическую энергию. Что же касается сырого вещества, то в этом случае древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана).

Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию.

Биометаногенез осуществляется в три этапа: растворение и гидролиз органических соединений, ацидогенез и метаногенез. В энергоконверсию вовлекается только половина органического материала - 1800 ккал/кг сухого вещества по сравнению с 4000 ккал при термохимических процессах, но остатки, или шлаки, метанового «брожения» используются в сельском хозяйстве как удобрения. В процессе биометаногенеза участвуют три группы бактерий. Первые превращают сложные органические субстраты в масляную, пропионовую и молочную кислоты; вторые превращают эти органические кислоты в уксусную кислоту, водород и углекислый газ, а затем метанообразующие бактерии восстанавливают углекислый газ в метан с поглощением водорода, который в противном случае может ингибировать уксуснокислые бактерии.

Для всех метанобактерий характерна способность к росту в присутствии водорода и углекислого газа, а также высокая чувствительность к кислороду и ингибиторам производства метана. В природных условиях метанобактерии тесно связаны с водородобразующими бактериями: эта трофическая ассоциация выгодна для обоих типов бактерий. Первые используют газообразный водород, продуцируемый последними; в результате его концентрация снижается и становится безопасной для водородобразующих бактерий.

Метановое «брожение» происходит в водонепроницаемых цилиндрических цистернах (дайджестерах) с боковым отверстием, через которое вводится ферментируемый материал. Над дайджестером находится стальной цилиндрический контейнер, который используется для сбора газа; нависая над бродящей смесью в виде купола, контейнер препятствует проникновению внутрь воздуха, так как весь процесс должен происходить в строго анаэробных условиях. Как правило, в газовом куполе имеется трубка для отвода биогаза. Дайджестеры изготовляют из глиняных кирпичей, бетона или стали. Купол для сбора газа может быть изготовлен из нейлона; в этом случае его легко прикреплять к дайджестеру, изготовленному из твердого пластического материала. Газ надувает нейлоновый мешок, который обычно соединен с компрессором для повышения давления газа.

В тех случаях, когда используются отходы домашнего хозяйства или жидкий навоз, соотношение между твердыми компонентами и водой должно составлять 1:1 (100 кг отходов на 100 кг воды), что соответствует общей концентрации твердых веществ, составляющей 8-11% по весу. Смесь сбраживаемых материалов обычно засевают ацетогенными и метаногенными бактериями или отстоем из другого дайджестера. Низкий рН подавляет рост метаногенных бактерий и снижает выход биогаза; такой же эффект вызывает перегрузка дайджестера. Против закисления используют известь. Оптимальное «переваривание» происходит в условиях, близких к нейтральным (рН 6,0-8,0). Максимальная температура процесса зависит от мезофильности или термофильности микроорганизмов (30-40°С или 50-60°С) резкие изменения температуры нежелательны.

Обычно дайджестеры загружают в землю, чтобы использовать изоляционные свойства почвы. В странах с холодным климатом их нагревают при помощи устройств, которые применяют при компостировании сельскохозяйственных отходов. С точки зрения питательных потребностей бактерий избыток азота (например в случае жидкого навоза) способствует накоплению аммиака, который подавляет рост бактерий. Для оптимальной переработки соотношение C/N должно быть порядка 30:1 (по весу). Это соотношение можно изменять, смешивая субстраты, богатые азотом, с субстратами, богатыми углеродом. Так, C/N навоза можно изменить добавлением соломы или жома сахарного тростника.

Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1 литр отходов приходится до 50 граммов углерода), поэтому они лучше всего подходят для метанового «брожения», тем более, что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса. Желательно перемешивать суспензию сбраживаемых веществ, чтобы воспрепятствовать расслаиванию, которое подавляет брожение. Твердый материал необходимо раздробить, так как наличие крупных комков препятствует образованию метана. Обычно длительность переработки навоза крупного рогатого скота составляет две-четыре недели. Двухнедельной переработки при температуре 35°С достаточно, чтобы убить все патогенные энтеробактерии и энтеровирусы, а также 90% популяции Ascaris lumbricoides и Ancylostoma.

По большому счету из любой органики в условиях отсутствия кислорода можно добыть биогаз. Бактерии должны лишь иметь достаточное количество времени, чтобы справиться с материалом, который сложно разлагается, каковым могут являться, например одеревеневшие растения. Этот процесс целенаправленно используют при очистке сточных вод, чтобы разложить органические соединения вредных веществ.

Газ метан, содержащийся в биогазовой смеси, имеет энергетическую ценность от 10 кВт на м? (применительно к чистому метану) и является таким же газом, как и природный газ. Если смесь газов переводить в электрический ток с помощью генератора, то при его эффективности напр. 35% с 10 кВт брутто образуется 3,5 кВт электрического тока, который можно непосредственно подавать в сеть электрического питания.

Энергия, полученная из биогаза, принадлежит к возобновляемой, поскольку происходит из органического возобновляемого субстрата. Фактом является то, что ископаемые энергоносители на Земле заканчиваются и существует насущная потребность в альтернативных источниках, что придает еще большего значения производству биогаза на биогазовых установках. Кроме того, энергетическое использование биогаза по сравнению со сжиганием природного газа, сжиженного газа, нефти и угля является нейтральным по отношению к СО2, поскольку выделяемый СО2 пребывает в пределах естественного круговорота углерода и потребляется растениями на протяжении вегетационного периода. Таким образом, концентрация СО2 в атмосфере по сравнению с использованием твердого топлива не увеличивается.

Однако метан тоже имеет свои недостатки: при попадании в воздух он очень медленно окисляется на двуокись углевода и воду под воздействием солнечных лучей, озона и так званых радикалов (молекулы НО-, быстро вступающие в реакцию). Метан после двуокиси углевода (на 50% вызывает парниковый эффект) является наиболее распространенным загрязнителем воздуха и на 20% вызывает явление парникового эффекта. Кроме того, при окислении он потребляет озон и этим самым делает свой вклад в увеличение озоновой дыры в стратосфере. Газовый факел, при помощи которого в аварийных случаях сжигают газ до неопасной двуокиси углевода, имеет большое значение также по этой причине.

6. БИОГАЗОВАЯ УСТАНОВКА

Биогазовая установка - это, прежде всего, живой организм. Как всякий живой организм, он может быть достаточно гибким и приспосабливающимся. Можно ведь держать всего одну корову и пасти ее на лужайке, а можно иметь полностью автоматизированную ферму, где коровы за всю жизнь топчут копытами бетонный пол и соломенную подстилку.

Анаэробные бактерии могут прощать многие мелкие неточности и даже ошибки, в отличие от какого-нибудь механизма. Поэтому автоматика выдерживания режима работы биогазовой установки может быть как полноценной, с использованием промышленных контроллеров и компьютеров, так и любительской, с китайскими автоматическими нагревателями или самопальными термостатами. Результат не будет отличаться коренным образом.

Тепловые потери реактора зависят от площади его стенок, а в абсолютном выражении - от соотношения объема и площади стенок. Понятно, что с увеличением объема реактора, затраты на утепление стенок можно уменьшать. Т.е., удельные расходы энергии на поддержание температуры реакции (а значит и КПД установки) сильно зависят от абсолютных размеров реакторов.

Системы перекачки и перемешивания теоретически могут менять цену в зависимости от размеров и мощности, но на практике стандартные насосы и мешалки для биогазовых установок выпускаются только в крупном исполнении под большие установки. Для малых установок приходится мудрить, приспосабливать что-то стандарное или пытаться изготовить самостоятельно. Для этого же нужен станочный парк для работы по металлу (нержавейка, бронза), сам металл и соответствующий опыт создания таких механизмов.

Короче говоря, если с разбегу ткнуться мордой во все вышеописанное, то простой инженер махнет рукой и скажет, что решение задачи смысла не имеет. Неграмотный инженер-энтузиаст кинется воплощать в металле описанные в Интернете и гуляющие от сайта к сайту некоторые проекты, применит в качестве реакторов какие-нибудь морские контейнеры или еще какую-то бросовую лабуду, даже может получить патент (сколько есть бредовых СНГшных патентов в области биогаза!). Только такая любительская конструкция так и останется в одном-двух экземплярах, и через годик-другой тихо «почиет в бозе».

Существуют промышленные и кустарные установки. Промышленные установки отличаются от кустарных наличием механизации, систем подогрева, гомогенизации, автоматики. Наиболее распространённый промышленный метод - анаэробное сбраживание в метантенках.

Хорошая биогазовая установка должна иметь необходимые части:

*Емкость гомогенизации

*Загрузчик твердого (жидкого) сырья

*Реактор

*Мешалки

*Газгольдер

*Система смешивания воды и отопления

*Газовая система

*Насосная станция

*Сепаратор

Биогазовая установка

Биомасса (отходы или зеленая масса) периодически подаются с помощью насосной станции или загрузчика в реактор. Реактор представляет собой подогреваемый и утепленный резервуар оборудованный миксерами. Материалом промышленного резервуара чаще всего служит железобетон или сталь с покрытием. В малых установках иногда используются композиционные материалы. В реакторе живут полезные бактерии питающиеся биомассой. Продуктом жизнедеятельности бактерий является биогаз. Для поддержания жизни бактерий требуется подача корма, подогрев до 35-38°С и периодическое перемешивание. Образующийся биогаз скапливается в хранилище (газгольдере), затем проходит систему очистки и подается к потребителям (котел или электрогенератор). Реактор работает без доступа воздуха, герметичен и неопасен.

Для сбраживания некоторых видов сырья в чистом виде требуется особая двухстадийная технология. Например, птичий помет, спиртовая барда не перерабатываются в биогаз в обычном реакторе. Для переработки такого сырья необходим дополнительно реактор гидролиза. Такой реактор позволяет контролировать уровень кислотности, таким образом бактерии не погибают из-за повышения содержания кислот или щелочей. Возможна переработка этих же субстратов по одностадийной технологии, но при коферментации (смешивании) с другими видами сырья, например, с навозом или силосом.

ЗАКЛЮЧЕНИЕ

Биогаз начали получать и использовать довольно давно, еще с древних времен, используя при этом примитивные приспособления. Тема получения и использования биогаза актуальна и по сей день, с развитием научно технического прогресса появились новые способы получения, новые области применения биогаза!

Секрет применения биогаза заключается в простоте его получения, да и по стоимости он уступает практически всем традиционным видам топлива. Для его получения можно использовать практически всё, будь то органические отходы сельского хозяйства, отходы в неограниченных количествах имеющиеся на любой свалке, сточные воды и т.д.

Спектр применения биогаза так же широк, от обогрева помещений, до применения его в двигателях внутреннего сгорания.

Производство биогаза позволяет предотвратить выбросы метана в атмосферу. Метан оказывает влияние на парниковый эффект в 21 раз более сильное, чем СО2, и находится в атмосфере 12 лет. Захват метана - лучший краткосрочный способ предотвращения глобального потепления.

Переработанный навоз, барда и другие отходы применяются в качестве удобрения в сельском хозяйстве. Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды.

БИБЛИОГРАФИЯ

1. Альтернативная энергетика. Биогаз. // http://mediana.nm.ru/biogaz.htm;

2. Барбара Эдер, Хайнц Шульц. Биогазовые установки. Практическое пособие. 1996, переиздано 2006 // http://zorgbiogas.ru/biblioteka/biogas_book;

3. Биогаз. Биогазовые установки: продажа, чертежи. // http://biogas.in.ua/;

4. Биогаз. Материал из Википедии -- свободной энциклопедии. // http://ru.wikipedia.org/wiki/Биогаз;

5. Биогазовые установки: Основы биогазовой технологии. // http://zorgbiogas.ru/biblioteka/biogas_book/osnovy-biogazovoj-tehnologii;

6. Кузьмина Н. Промышленная биотехнология. // http://www.biotechnolog.ru/prombt/prombt1_1.htm;

7. Установки по получению биогаза из биоотходов. // http://www.aditi.su/bio.htm.

Размещено на http://www.allbest.ru


Подобные документы

  • Изучение особенностей использования ветроэнергетических установок в сельском хозяйстве. Анализ состояния российской энергетики, проблем энергосбережения. Расчет плоского солнечного коллектора и экономии топлива, биогазовой и ветродвигательной установок.

    курсовая работа [261,7 K], добавлен 10.03.2013

  • Информация о предприятии сахарного производства и описание ТЭЦ. Поверочный расчет и тепловой баланс котла. Технология выработки биогаза из жома. Определение процентного содержания природного газа, биогаза и смеси. Использование биогаза для когенерации.

    дипломная работа [3,3 M], добавлен 27.10.2011

  • Понятие и химический состав биогаза, его главные свойства и характеристики, исторические корни и этапы технологии. Преимущества использования биогазовой установки, ее энергетическая эффективность и значение. Оценка пригодности субстрата для брожения.

    реферат [39,2 K], добавлен 11.12.2013

  • Биогаз как газ, получаемый водородным или метановым брожением биомассы. Процесс производства биогаза, его достоинства и недостатки. Принцип работы биогазовой установки. Проблемы и перспективы использования альтернативных источников энергии в Украине.

    реферат [401,5 K], добавлен 04.04.2013

  • Использование ветрогенераторов, солнечных батарей и коллекторов, биогазовых реакторов для получения альтернативной энергии. Классификация видов нетрадиционных источников энергии: ветряные, геотермальные, солнечные, гидроэнергетические и биотопливные.

    реферат [33,0 K], добавлен 31.07.2012

  • Анализ методов и перспектив использования твёрдых бытовых отходов в системах энергоснабжения. Добыча и утилизация свалочного газа. Технико-экономическое сопоставление вариантов энергоснабжения. Оптимизация работы установки по обогащению биогаза.

    дипломная работа [719,7 K], добавлен 01.03.2009

  • Особенности работы источника ионов. Распределение электростатических полей, состав ионов газа, металла. Экспериментальные данные по определению состава ионного пучка. Внедрение элементов в поверхностный слой обрабатываемого материала (ионная имплантация).

    статья [105,9 K], добавлен 30.09.2012

  • Характеристика существующих методов водоподготовки для работы котельных установок и котлов электростанций. Повышение качества очистка воды, обеспечение ее полной регенерация для вторичного применения по назначению. Преимущества мембранных технологий.

    контрольная работа [597,1 K], добавлен 12.12.2021

  • Основные характеристики и законы цепи постоянного тока. Конструкция, принцип действия и параметры трансформаторов. Использование излучений оптического спектра в сельском хозяйстве. Электрификация тепловых производственных процессов в животноводстве.

    контрольная работа [159,4 K], добавлен 19.07.2011

  • Понятие и история происхождения сланцевого газа, его главные физические и химические свойства. Способы добычи, используемое оборудование и материалы, оценка степени влияние на экологию. Перспективы применения данного типа газа в будущем в энергетике.

    контрольная работа [28,7 K], добавлен 11.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.