Основы электродинамики

Взаимодействие заряженных тел. Сущность закона Кулона. Понятие напряженности электрического поля. Расчет количества теплоты на проводнике с сопротивлением. Вольтамперная характеристика диода. Классификационные признаки проводимости полупроводников.

Рубрика Физика и энергетика
Вид краткое изложение
Язык русский
Дата добавления 14.11.2010
Размер файла 73,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Тлеющий разряд.

Наблюдается при низких давлениях (десятые и сотые доли миллиметра ртутного столба). Для возбуждения достаточно напряжения нескольких сотен вольт. При этом разряде почти вся трубка, за исключением небольшого участка возле катода, заполнена однородным свечением, называемым положительным столбом.

Тлеющий разряд используют в рекламных трубках и лампах дневного света.

Электрическая дуга.

Может существовать при атмосферном давлении. Сила тока составляет десятки и сотни ампер при небольшом напряжении. Вследствие бомбардировки катода положительными ионами образуется большая температура, которая может достигать 4000С. происходит термическая ионизация газа.

Дуговой разряд - мощный источник света. Используется в прожекторах, проекционных и киноаппаратах, для сварки металлов.

Коронный разряд.

Образуется при атмосферном давлении при высокой (около 3 млн. В/м) напряженности электрического поля вблизи заряженного острия. Светящаяся область такого разряда напоминает корону.

Заряженное грозовое облако индуцирует на поверхность Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях, поэтому перед или во время грозы нередко на остриях высоко поднятых предметов вспыхивают конусы света.

Из-за коронного разряда при наличии выступающих частей или тонких проводов при большом напряжении могут быть утечки энергии.

Искровой разряд.

Возникает при большом напряжении между электродами в воздухе. Имеет вид пучка ярких зигзагообразных полосок, разветвляющихся от тонкого канала. Возникает, когда мощность источника недостаточна для поддержания дугового или тлеющего разряда.

Магнитное поле.

Магнитное взаимодействие токов.

Между неподвижными электрическими зарядами действуют силы, определяемые законом Кулона. Каждый заряд создает поле, которое действует на другой заряд и наоборот. Однако между электрическими зарядами могут существовать и другие силы. Их можно обнаружить если провести следующий опыт.

Возьмем два гибких проводника, укрепим их вертикально, а затем присоединим нижними концами к полюсам источника тока. Притяжения или отталкивания не обнаруживается. Но если другие концы соединить проволокой так, чтобы в проводниках возникли токи противоположного направления, то проводники начнут отталкиваться друг от друга. В случает токов одного направления проводники притягиваются.

Явление взаимодействия токов обнаружил французский физик Ампер в 1820г. В этом же году датский физик Эрстед обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее.

Взаимодействия между проводниками с током, т.е. взаимодействия между движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.

Магнитное поле.

Подобно тому как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем движущиеся заряды, возникает магнитное поле. Электрический ток в одном из проводников создает вокруг себя магнитное поле, которое действует на ток во втором проводнике. А поле, созданное электрическим током второго проводника, действует на первый.

Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрическими заряженными частицами.

Магнитное поле создается не только электрическим током, но и постоянными магнитами. На основании своих опытов Ампер сделал вывод, что взаимодействие токов с магнитом и магнитов между собой можно объяснить, если предположить, что внутри магнита существуют незатухающие молекулярные круговые токи.

Прохождение электрического тока может сопровождаться нагреванием и свечением вещества, различными его химическими превращениями, магнитным взаимодействием. Из всех известных действий тока только магнитной взаимодействие сопровождает электрический ток при любых условиях, в любой среде и в вакууме.

Индукция магнитного поля

Индукцией магнитного поля называется характеристика способности магнитного поля оказывать силовое действие на проводник с током. Она является векторной физической величиной.

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Его можно определить по правилу буравчика: если направление поступательного движения буравчика совпадает с направлением силы тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Линией магнитной индукции называется такая линии, в любой точке которой вектор магнитной индукции направлен по касательной.

Если во всех точках некоторой части пространства вектор индукции магнитного поля имеет одинаковое значение по модулю и одинаковое направление, то магнитной поле в этой части пространства называют однородным. Линии магнитной индукции такого поля представляют собой параллельные линии, расположенные на одном расстоянии друг от друга.

Линии индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружностей лежат на оси проводника. Направление индукции в этом случае определяется следующим правилом: если смотреть вдоль проводника с током по направлению тока, то вектор магнитной индукции направлен по ходу часовой стрелки.

Линии индукции магнитного поля, созданного катушкой с током показаны на рисунке. Вектор индукции входит в катушку с той стороны, с какой направление тока в витках катушки представляется соответствующим ходу часовой стрелки.

Линии магнитной индукции не имеют ни начала, ни конца -они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Следовательно, магнитное поле -вихревое. Это позволяет сделать вывод, что магнитное поле не имеет источников. Магнитных зарядов, подобных электрическим, в природе нет.

Опытным путем установлено, что отношение максимального значения модуля силы, действующей на проводник с током (силы Ампера) к силе тока и к длине проводника, не зависит ни от силы в проводнике, ни от длины проводника. Его приняли за характеристику магнитного поля в том месте, где расположен проводник -индукцию магнитного поля:

Единица индукции в этом случае определяется как индукция такого магнитного поля, в котором на 1 м проводника при силе тока 1 А действует сила Ампера 1Н. Эта единица называется тесла:

Если исследовать магнитное поле с помощью рамки с током, то модуль вектора магнитной индукции равен отношению момента сил, действующих на рамку с током со стороны поля, к произведению силы тока в рамке на ее площадь:

.

За единицу магнитной индукции принята магнитная индукция такого поля, в котором на контур площадью 1 м2 при силе тока 1 А действует со стороны поля максимальный момент сил 1

Индукция магнитного поля зависит от геометрической формы проводника. Модуль индукции поля, создаваемого бесконечным прямолинейным проводником:

где r -расстояние от проводника.

Модуль индукции поля, созданного проводником в форме кругового витка радиуса R:

.

Модуль индукции поля, созданного соленоидом длиной l и числом витков N:

Во всех формулах: I -сила тока, - магнитная постоянная, - относительная магнитная проницаемость среды.

Сила, действующая на проводник с током в магнитном поле. Закон Ампера. Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Экспериментальное изучение магнитного взаимодействия показывает, что модуль силы Ампера пропорционален длине проводника с током, силе тока и зависит от ориентации проводника в магнитном поле.

Опыт показывает, что магнитное поле, вектор индукции которого направлен вдоль проводника с током, не оказывает влияния на ток. Поэтому модуль силы зависит лишь от модуля составляющей вектора магнитной индукции, перпендикулярной проводнику.

Закон Ампера заключается в следующем. Сила Ампера равна произведению магнитной индукции поля на силу тока, длину участка проводника и на синус угла между магнитной индукцией и участком проводника:

Направление силы ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая магнитной индукции входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 большой палец покажет направление силы, действующей на отрезок проводника.

Магнитное взаимодействие проводников с током используется в Международной системе для определения единицы сила тока - ампера.

Ампер - сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывал бы между этими проводниками силу магнитного взаимодействия, равную Н на каждый метр длины.

Действие магнитного поля на движущийся заряд. Сила Лоренца.

Электрический ток - это совокупность упорядоченно движущихся заряженных частиц. Поэтому действие магнитного поля на проводник с током есть результат действия поля на движущиеся заряженные частицы внутри проводника.

Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца.

Модуль силы Лоренца равен отношению модуля силы Ампера, действующей на участок проводника, к числу заряженных частиц в этом участке проводника:

Сила Ампера равна , сила тока равна (см. стр. 12). Подставив эти выражения в формулу для силы Лоренца, получим:

где - угол между векторами скорости и магнитной индукции.

Направление силы Лоренца определяют для положительного заряда по правилу левой руки. (Для отрицательного заряда сила Лоренца будет направлена в противоположную сторону).

Так как сила Лоренца перпендикулярна скорости частицы, то она не совершает работу. А, согласно теореме о кинетической энергии, это означает, что сила Лоренца не меняет кинетическую энергию частицы и, следовательно модуль ее скорости. Под действием силы Лоренца меняется лишь направление скорости частицы.

Магнитные свойства вещества.

Все вещества, помещенные в магнитное поле, намагничиваются, т.е. сами создают магнитное поле. Поэтому индукция магнитного поля в однородной среде отличается от индукции поля в вакууме.

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью:

Все вещества в зависимости от их магнитной проницаемости разделяют на ферромагнетики, парамагнетики и диамагнетики.

К ферромагнетикам относятся железо, никель, кобальт и некоторые соединения этих металлов с другими элементами. У них значения магнитной проницаемости достигают тысяч единиц. Поэтому при внесении железного сердечника в катушку с током, индукция магнитного поля увеличивается во много раз.

К парамагнетикам относятся вещества, магнитная проницаемость которых немного больше единицы. (Платина, жидкий кислород)

К диамагнетикам можно отнести вещества с малой магнитной проницаемостью. Они ослабляют магнитное поле. (Серебро, свинец, кварц, висмут).

Ферромагнетизм объясняется магнитными свойствами электронов. Электрон эквивалентен круговому току или вращающемуся заряженному телу и поэтому обладает собственным магнитным полем. В большинстве кристаллов магнитные поля электронов взаимно компенсируются благодаря попарной антипараллельной ориентации магнитных полей электронов. Лишь в некоторых кристаллах, например в кристалле железа, возникают условия для параллельной ориентации собственных магнитных полей электронов. В результате этого внутри кристалла ферромагнетика возникают намагниченные области, которые называются доменами. В отдельных доменах магнитные поля имеют различные направления и в большом кристалле взаимно компенсируют друг друга. При внесении ферромагнитного образца в магнитное поле происходит упорядочение ориентации магнитных полей отдельных доменов.

С увеличением магнитной индукции внешнего поля возрастает степень упорядоченности ориентации отдельных доменов - магнитная индукция возрастает. При некотором значении индукции внешнего поля наступает полное упорядочение ориентации доменов, возрастание магнитной индукции прекращается. Это явление называется магнитным насыщением.

При вынесении ферромагнитного образца из внешнего магнитного поля значительная часть доменов сохраняет упорядоченную ориентацию - образец становится постоянным магнитом.

Упорядоченность ориентации доменов в ферромагнетике нарушается тепловыми колебаниями атомов в кристалле. Чем выше температура кристалла, тем быстрее разрушается порядок в ориентации доменов, вследствие чего образец размагничивается. Температура, выше которой вещество перестает быть ферромагнетиком, называется температурой Кюри.

Электромагнитная индукция.

Если электрический ток создает магнитное поле, то не может ли в свою очередь магнитное поле вызывать электрический ток в проводнике? Первым нашел ответ на этот вопрос Майкл Фарадей.

В 1831г. он обнаружил, что в проводящем контуре при изменении магнитного поля возникает электрический ток, который назвали индукционным током.

Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки, а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку. Индукционный ток также возникает при движении контура в постоянном магнитном поле.

Явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего контур, называется электромагнитной индукцией.

Появление электрического тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, свидетельствует о действии в контуре сторонних сил неэлектростатической природы или возникновении ЭДС индукции. Для определения ЭДС индукции введем физическую величину - магнитный поток.

Магнитный поток.

Магнитным потоком сквозь некоторую поверхность называют физическую величину, равную полному числу линий магнитной индукции, пронизывающих эту поверхность.

Рассмотрим однородное магнитное поле (такое поле существует внутри длинного соленоида с током вдали от его краев). Условимся рисовать линии магнитной индукции столь густо, что через единицу площади поверхности, перпендикулярную этим линиям, будет пронизываться количество линий, равное модулю магнитной индукции.

Рассмотрим плоскую прямоугольную площадку S0, перпендикулярную линиям магнитной индукции. Тогда магнитный поток Ф, пронизывающий эту поверхность, будет равен . Рассмотрим наклонную площадку S такую, что сквозь нее проходит тот же магнитный поток, что и через S0. Из рисунка видно, что . Подставим S0:

(*)

Полученная формула может использоваться для расчета магнитного потока, пронизывающего наклонную плоскую площадку, расположенную в однородном магнитном поле с индукцией B. Проведем к поверхности S нормаль . Эта нормаль образует с также угол (по свойству углов со взаимно перпендикулярными сторонами). Значит в формуле (*) - угол между и.

Единица измерения магнитного потока - 1 Вебер. 1 Вб - это магнитный поток, пронизывающий плоскую поверхность, расположенную перпендикулярно линиям магнитной индукции в однородном магнитном поле, индукция которого равна 1 Тл.

.

В общем случае магнитное поле неоднородно, а поверхность, сквозь которую пронизываются линии магнитной индукции не является плоскостью. В этом случае мы делим всю поверхность на столь малые участки, что в пределах каждого магнитное поле можно буде считать однородным. Находим элементарные магнитные потоки, а затем их складываем.

Правило Ленца.

Опыт показывает, что направление индукционного тока в контуре зависит от того, возрастает или убывает магнитный поток, пронизывающий контур, а также от направления вектора индукции магнитного поля относительно контура. Общее правило, позволяющее определить направление индукционного тока в контуре, было установлено в 1833г. Ленцем.

Правило Ленца можно продемонстрировать с помощью легкого алюминиевого кольца, закрепленного на свободно вращающемся вокруг вертикальной оси стержне. Опыт показывает, что при внесении постоянного магнита кольцо отталкивается от него, а при удалении притягивается к магниту. Результат опытов не зависит от полярности магнита.

Отталкивание и притяжения сплошного кольца объясняется возникновением индукционного тока в кольце при изменениях магнитного потока через кольцо и действием на индукционный ток магнитного поля. Очевидно, что при вдвигании магнита в кольцо индукционный ток в нем имеет такое направление, что созданное этим током магнитное поле противодействует внешнему магнитному полю, а при выдвигании магнита индукционный ток в нем имеет такое направление, что вектор индукции его магнитного поля совпадает по направлению с вектором индукции внешнего поля.

Правило Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение магнитного потока, которым вызывается данный ток.

Направление индукционного тока определяется законом сохранения энергии. При возникновении индукционного тока уменьшается кинетическая энергия магнита, вдвигаемого в кольцо, и за счет этой энергии возникает электрический ток.

Закон электромагнитной индукции. Экспериментальное исследование зависимости ЭДС индукции от изменения магнитного потока привело к установлению закона электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром. С учетом правила Ленца закон электромагнитной индукции записывается следующим образом:

.

Если в последовательно соединенных контурах происходят одинаковые изменения магнитного потока, то ЭДС индукции в них равна сумме ЭДС индукции в каждом из контуров. Поэтому при изменении магнитного потока в катушке, состоящей из n одинаковых витков провода, общая ЭДС индукции в n раз больше ЭДС индукции в одиночном контуре:

На основе закона электромагнитной индукции в Международной системе единиц определяются единицы магнитного потока и индукции магнитного поля. Магнитный поток через площадь, ограниченную замкнутым контуром, равен 1 Вб, если при равномерном убывании этого потока до нуля за 1 с в контуре возникает ЭДС индукции 1 В:

Для однородного магнитного поля на основании формулы следует, что его магнитная индукция равна 1 Тл, если магнитный поток через контур площадью 1 м2 равен 1 Вб:

Возникновение электрического тока в замкнутом контуре свидетельствует о том, что при изменении магнитного потока, пронизывающего контур, на свободные электрические заряды в контуре действуют силы. Провод контура неподвижен, неподвижными можно считать свободные электрические заряды в нем. На неподвижные электрические заряды может действовать только электрическое поле. Следовательно, при любом изменении магнитного поля в окружающем пространстве возникает электрическое поле. Это электрическое поле и приводит в движение свободные электрические заряды в контуре, создавая индукционный электрический ток. Электрическое поле, возникающее при изменениях магнитного поля, называют вихревым электрическим полем.

Работа сил вихревого поля по перемещению электрических зарядов и является работой сторонних сил, т.е. источником ЭДС индукции. При перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника она численно равна ЭДС индукции в этом проводнике.

Вихревое электрическое поле отличается от электростатического тем, что оно не связано с электрическими зарядами, его линии напряженности представляют собой замкнутые линии. Работа сил вихревого электрического поля при движении электрического заряда по замкнутой линии может быть отлична от нуля.

Рассмотрим причину возникновения ЭДС индукции в проводниках, движущих в неизменном магнитном поле. В этом случае магнитный поток через контур меняется за счет движения проводников контура. Причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.

Явление самоиндукции. Индуктивность.

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток через контур из этого проводника пропорционален модулю индукции магнитного поля внутри контура, а индукция магнитного поля в свою очередь пропорциональна силе тока в проводнике. Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Коэффициент пропорциональности между силой тока в контуре и магнитным потоком, создаваемым этим током, называется индуктивностью. Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

За единицу индуктивности в Международной системе принимается генри. Индуктивность контура равна 1 Гн, если при силе тока 1 А магнитный поток через контур равен 1 Вб:

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного поля, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке. Явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой цепи называется самоиндукцией.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

ЭДС самоиндукции, возникающая в катушке, по закону электромагнитной индукции равна

, т.е.

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Элемент электрической цепи обладает индуктивностью 1 Гн, если при равномерном изменении силы тока в цепи на 1 А за 1 с в нем возникает ЭДС самоиндукции 1 В.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергию магнитного поля катушки индуктивности можно вычислить следующим способом. Для упрощения расчета рассмотрим такой случай, когда после отключения катушки от источника ток в цепи убывает со временем по линейному закону. В этом случае ЭДС самоиндукции имеет постоянное значение, равное

,

где t - промежуток времени, за который сила тока в цепи убывает от начального значения I до 0.

За время t при линейном убывании силы тока от I до 0 в цепи проходит электрический заряд:

,

Эта работа совершается за счет энергии магнитного поля катушки. Энергия магнитного поля катушки индуктивности равна половине произведения ее индуктивности на квадрат силы тока в ней:


Подобные документы

  • Сущность фундаментального закона Кулона, который количественно описывает взаимодействие заряженных тел. Его запись в векторном виде и схожесть с законом всемирного тяготения. Вычисления при помощи закона Кулона, требующие определения единицы заряда.

    презентация [507,6 K], добавлен 04.02.2016

  • Электромагнитное поле. Система дифференциальных уравнений Максвелла. Распределение потенциала электрического поля. Распределения потенциала и составляющих напряженности электрического поля и построение графиков для каждого расстояния. Закон Кулона.

    курсовая работа [1,1 M], добавлен 12.05.2016

  • Фундаментальные взаимодействия в природе. Взаимодействие электрических зарядов. Свойства электрического заряда. Закон сохранения электрического заряда. Формулировка закона Кулона. Векторная форма и физический смысл закона Кулона. Принцип суперпозиции.

    презентация [1,1 M], добавлен 24.08.2015

  • Понятие и предмет электростатики. Изучение свойств электрического заряда, закона сохранения заряда, закона Кулона. Особенности направления вектора напряженности. Принцип суперпозиции полей. Потенциал результирующего поля, расчет по методу суперпозиции.

    презентация [773,6 K], добавлен 26.06.2015

  • Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.

    курсовая работа [99,5 K], добавлен 25.04.2010

  • Основные понятия и специальные разделы электродинамики. Условия существования электрического тока, расчет его работы и мощности. Закон Ома для постоянного и переменного тока. Вольт-амперная характеристика металлов, электролитов, газов и вакуумного диода.

    презентация [8,4 M], добавлен 30.11.2013

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.

    презентация [342,6 K], добавлен 19.03.2013

  • Описание полупроводников, характеристика их основных свойств. Физические основы электронной проводимости. Строение кристалла кремния. Направленное движение электронов и дырок под действием электрического поля, p-n переход. Устройство транзисторов.

    презентация [2,4 M], добавлен 20.04.2016

  • Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения заряда. Електрическое поле. Напряженность электрического поля. Электрическое поле точечного заряда. Принцип суперпозиции полей. Электромагнитная индукция. Магнитный поток.

    учебное пособие [72,5 K], добавлен 06.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.