Сила упругости и деформация

Сила упру гости и деформация как изменение формы, размеров или объема тела, ее виды, действия, способствующие и препятствующие ей, связь с силой упругости. Закон Гука, его суть и значение. Физический смысл модуля Юнга. Описание практических опытов.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 14.11.2010
Размер файла 46,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Сила упругости. Закон Гука. Виды деформаций

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил.

Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими, а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими.

Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига.

Силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая.

Мы рассмотрим случай возникновения сил упругости при одностороннем растяжении и сжатии твердого тела.

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

f=-kx, (2.9)

где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Рассмотрим опыт, иллюстрирующий закон Гука. Пусть ось симметрии цилиндрической пружины совпадает с прямой Ах (рис. 20, а). Один конец пружины закреплен в опоре в точке А, а второй свободен и к нему прикреплено тело М. Когда пружина не деформирована, ее свободный конец находится в точке С. Эту точку примет за начало отсчета координаты х, определяющей положение свободного конца пружины.

Растянем пружину так, чтобы ее свободный конец находился в точке D, координата которой х>0: В этой точке пружина действует на тело М упругой силой

fх=-kx<0.

Сожмем теперь пружину так, чтобы ее свободный конец находился в точке В, координата которой х<0. В этой точке пружина действует на тело М упругой силой

fх=-kx>0.

Из рисунка видно, что проекция силы упругости пружины на ось Ах всегда имеет знак, противоположный знаку координаты х, так как сила упругости направлена всегда к положению равновесия С. На рис. 20, б изображен график закона Гука. На оси абсцисс откладывают значения удлинения х пружины, а на оси ординат - значения силы упругости. Зависимость fх от х линейная, поэтому график представляет собой прямую, проходящую через начало координат.

Рассмотрим еще один опыт.

Пусть один конец тонкой стальной проволоки закреплен на кронштейне, а к другому концу подвешен груз, вес которого является внешней растягивающей силой F, действующей на проволоку перпендикулярно ее поперечному сечению (рис. 21).

Действие этой силы на проволоку зависит не только от модуля силы F, но и от площади поперечного сечения проволоки S.

Под действием приложенной к ней внешней силы проволока деформируется, растягивается. При не слишком большом растяжении эта деформация является упругой. В упруго деформированной проволоке возникает сила упругости fуп.

Согласно третьему закону Ньютона, сила упругости равна по модулю и противоположна по направлению внешней силе, действующей на тело, т. е.

fуп= -F (2.10)

Состояние упруго деформированного тела характеризуют величиной s, называемой нормальным механическим напряжением (или, для краткости, просто нормальным напряжением). Нормальное напряжение s равно отношению модуля силы упругости к площади поперечного сечения тела:

s=fуп/S (2.11)

Пусть первоначальная длина нерастянутой проволоки составляла L0. После приложения силы F проволока растянулась и ее длина стала равной L. Величину DL=L-L0 называют абсолютным удлинением проволоки. Величину

e=DL/L0 (2.12)

называют относительным удлинением тела. Для деформации растяжения e>0, для деформации сжатия e<0.

Наблюдения показывают, что при небольших деформациях нормальное напряжение s пропорционально относительному удлинению e:

s=E|e|. (2.13)

Формула (2.13) является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным. Коэффициент пропорциональности Е в законе Гука называется модулем продольной упругости (модулем Юнга).

Установим физический смысл модуля Юнга. Как видно из формулы (2.12), e=1 и L=2L0 при DL=L0. Из формулы (2.13) следует, что в этом случае s=Е. Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза . (если бы для такой большой деформации выполнялся закон Гука). Из формулы (2.13) видно также, что в СИ модуль Юнга выражают в паскалях (1 Па = 1 Н/м2).

Диаграмма растяжения

Используя формулу (2.13), по экспериментальным значениям относительного удлинения e можно вычислить соответствующие им значения нормального напряжения s, возникающего в деформированном теле, и построить график зависимости s от e. Этот график называют диаграммой растяжения. Подобный график для металлического образца изображен на рис. 22. На участке 0-1 график имеет вид прямой, проходящей через начало координат. Это значит, что до определенного значения напряжения деформация является упругой и выполняется закон Гука, т. е. нормальное напряжение пропорционально относительному удлинению. Максимальное значение нормального напряжения sп, при котором еще выполняется закон Гука, называют пределом пропорциональности.

При дальнейшем увеличении нагрузки зависимость напряжения от относительного удлинения становится нелинейной (участок 1-2), хотя упругие свойства тела еще сохраняются. Максимальное значение sу нормального напряжения, при котором еще не возникает остаточная деформация, называют пределом упругости. (Предел упругости лишь на сотые доли процента превышает предел пропорциональности.) Увеличение нагрузки выше предела упругости (участок 2-3) приводит к тому, что деформация становится остаточной.

Затем образец начинает удлиняться практически при постоянном напряжении (участок 3-4 графика). Это явление называют текучестью материала. Нормальное напряжение sт, при котором остаточная деформация достигает заданного значения, называют пределом текучести.

При напряжениях, превышающих предел текучести, упругие свойства тела в известной мере восстанавливаются, и оно вновь начинает сопротивляться деформации (участок 4-5 графика). Максимальное значение нормального напряжения sпр, при превышении которого происходит разрыв образца, называют пределом прочности.

Энергия упруго деформированного тела

Подставив в формулу (2.13) значения s и e из формул (2.11) и (2.12), получим

fуп/S=E|DL|/L0.

откуда следует, что сила упругости fуп, возникающая при деформации тела, определяется по формуле

fуп=ES|DL|/L0. (2.14)

Определим работу Aдеф, совершаемую при деформации тела, и потенциальную энергию W упруго деформированного тела. Согласно закону сохранения энергии,

W=Aдеф. (2.15)

Как видно из формулы (2.14), модуль силы упругости может изменяться. Он возрастает пропорционально деформации тела. Поэтому для подсчета работы деформации необходимо брать среднее значение силы упругости <fуп>, равное половине от ее максимального значения:

<fуп>= ES|DL|/2L0. (2.16)

Тогда определяемая по формуле Aдеф=<fуп>|DL| работа деформации

Aдеф= ES|DL|2/2L0.

Подставив это выражение в формулу (2.15), найдем значение потенциальной энергии упруго деформированного тела:

W= ES|DL|2/2L0. (2.17)

Для упруго деформированной пружины ES/L0=k - жесткость пружины; х - удлинение пружины. Поэтому формула (2.17) может быть записана в виде

W=kx2/2. (2.18)

Формула (2.18) определяет потенциальную энергию упруго деформированной пружины.


Подобные документы

  • Единицы измерения и формулы сил тяжести, упругости и веса тела. Изображение сил, действующих на физические тела. Определение равнодействующих сил, направленных по одной прямой. Практическое значение учета всех сил влияющих на тело. Сложение, разность сил.

    презентация [1,3 M], добавлен 23.11.2014

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Свойства независимых комбинаций продольной и поперечной объемных волн. Закон Гука в линейной теории упругости при малых деформациях. Коэффициент Пуассона, тензоры напряжения и деформации. Второй закон Ньютона для элементов упругой деформированной среды.

    реферат [133,7 K], добавлен 15.10.2011

  • Анализ зависимости веса тела от ускорения опоры, на которой оно стоит, изменения взаимного положения частиц тела, связанного с их перемещением друг относительно друга. Исследование основных видов деформации: кручения, сдвига, изгиба, растяжения и сжатия.

    презентация [2,9 M], добавлен 04.12.2011

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

  • Формулы кинематики, механическое движение. Система отсчета, траектория, перемещение. Ускорение, сложение скоростей. Равномерное, равноускоренное прямолинейное движение. Ускорение свободного падения. Условие равновесия рычага. Сила упругости, закон Гука.

    краткое изложение [89,1 K], добавлен 14.11.2010

  • Виды и категории сил в природе. Виды фундаментальных взаимодействий. Уравнения Ньютона для неинерциальной системы отсчета. Определение силы электростатического взаимодействия двух точечных зарядов. Деформация растяжения и сжатия стержня, закон Гука.

    презентация [19,6 M], добавлен 13.02.2016

  • Определение и общая характеристика выталкивающей (архимедовой) силы, а также проверка ее зависимости от объема и формы погружаемого тела, глубины погружения и плотности жидкости с помощью опытов. Сущность закона Архимеда, его изображение в виде формулы.

    презентация [895,7 K], добавлен 03.05.2010

  • Основные формулы кинематики, механики жидкостей и газов и молекулярно-кинетической теории. Сила всемирного тяготения и сила тяжести. Закон Архимеда и Гука. Расчеты по электричеству и магнетизму. Последовательное и параллельное соединение проводников.

    шпаргалка [130,3 K], добавлен 18.01.2009

  • Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.

    контрольная работа [782,4 K], добавлен 27.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.