Электродинамика микромира
Электродинамика как раздел физики. Суть закона электромагнитной индукции. Анализ поведения электрона в проводах. Схема плазмоэлектролитической ячейки. Углы отклонения стрелок компасов при различных токах. Переменное и постоянное напряжение в проводах.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 29.09.2010 |
Размер файла | 718,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Электродинамика микромира
1. Электродинамика как раздел физики
Электродинамика - раздел физики, в котором изучаются носители электричества, формируемые ими электрические и магнитные поля, а также взаимодействия между ними. Она родилась в начале 19-го века, во времена Фарадея и Максвелла.
Экспериментальной основой существующей электродинамики является закон электромагнитной индукции, открытый Майклом Фарадеем в 1831 году. Суть этого закона кратко можно выразить так: переменное электрическое поле создаёт магнитное поле, а переменное магнитное поле создаёт электрическое поле. На основании этого считается, что работа электромоторов, электрогенераторов, трансформаторов и других многочисленных электротехнических устройств - результат взаимодействия электрических и магнитных полей. Проверим связь с реальностью таких представлений.
Вполне естественно, что электродинамика макромира базируется на электродинамике микромира. Они связаны между собой, но эта связь пока не рассматривалась, поэтому сделаем первую попытку такого рассмотрения.
Поскольку главным носителем электричества и источником электромагнетизма является электрон, то выявление его структуры - первая и главная задача электродинамики, без решения которой невозможно познание электродинамических процессов и явлений.
Электрон представляет собой полый тор, который имеет два вращения: относительно оси симметрии и относительно кольцевой оси тора. Вращение относительно кольцевой оси тора формирует магнитное поле электрона, а направления магнитных силовых линий этого поля формируют два магнитных полюса: северный N и южный S (рис. 1). Вращением электрона относительно центральной оси управляет кинетический момент - векторная величина. Магнитный момент электрона - тоже величина векторная, совпадающая с направлением вектора кинетического момента . Оба эти вектора формируют северный магнитный полюс электрона (N), а на другом конце центральной оси его вращения формируется южный магнитный полюс (S). Формированием столь сложной структуры электрона (рис. 1) управляют более 20 констант. Имея эту общую информацию о структуре электрона, приступим к анализу его поведения в проводах.
Рис. 1. Схема электрона: N - северный магнитный полюс, S - южный магнитный полюс
Так как протоны находятся в ядрах атомов, а электроны на их поверхности, то вполне естественно, что в проводе могут быть только свободные электроны. В результате возникает вопрос: каким образом в проводе с постоянным током формируется на одном конце плюсовой потенциал, носителем которого являются протоны, а на другом - минусовый, носителем которого являются электроны?
2. Плюс - минус, юг-север
Чтобы найти ответ на выше сформулированный вопрос, проанализируем работу плазмоэлектролитической ячейки ( рис. 2).
Рис. 2. Схема плазмоэлектролитической ячейки: 1-катод и входной патрубок для раствора; 2-анод в виде цилиндра; 3 - выпускной патрубок парогазовой смеси; Р-Р - зона плазмы
Сущность процесса работы плазмоэлектролитической ячейки (рис. 2) заключается в следующем. Так как площадь поверхности катода 1 в десятки раз меньше площади поверхности анода, то большая плотность тока на поверхности катода 1 формирует поток положительных ионов раствора, направленных к нему. В этом потоке есть и положительно заряженные протоны атомов водорода, отделившиеся от молекул воды. Они взаимодействуют с электронами, пришедшими из сети и испущенными катодом, образуют атомы водорода, совокупность которых формирует в растворе, в зоне Р катода 1, плазму атомарного водорода с температурой до 5000 С (рис. 2).
Отрицательно заряженные ионы собираются у анода. Они передают лишние электроны аноду и те движутся по проводу от плюса (+) к минусу (-). Поскольку соседство свободных электронов и свободных протонов заканчивается формированием атомов водорода, которые существуют лишь в плазменном состоянии (рис. 2, зона Р..Р), то исключается одновременное существование свободных протонов и свободных электронов в проводе, по которому течёт ток.
Таким образом, анализ электролитического процесса, протекающего в электролитической ячейке (рис. 2), показывает, что в электролитическом растворе электроны движутся от минуса к плюсу, а в проводе - от плюса к минусу.
Если источником питания является аккумулятор или батарея, то знаки плюс (+) и минус (-) принадлежат их клеммам. Тут всё понятно. А если источником постоянного напряжения является выпрямитель, подключённый к сети переменного тока и элетрогенератор, то появление плюса и минуса на клеммах выпрямителя формирует серию вопросов.
Генератор электростанции генерирует переменное напряжение, носителями которого являются только электроны. Откуда же тогда на клеммах выпрямителя появляются знаки плюс и минус? Это вопрос электрикам и электронщикам. Почему они мирятся с описанным противоречием? Но мы не имеем права игнорировать его, так как отсутствие ответа на этот вопрос формирует искажённые представления о сути процессов, протекающих в электротехнических и электронных устройствах.
Итак, наличие модели электрона (рис. 1) позволяет нам приступить к поиску ответа на поставленный вопрос. Вполне естественно, что его надо базировать на экспериментальных данных. Начнём с самого простого эксперимента - изучения процесса и причин отклонения стрелки компаса, положенного на провод или под провод, по которому течёт ток.
На рис. 3 показана электрическая схема, направления проводов которой сориентированы на север (N). При отсутствии тока в проводе направление стрелок компасов А, В, С и D совпадают с направлением правого и левого проводов на север N. При включении тока вокруг провода возникает магнитное поле и стрелки компасов отклоняются.
Когда электроны движутся по проводу в направлении с юга (S) на север (N), то стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, - влево (табл. 1). Из этих результатов следует, что магнитное поле вокруг провода закручено против хода часовой стрелки, если смотреть с северного (N) конца провода, и имеет магнитный момент .
Таблица 1. Углы отклонения стрелок компасов A и B при различных токах
Ток, I A |
, град. |
, град |
|
1,0 А |
34,0 |
33,0 |
|
2,0 А |
48,0 |
50,0 |
|
3,0 А |
57,0 |
58,0 |
Рис. 3. Схема эксперимента по формированию магнитных полей электронами , движущимися по проводам
Те же электроны, которые движутся по правому проводу с севера (N) на юг (S), формируют вокруг него противоположно направленное магнитное поле и стрелки аналогичных компасов С и D отклоняются противоположно отклонению стрелок компасов А и В (рис. 3).
На рис. 4 представлена схема магнитного поля вокруг провода с током. Вполне естественно, что это поле формируют электроны, движущиеся по проводу (рис. 1). Из схемы магнитного поля вокруг провода (рис. 4) следует, что оно может быть сформировано лишь в том случае, если северные магнитные полюса электронов (рис. 1) направлены вверх, в сторону (северного) минусового конца провода, а южные - вниз, в сторону плюсового конца провода (рис. 4).
Это означает, что плюсовой конец провода эквивалентен южному магнитному полюсу (S), а минусовой - северному (N).
Рис. 4. Схема движения электронов в проводе от плюса (+) к минусу (-) и формирования вокруг него магнитного поля, северный полюс (N) которого соответствует минусу, а южный (s) - полюсу
Итак, результаты эксперимента, представленные на рис. 3 и в табл. 1, показывают, что направление магнитного поля, формирующегося вокруг провода, совпадает с направлением вращения свободных электронов в нём (рис. 3, 4), поэтому направление тока совпадает с направлением движения электронов.
Таким образом, направление силовых линий магнитного поля, образующегося вокруг провода с током, соответствуют такой ориентации свободных электронов в нём, при которой они движутся от плюса к минусу, ориентируясь так, что южные полюса магнитных полей электронов оказываются направленными к плюсовому концу провода, а северные - к минусовому (рис. 4).
Этот простой эксперимент ярко демонстрирует, что если источником питания является аккумулятор или батарея, то электроны движутся по проводам от плюса (рис. 3, 4) к минусу. Такая картина полностью согласуется со структурой электронов (рис. 1) и однозначно доказывает, что свободные электроны провода с постоянным напряжением повёрнуты южными магнитными полюсами к положительному концу провода, а северными - к отрицательному. В этом случае не требуется присутствие в проводах свободных протонов для формирования положительного потенциала, так как свободные электроны провода формируют на его концах не разноимённые электрические заряды, а разноимённые магнитные полюса.
Из новых представлений о поведении электронов в проводе следует необходимость заменить представления о плюсовом и минусовом концах проводов сети с постоянным напряжением на концы с северным и южным магнитными полюсами. Однако, процесс реализации этой необходимости будет длительный. Но он, как мы увидим дальше, неизбежен, так как углубление представлений о реальных электродинамических процессах невозможно без новых условностей в обозначении концов электрических проводов.
3. Электроны в проводе с постоянным напряжением
Модель электрона, представленная на рис. 1, позволяет описать его поведение в магните (рис. 5, а) и проводе с постоянным напряжением (рис. 5, b).
Рис. 5. а) эксперимент инженера А.К. Сухвал; b) - схема движения электронов в проводе с постоянным напряжением от южного полюса S (+) к северному полюсу N (-) и формирования ими постоянного во времени (t) напряжения V
Чистое постоянное напряжение V (рис. 107) имеют батареи и аккумуляторы. Однако, этим понятием обозначают и выпрямленное переменное напряжение, поэтому при анализе поведения электрона в проводе надо учитывать этот факт.
Схема ориентации электронов при их движении вдоль провода с постоянным напряжением показана на рис. 5. Она следует из структуры электрона (рис. 1) и магнитного поля, формирующегося вокруг провода с постоянным напряжением (рис. 4). Как видно (рис. 5), электроны выстраиваются так, что векторы их магнитных моментов и спинов оказываются направленными от плюса к минусу. Таким образом, южные полюса всех свободных электронов в проводе с постоянным напряжением оказываются сориентированными к плюсовому () концу провода. Северные полюса всех свободных электронов оказываются сориентированными к другому концу провода () (рис. 5).
Чтобы понимать основания для введения представлений о том, что плюсовой конец провода соответствует южному магнитному полюсу, а минусовый - северному, надо иметь в виду, что в проводе нет свободных протонов, поэтому некому в нём формировать положительный знак заряда. Есть только свободные электроны, а они имеют один знак заряда, но два магнитных полюса: южный (S) и северный (N).
Дальше мы увидим, как из такой условности вытекают следствия, объясняющие такое обилие электрических эффектов, что данная гипотеза уверенно завоёвывает статус постулата.
Анализируя описываемый процесс движения свободных электронов в проводе, надо иметь представления о разнице между размерами атомов и электронов, которые оказываются в промежутках между атомами. Примерная разница известна. Размеры электронов , а размеры атомов . Тысячекратная разница в размерах - достаточное условие для перемещения электронов в проводе.
Тем не менее, заряды и магнитные поля свободных электронов не безразличны для зарядов и магнитных полей электронов, связанных с атомами и молекулами. Они оказываются достаточными, чтобы, воздействуя на валентные и другие связанные электроны атомов, заставлять их излучать фотоны.
Таким образом, приложенное постоянное напряжение не только перемещает свободные электроны вдоль провода, но генерирует фотоны, нагревающие провод. Чем больше приложенное напряжение, тем больше скорость движения электронов в проводе и интенсивнее их действие на связанные электроны, которые излучают фотоны с большей энергией.
Нетрудно видеть, что переменное напряжение заставит электроны вращаться так, что концы векторов магнитных моментов электронов и общих моментов совокупностей электронов, а также векторы их спинов будут описывать окружности. Процессы изменения напряжения, тока и напряжённости магнитного поля возникающего при этом вокруг провода (рис. 5), принимают синусоидальный характер.
4. Электроны в проводе с переменным напряжением
Изменение знака амплитуды синусоидального напряжения - результат изменения направления электронов в проводе в интервале одного периода колебаний. Последовательность этих изменений представлена на рис. 6, a, b, c, d и e. Из них и следует закон формирования синусоидального характера изменения переменного напряжения.
Рис. 6. Схемы изменения направления векторов магнитных моментов и спинов свободных электронов в проводе с переменным напряжением
Вполне естественно предположить, что при максимальном положительном напряжении все свободные электроны в проводе ориентированы одинаково и векторы их магнитных моментов и спинов направлены в сторону движения электронов вдоль провода (рис. 6, а) от южного полюса S (+) к северному N (-). В этот момент напряженность магнитного поля вокруг провода максимальна.
Схема поворота векторов спинов и магнитных моментов электронов на и падение напряжения до нуля представлена на рис. 6, b. Вполне естественно, что в этом случае магнитное поле вокруг провода (рис. 4) отсутствует и напряжение равно нулю.
Когда векторы спинов и магнитных моментов электронов повернутся на от исходного положения, то знаки магнитной полярности на концах провода (по существующим представлениям знаки электрического потенциала) поменяются на противоположные и направление магнитного поля вокруг провода (рис. 4) также изменится на противоположное, а амплитуда напряжения V примет максимальное отрицательное значение (рис. 6, с)
Через следующие четверть периода направления векторов магнитных моментов и спинов окажутся перпендикулярными оси провода (рис. 6, d). Магнитное поле вокруг провода (рис. 4) в этот момент исчезает, а величина напряжения V будет равна нулю (рис. 6, d).
Векторы магнитных моментов и спинов свободных электронов займут исходную позицию (рис. 6, а) через следующие четверть периода (рис. 6, е). В этот момент направление магнитного поля вокруг провода окажется соответствующим исходному положению (рис. 6, а) и амплитуды напряжения и напряжённости магнитного поля вокруг провода (рис. 4) максимальны. Так ведут себя свободные электроны в проводах, формируя синусоидальные законы изменения напряжения, тока и напряжённости магнитного поля вокруг провода. Это даёт нам основание написать уравнения их изменения в таком виде:
.
Вполне естественно предположить, что описанным процессом изменения ориентации электронов в проводах управляют магнитные полюса магнитов первичных источников питания, например, генераторов электростанций.
Главная особенность описанного процесса - синхронность синусоидального изменения напряжения U, тока I и напряженности H магнитного поля вокруг провода.
Дальше мы увидим, что при появлении в электрической цепи ёмкости и индуктивности синхронность изменения напряжения, тока и напряжённости магнитного поля нарушается.
Описанный процесс показывает, что при переменном напряжении количество электронов в рассматриваемом сечении провода не изменяется, а изменяется лишь их ориентация, которая изменяет направление магнитного поля вокруг провода, характеризуемого вектором (рис. 4).
Из описанного процесса поведения электронов в проводе с переменным напряжением обычной электрической сети следует, что свободные электроны меняют в ней своё направление с частотой сети, равной 50 Гц.
Если сравнивать поведение свободных электронов в проводе с постоянным напряжением (рис. 5), где электроны не меняют свою ориентацию, то потери энергии в проводе с переменным напряжением больше, чем с постоянным. Это хорошо известный факт.
В проводе с переменным напряжением (рис. 6) расходуется дополнительная энергия на изменения направлений векторов спинов и магнитных моментов электронов, на периодичность формирования магнитного поля вокруг провода. Далее, резкое изменение направления векторов спинов и магнитных моментов свободных электронов изменяет скорость их вращения относительно своих осей, что приводит к излучению фотонов. При этом надо иметь в виду, что меняющаяся полярность магнитного поля вокруг провода действует не только на свободные электроны, но и на валентные электроны атомов в молекулах и электроны атомов, не имеющие валентных связей. В результате они тоже могут излучать фотоны и увеличивать потери энергии.
Наиболее простой пример явного проявления явления потерь энергии - спираль электрической лампочки накаливания или спираль электрической плиты. Переменные магнитные поля вокруг нитей спирали значительно больше шага спирали. В результате они перекрывают друг друга и таким образом увеличивают интенсивность действия на электроны атомов материала спирали и они, возбуждаясь, начинают излучать фотоны, накаливая спираль электрической печки или лампочки. При этом длина волны излучаемых фотонов (цвет спирали) зависит от приложенного напряжения и величины тока. Чем они больше, тем больше электронов проходит в единицу времени в каждом сечении провода спирали, которые увеличивают напряжённость магнитного поля, возникающего вокруг провода спирали, а это поле в свою очередь интенсивнее действует на электроны, заставляя их терять больше массы в одном акте излучения фотонов.
Известно, чем больше масса фотона, тем меньше длина его волны. Следовательно, процессом изменения длины волны излучаемых фотонов можно управлять, изменяя интенсивность воздействия магнитных полей на электроны. Эта экспериментально разработанная процедура, достигла, можно сказать, предельного совершенства в современной электронике, но теоретики далеки от понимания тонкостей этого совершенства.
Подобные документы
Концепция динамических полей - классическая электродинамика Дж.К. Масквелла. Закон Ампера. Взаимодействие двух параллельных бесконечных проводников с током. Воздействие магнитного поля на рамку с током. Сила Лоренца. Циркуляция вектора магнитной индукции.
презентация [9,7 M], добавлен 07.03.2016Уравнения Максвелла. Идея о существовании электромагнитного поля. Магнитные явления, закон электромагнитной индукции Фарадея. Следствия уравнения непрерывности. Закон сохранения энергии, сила Лоренца. Дипольное, квадрупольное, магнито-дипольное излучение.
курс лекций [3,9 M], добавлен 07.08.2015Общие понятия, история открытия электромагнитной индукции. Коэффициент пропорциональности в законе электромагнитной индукции. Изменение магнитного потока на примере прибора Ленца. Индуктивность соленоида, расчет плотности энергии магнитного поля.
лекция [322,3 K], добавлен 10.10.2011История открытия явления электромагнитной индукции. Исследование зависимости магнитного потока от магнитной индукции. Практическое применение явления электромагнитной индукции: радиовещание, магнитотерапия, синхрофазотроны, электрические генераторы.
реферат [699,1 K], добавлен 15.11.2009Расчет трансформатора переменного тока. Выбор индукции в стержне и ярме сердечника, в медных проводах, проверка на нагревание. Вычисление параметров выпрямителя. Определение необходимых показателей резисторов, тиристоров, их сопротивлений и тока.
курсовая работа [1,3 M], добавлен 17.06.2014Значение деятельности Э. Ленца в развитии учения об электричестве. Дополнение Ленцем закона об электромагнитной индукции, лежащего в основе современной электротехники. Главнейшие результаты исследований Ленца, которые излагаются во всех учебниках физики.
презентация [461,8 K], добавлен 06.01.2012Определение объема магнитопровода, оптимальной магнитной индукции, потерей мощности, плотности тока в проводах обмоток, добавочных потерь. Выбор сечений проводов. Расчет тепловых режимов, схемы замещения трансформатора. Его моделирование в среде OrCAD.
курсовая работа [696,4 K], добавлен 05.12.2012Расчет значения критической амплитуды прямоугольной грозовой волны и длины опасной зоны линии на подходе к подстанции. Определение напряжения начала коронирования на проводах. Использование грозозащитного троса и усиление заземлений опор на подходах.
контрольная работа [542,1 K], добавлен 23.12.2014Электромагнитная индукция. Закон Ленца, электродвижущая сила. Методы измерения магнитной индукции и магнитного напряжения. Вихревые токи (токи Фуко). Вращение рамки в магнитном поле. Самоиндукция, ток при замыкании и размыкании цепи. Взаимная индукция.
курсовая работа [729,0 K], добавлен 25.11.2013Работа по перемещению проводника с током в магнитном поле. Изучение явления электромагнитной индукции. Способы получения индукционного тока в постоянном и переменном магнитном поле. Природа электродвижущей силы электромагнитной индукции. Закон Фарадея.
презентация [339,8 K], добавлен 24.09.2013