Методические особенности изучения темы "Простые механизмы" в школьном курсе физики

Механизмы, преобразующие движение и силу. Использование винтовой наклонной плоскости. Правило равновесия рычага. Методические разработки по теме "Простые механизмы". Нахождение выигрыша в силе, даваемого системой блоков. Решение задачи Робинзона Крузо.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 27.09.2010
Размер файла 750,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

С древних времен для облегчения своего труда человек использует различные механизмы - приспособления, преобразующие движение и силы (греч. «механэ» - машина, орудие). Все они устроены по-разному, но в них обязательно имеются так называемые простые механизмы - рычаг и/или наклонная плоскость.

Глава 1. Простые механизмы

Пираты грузят бочки на корабль. Их можно поднять на верёвках, но для этого требуется большая сила. Вкатывая бочки по наклонному трапу, пираты прикладывают меньшую силу. Однако заметим, что выигрыш в силе не возникает «даром» - пиратам приходится вкатывать бочку по более длинному пути. Заметим также, что происходит изменение направления действия силы. Противодействуя весу бочки, они прикладывали бы силу, направленную вверх, а при ее вкатывании они прикладывают силу вправо вверх.

Наклонную плоскость можно «обмотать» вокруг цилиндра, и мы получим другой механизм - винт. Обратимся к рисунку.

При помощи ножниц вырежем картонный треугольник (рис. «а»). Расположим его рядом с цилиндром (рис. «б»). Наклонной плоскостью служит ребро картона. Обернув треугольник вокруг цилиндра, мы получим винтовую наклонную плоскость (рис. «в»). Она служит для изменения направления и числового значения силы - как правило, получения выигрыша в силе. Поэтому для сильного стягивания деталей применяют винты и гайки. В них, соответственно, имеется внешняя и внутренняя резьба, представляющая из себя винтовую наклонную плоскость.

Винтовая наклонная плоскость используется также в домашних условиях, например, в штопоре и кухонном комбайне. Поворачивая рукоятку штопора по часовой стрелке, мы вызываем движение винта штопора вниз. При этом происходит преобразование движения: вращательное движение штопора приводит к его продвижению внутрь пробки. Аналогичное преобразование движения происходит и внутри кухонного комбайна - вращательное движение винта внутри него приводит к перемещению измельчаемых продуктов из комбайна в стоящую рядом посуду.

Рассмотрим теперь механизм клин, это вторая разновидность

наклонной плоскости. Обратимся к рисунку. Молот действует на клин сверху вниз. Однако клин раздвигает части полена влево и вправо. То есть клин изменяет направление действия силы. Кроме того, сила, с которой он раздвигает половинки полена, больше силы, с которой молот воздействует на клин (для этого его и применяют). То есть, клин изменяет числовое значение приложенной силы.

Клинья применяют в самых разнообразных случаях, но все они объединены общей целью: получить выигрыш в силе, то есть при помощи меньшей силы создать большую.

В следующем параграфе мы изучим второй простой механизм - рычаг. Он также имеет две разновидности - блок и ворот.

Правило равновесия рычага

Ещё до Нашей Эры люди начали применять рычаги в строительном деле. Например, на рисунке вы видите использование рычага при постройке пирамид в Египте.

Рычагом называют твердое тело, которое может вращаться вокруг некоторой оси. Рычаг - это не обязательно длинный и тонкий предмет. Например, рычагом является любое колесо, так как оно может вращаться вокруг оси.

Введём два определения. Линией действия силы назовем прямую, проходящую через вектор силы. Плечом силы назовем кратчайшее расстояние от оси рычага до линии действия силы. Из геометрии вы знаете, что кратчайшее расстояние от точки до прямой - это расстояние по перпендикуляру к прямой.

Проиллюстрируем эти определения. На рисунке слева рычагом является педаль. Ось ее вращения проходит через точку О. К педали приложены две силы: F1 - сила, с которой нога давит на педаль, и F2 - сила упругости натянутого троса, прикрепленного к педали. Проведя через вектор F1 линию действия силы (изображена пунктиром), и, опустив на нее перпендикуляр из т. О, мы получим отрезок ОА - плечо силы F1

С силой F2 дело обстоит еще проще: линию её действия можно не проводить, так как её вектор расположен более удачно. Опустив из т. О перпендикуляр на линию действия силы F2, получим отрезок ОВ - плечо силы F2. При помощи рычага можно маленькой силой уравновесить большую силу. Рассмотрим, например, подъём ведра из колодца (см. рис. в § 5-б). Рычагом является колодезный ворот - бревно с прикрепленной к нему изогнутой ручкой. Ось вращения ворота проходит сквозь бревно. Меньшей силой служит сила руки человека, а большей силой - сила, с которой цепь тянет вниз.

Справа показана схема ворота. Вы видите, что плечом большей силы является отрезок OB, а плечом меньшей силы - отрезок OA. Видно, что OA > OB. Другими словами, плечо меньшей силы больше плеча большей силы. Такая закономерность справедлива не только для ворота, но и для любого другого рычага.

Опыты свидетельствуют, что при равновесии рычага плечо меньшей силы во столько раз больше плеча большей, во сколько раз большая сила больше меньшей:

d1 : d2 - отношение плечей . сил

F2 : F1 - обратное отношение сил.

Рассмотрим теперь вторую разновидность рычага - блоки. Они бывают подвижными и неподвижными (см. рис.).

При помощи рычага можно маленькой силой уравновесить большую силу. Рассмотрим, например, подъём ведра из колодца (см. рис. в § 5-б). Рычагом является колодезный ворот - бревно с прикрепленной к нему изогнутой ручкой. Ось вращения ворота проходит сквозь бревно. Меньшей силой служит сила руки человека, а большей силой - сила, с которой цепь тянет вниз.

Справа показана схема ворота. Вы видите, что плечом большей силы является отрезок OB, а плечом меньшей силы - отрезок OA. Видно, что OA > OB. Другими словами, плечо меньшей силы больше плеча большей силы. Такая закономерность справедлива не только для ворота, но и для любого другого рычага.

Опыты свидетельствуют, что при равновесии рычага плечо меньшей силы во столько раз больше плеча большей, во сколько раз большая сила больше меньшей:

d1 : d2 - отношение плечей сил.

F2 : F1 - обратное отношение сил.

Рассмотрим теперь вторую разновидность рычага - блоки. Они бывают подвижными и неподвижными (см. рис.).

К левому, подвижному блоку, подвешен груз весом 8 Н. Правый блок - неподвижный. Через оба блока перекинута нить. Вы видите, что ее конец натянут с силой 4 Н. Как же нам в этом случае удаётся удерживать груз весом 8 Н? Ответим на этот вопрос.

По сути, блок - это рычаг. Натягивая конец нити, мы действуем на т. B левого блока, как бы «приподнимаем» ее. Тем самым отрезок ОВ как бы поворачивается вокруг т. О. Плечо «синей силы» - отрезок ОВ в 2 раза больше плеча «красной» силы - отрезка ОА. Поэтому и силы отличаются в 2 раза: 4 Н и 8 Н. Именно поэтому мы силой в 4 Н удерживаем вес груза 8 Н.

К левому, подвижному блоку, подвешен груз весом 8 Н. Правый блок - неподвижный. Через оба блока перекинута нить. Вы видите, что ее конец натянут с силой 4 Н. Как же нам в этом случае удаётся удерживать груз весом 8 Н? Ответим на этот вопрос.

По сути, блок - это рычаг. Натягивая конец нити, мы действуем на т. B левого блока, как бы «приподнимаем» ее. Тем самым отрезок ОВ как бы поворачивается вокруг т. О. Плечо «синей силы» - отрезок ОВ в 2 раза больше плеча «красной» силы - отрезка ОА. Поэтому и силы отличаются в 2 раза: 4 Н и 8 Н. Именно поэтому мы силой в 4 Н удерживаем вес груза 8 Н.

Глава 2. Методические разработки по теме «Простые механизмы»

Блоки, ворот, лебёдка

Особенность уроков в том, что в них применяется технология программированного опроса для классов с наполняемостью менее 15 человек. Технология заключается в предложении нескольких вариантов ответов на вопрос. Благодаря этому, удается одновременно повторить предыдущий материал, выделить основное в пройденной теме, проконтролировать усвоение материала всеми учениками класса. Как показывает практика, на опрос всего класса нужно не более 17 минут. Для молодых учителей немаловажным моментом будет быстрое развитие навыков определения уровня усвоения знаний учащимися. Последующие контрольные и самостоятельные работы неизменно подтверждают оценки, полученные учениками во время программированного опроса.

Весь опрос происходит устно. Дети показывают ответы на карточках или на пальцах, для чего необходимо, чтобы количество ответов не превышало пяти. Результаты опроса выставляются на доске сразу же в виде плюсов, минусов и ноликов (есть возможность отказаться от ответа). Такая форма опроса позволяет снять напряженность при опросе, провести его беспристрастно, гласно и одновременно психологически готовит учащегося к тестам.

У программированного опроса много и недостатков. Чтобы свести их на нет, необходимо разумное чередование его с другими формами контроля знаний.

Урок №1. Блоки.

Цель урока: научить детей находить выигрыш в силе, даваемый системой блоков.

Оборудование: блоки, нитки, штативы, динамометры.

Ход урока:

1. Организационный момент

II. Новый материал:

Учителем предлагается проблемный вопрос:

В книге Даниеля Дефо "Робинзон Крузо" рассказывается о человеке, попавшем на необитаемый остров и сумевшем выжить в суровых условиях. Там рассказывается, что однажды Робинзон Крузо решил построить лодку, чтобы уплыть с острова. Но построил лодку он вдалеке от воды. И лодка была очень тяжелой, чтобы можно было ее поднять. Давайте пофантазируем, как бы Вы доставили тяжелую лодку (скажем 1 т. весом) до воды (на расстоянии 1 км).

Решения учащихся вкратце записывают на доске.

Обычно предлагают прорыть канал, двигать лодку рычагом. Но в самом произведении рассказывается, что Робинзон Крузо начал рыть канал, но рассчитал, что для его завершения ему понадобиться вся его жизнь. А рычаг, если рассчитать, окажется таким толстым, что не хватит сил держать его в руках.

Хорошо, если кто-то предложит сделать лебедку, применить полиспаст, блоки или ворот. Пусть этот ученик расскажет, что это за механизм и зачем нужен.

После рассказа приступают к изучению нового материала. Если никто из учеников не предлагает решения, учитель рассказывает сам.

Блоки бывают двух видов:

Неподвижный блок не дает выигрыша в силе. Он только меняет направление приложения силы. А подвижный блок дает выигрыш в силе в 2 раза. Давайте посмотрим подробнее:

(Чтение материала §22 вывод формулы F=P/2;)

Для того, чтобы сложить действие нескольких блоков применяют устройство, называемое полиспастом (от греческого poly - "много" spao - "тяну").

Чтобы поднять нижний блок, нужно подтянуть две верёвки, то есть проиграть в расстоянии в 2 раза, следовательно, выигрыш в силе данного полиспаста равен 2.

Чтобы поднять нижний блок, нужно сократить 6 верёвок, следовательно, выигрыш в силе данного полиспаста равен 6

Для того чтобы подсчитать, какой выигрыш в силе даст полиспаст, необходимо сосчитать количество веревок, которые нужно сократить, чтобы поднять полиспаст.

III. Закрепление нового материала.

Тренировочный опрос:

1. Сколько веревок сокращаются на рисунке?

1. Одна,

2. Три,

3. Четыре,

4. Пять,

5. Шесть,

6. Другой ответ.

2. Мальчик может поднять 20 кг. А нужно поднять 100. Сколько блоков ему надо, чтобы сделать полиспаст?

1. Четыре,

2. Пять,

3. Восемь,

4. Десять,

5. Другой ответ.

3. Как Вы думаете, можно ли получить с помощью блоков выигрыш в силе в нечетное число раз, например, 3 или 5 раз?

1. Да,

2. Нет.

Ответ: Да, для этого необходимо, чтобы веревка три раза соединяла груз с верхним блоком. Примерное решение на рисунке:

III.1. Решение задачи 71.

III.2. Решение задачи Робинзона Крузо.

Для передвижения лодки достаточно было собрать полиспаст или лебедку (механизм, который мы будем изучать на следующем уроке).

Венгерские почитатели Даниеля Дефо даже провели такой эксперимент. Один человек передвинул бетонную плиту самодельным вырезанным из дерева полиспастом на 100 м.

III.3. Практическая работа:

Собрать из блоков и ниток сначала неподвижный блок, затем подвижный блок и простейший полиспаст. Провести измерения выигрыша в силе во всех трех случаях динамометром.

IV. Заключительная часть

Итог урока, объяснение домашнего задания

Домашнее задание: §22; задача 72

Урок №2. Ворот. Лебедка.

Цели урока: рассмотреть оставшиеся простые механизмы - лебедку, ворот и наклонную плоскость; ознакомиться со способами нахождения выигрыша в силе, даваемой лебедкой и наклонной плоскостью.

Оборудование: модель ворота, большой шуруп или винт, линейка.

Ход урока:

I. Организационный момент

II. Программированный опрос по предыдущему материалу:

1. Какой блок не дает выигрыша в силе?

1. Подвижный,

2. Неподвижный,

3. Оба,

4. Никакой.

2. Можно ли с помощью блоков получить выигрыш в силе в 3 раза?

1. Да,

2. Нет.

3. Сколько веревок сокращаются на рисунке?

1. Одна,

2. Четыре,

3. Пять,

4. Шесть,

5. Другой ответ.

4. Мальчик может поднять 25 кг. А нужно поднять 100. Сколько блоков ему надо, чтобы сделать полиспаст?

1. Четыре,

2. Пять,

3. Восемь,

4. Десять,

5. Другой ответ.

5. Плотник, ремонтируя рамы, не мог найти крепкой веревки. Ему попалась бечевка, которая на разрыв выдерживала 70 кг. Сам плотник весил 70 кг, а корзина, в которой он поднимался -- 30 кг. Тогда он взял и собрал механизм, изображенный на рисунке 1. Выдержит ли веревка?

6. После работы плотник собрался пообедать и прицепил веревку к раме, чтобы освободить руки, так как показано на рисунке 2. Выдержит ли веревка?

III. Новый материал:

Запись терминов в тетрадь.

Ворот состоит из цилиндра и прикрепленной к нему рукоятки (показать модель ворота). Чаще всего применяется для подъема воды из колодцев (рис 60 стр. 57).

Лебедка - сочетание ворота с зубчатыми колесами разного диаметра. Это более совершенный механизм. При его использовании можно достичь наибольших сил.

Слово учителя. Легенда об Архимеде.

Однажды Архимед пришел в один город, где местный тиран был наслышан о чудесах, творимых великим механиком. Он попросил Архимеда продемонстрировать какое-либо чудо. "Хорошо, - сказал Архимед, - но пусть мне помогут кузнецы". Он сделал заказ, и через два дня, когда машина была готова, на глазах изумленной публики Архимед в одиночку, сидя на песке и лениво вращая рукоятку, вытащил из воды корабль, который еле - еле вытаскивали 300 человек. Сейчас историки думают, что именно тогда впервые была применена лебедка. Дело в том, что при использовании полиспаста, действия отдельных блоков складываются, и для того, чтобы достичь 300 кратного увеличения силы, необходимо 150 блоков. А при использовании лебедки действия отдельных зубчатых колес умножаются, то есть при соединении двух зубчатых колес, одно из которых дает выигрыш в силе в 5 раз и другое тоже в 5 раз, получаем общий выигрыш в 25 раз. А если еще раз применить такую же передачу, то общий выигрыш достигнет 125 раз. (А не 15, как при простом сложении).

Таким образом, для создания данной лебедки достаточно было сделать механизм, похожий на устройство (рис. 61 стр. 58). При тех размерах, которые указаны, верхний ворот дает выигрыш в силе в 12 раз, система зубчатых колес в 10 раз, а второй ворот в 5 раз. Лебедка дает 60 кратный выигрыш в силе.

Наклонная плоскость - простой механизм, который знаком многим из вас. Применяется для подъема тяжелых тел, например бочек в машину. Во сколько раз мы выигрываем в силе при подъеме, во столько же раз мы проигрываем в расстоянии. Например, мы можем катить бочку весом в 50 кг. А нужно поднять 300 кг на 1 метр в высоту. Какой длины доску нужно взять?

Решаем поставленную задачу:

Так как мы должны выиграть в силе в 6 раз, следовательно, проигрыш в расстоянии должен быть тоже как минимум в 6 раз. Значит, доска должна иметь длину не менее 6 метров.

В качестве примеров наклонной плоскости могут служить гайки и винты, клинья и множество режущих и колющих инструментов (игла, шило, гвоздь, стамеска, долото, ножницы, кусачки, клещи, нож, бритва, резец, топор, колун, рубанок, фуганок, отборник, фреза, лопата, тяпка, коса, серп, вилы и т. д.), рабочие органы машин для обработки почвы (плуги, бороны, кусторезы, культиваторы, бульдозеры, и др.)

Рассмотрим в качестве примера "глухарь". Это глухой клин в молотке, который удерживает рукоятку. Раздвигая волокна дерева, этот клин подобно прессу раздвигает рукоятку в отверстии и надежно фиксирует ее.

А как быть, если нам не нужно, чтобы гвоздь раздвигал волокна. Например, нужно забить гвоздь в тонкую дощечку. Если туда забить обычный гвоздь, она просто расколется. Для этого плотники специально тупят гвозди и забивают уже тупые. Тогда гвоздь просто сминает волокна древесины перед собой, но не раздвигает их как клин.

В древние века многие простые механизмы использовались в военных целях. Это баллисты и катапульты (рисунок 62, 63). Как вы думаете, как они действуют?

Ответы учеников обсуждаем всем классом.

Особенно большим количеством изобретений прославился Архимед. (При наличии свободного времени учитель рассказывает об изобретениях Архимеда).

IV. Закрепление нового материала

Практическая работа:

1) Возьмите большой шуруп или винт и при помощи миллиметровой линейки измерьте длину окружности его головки. Для этого нужно приложить головку винта к делениям миллиметровой линейки и катить ее вдоль делений.

Длина окружности головки винта l = 2R = ….мм

2) Возьмите теперь измерительный циркуль и миллиметровую линейку и измерьте при помощи их расстояние между двумя соседними выступами винтовой нарезки. Это расстояние называется шагом или ходом винта.

Шаг винта h = … мм

3) Разделите теперь длину окружности головки на шаг винта, и вы узнаете, во сколько раз мы выигрываем в силе, пользуясь этим винтом.

V. Дополнительное задание: "Дурацкие" тали.

Попробуйте отгадать, во сколько раз мы выигрываем в силе при использовании следующих систем блоков.

Для решения второй и третьей задач недостаточно ответить на вопрос "Сколько отрезков веревки сократятся, если тянуть "до упора"? Задачи требуют нестандартного подхода. Например, решим вторую задачу. Пусть человек тянет с силой в 10 Н. Эта сила уравновешивается натяжением каната 2. Значит, на второй веревке сила тяги 20 Н. Но она уравновешивается натяжением каната 3. Значит на третьей веревке сила тяги 40 Н. А на четвертой 80 Н. Следовательно выигрыш в силе 8 раз.

VI. Заключительная часть

Итог урока, объяснение домашнего задания

Домашнее задание: §23

Список литературы

1. Воронцов-Вельяминов Б.А. Астрономия. - М.: Просвещение, 1994.

2. Гонтарук Т.И. Я познаю мир. Космос. - М.: АСТ, 1995.

3. Громов С.В. Физика - 9. М.: Просвещение, 2002.

4. Громов С.В. Физика - 9. Механика. М.: Просвещение, 1997.

5. Кирин Л.А., Дик Ю.И. Физика - 10. сборник заданий и самостоятельных работ. М.: ИЛЕКСА, 2005.


Подобные документы

  • Простые механизмы как устройства, служащие для преобразования силы. Характерные особенности, предназначение и применение древнейших изобретений человечества: подвижного и неподвижного блока. Определение содержания понятий ворота и наклонной плоскости.

    презентация [1,2 M], добавлен 01.05.2011

  • Простые механизмы - приспособления, служащие для преобразования силы. Виды простых механизмов и их применение. Правила равновесия сил на рычаге. Применение правила рычага в различного рода устройствах и инструментах, применяемых в технике и быту.

    презентация [1,2 M], добавлен 03.03.2011

  • Методические особенности изучения темы "Поляризация света" в школьном курсе физики. План-конспект урока по соответствующей тематике. Задачи для самостоятельного решения. Описание демонстрационных опытов, порядок их проведения и оценка результатов.

    курсовая работа [111,8 K], добавлен 01.07.2014

  • Понятие простого механизма. "Золотое правило" механики. Блок и рычаг как простейшие механические устройства. Неподвижный и подвижный блоки. Механизм "ворот" как разновидность простого механизма "рычаг". Применение наклонной плоскости, клина, винта.

    презентация [1,7 M], добавлен 03.10.2012

  • История развития простых механизмов. КПД - показатель действия. Двигатель внутреннего сгорания. Движение жидкостей и газов по трубам. Закон Бернулли. Подъемная сила крыла самолета. Развитие авиации. Экологические аспекты развития авиации и космонавтики.

    реферат [246,9 K], добавлен 14.05.2008

  • Классические расчеты действия простых механизмов. "Золотое правило" механики. Устройства, служащие для преобразования силы. Наклонная плоскость для подъёма тяжёлых предметов. Примеры простых устройств с винтовой резьбой: домкрат, болт с гайкой, тиски.

    презентация [376,0 K], добавлен 17.12.2013

  • Теоретические сведения по теме "Энтропия". Актуальность использования виртуальных моделей и компьютерных лабораторных работ в процессе изучения физики. Разработка виртуальных демонстрационных экспериментов по данной теме. Описание виртуальной модели.

    дипломная работа [2,2 M], добавлен 18.10.2011

  • Механизмы лазерного разрушения. Высокотемпературные механизмы с участием испарения. Объемное парообразование и кинетика испарения металла. Стационарное движение границы фаз и "оптимальный" режим испарения. Гидродинамика разлета поглощающей плазмы.

    контрольная работа [225,5 K], добавлен 24.08.2015

  • Простые механизмы в анатомии кошки. Резервная система ориентации. Оценка степени электризации. Тепловые явления в кошкиной судьбе. Измерение температуры тела, массы и давления на опору. Устройство глаза кошки. Измерение электрических характеристик.

    реферат [159,1 K], добавлен 04.02.2015

  • Электролюминесценция кристаллофосфоров на основе сульфида цинка. Механизмы возбуждения электролюминесценции. Механизмы свечения цинк-сульфидных электролюминофоров. Зависимость интегральной яркости электролюминесценции от частоты.

    дипломная работа [3,1 M], добавлен 26.04.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.