Корпускулярно-волновой дуализм свойств вещества. Волны Л. де Бройля и их свойства

Экспериментальные проявления корпускулярно-волнового дуализма. Понятие и основная характеристика волн Луи де Бройля. Наличие волновых свойств микрочастиц и макроскопических тел. Выведение гипотезы Бройля. Квантовомеханическое описание микромира.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 07.09.2010
Размер файла 64,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

15

Корпускулярно-волновой дуализм свойств вещества. Волны Л. де Бройля и их свойства

Содержание

1. Волны Л. де Бройля и их свойства

2. Выведение гипотезы Бройля

3. Экспериментальные проявления корпускулярно-волнового дуализма

1. Волны Л. де Бройля и их свойства

Представления А. Эйнштейна о квантах света, послужившие в 1913 г. отправным пунктом теории Н. Бора, через 10 лет снова оказали плодотворное воздействие на развитие атомной физики. Они привели к идее о «волнах материи» и тем самым заложили основу новой стадии развития квинтовой теории. Французский ученый Луи де Бройль (1892-1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 гипотезу об универсальности корпускулярно-волнового дуализма. В своей работе «Свет и материя» он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами. Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия и импульс, а с другой - волновые характеристики - частота и длина волны. Эта формула справедлива для любой частицы с импульсом р. Впоследствии дифракционные явления были обнаружены для нейтронов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать их движение в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой формуле де Бройля. Наличие волновых свойств микрочастиц - универсальное явление, общее свойство материи. Но волновые свойства макроскопических тел не обнаружены экспериментально, поэтому макроскопические тела проявляют только одну сторону своих свойств - корпускулярную. К этому времени представления о дискретной природе излучения и существовании фотонов уже достаточно укрепились, поэтому для полного описания свойств излучения надо было поочередно представлять его то, как частицу, то, как волну. А поскольку Эйнштейн уже показал, что дуализм излучения связан с существованием квантов, то естественно было поставить вопрос о возможности обнаружения подобного дуализма и в поведении электрона (и вообще материальных частиц). Гипотеза де Бройля о волнах материи получила подтверждение обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину. (Позже будет обнаружена дифракция и у молекул.) Исходя из идеи де Бройля о волнах материи, Э.Шредингер в 1926 г. вывел основное уравнение механики (которую он назвал волновой), позволяющее определить возможные состояния квантовой системы и их изменение во времени. Уравнение содержало так называемую волновую функцию (пси-функцию), описывающую волну (в абстрактном, конфигурационном пространстве). Шредингер дал общее правило преобразования данных классических уравнений в волновые, которые относятся к многомерному конфигурационному пространству, а не реальному трехмерному. Пси-функция определяла плотность вероятности нахождения частицы в данной точке. В рамках волновой механики атом можно было представить в виде ядра, окруженного своеобразным облаком вероятности. С помощью пси-функции определяется вероятность присутствия электрона в определенной области пространства. Английский физик П. Дирак обобщил его. Смелая мысль Л. де Бройля о всеобщем «дуализме» частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира. Волны материи, которые первоначально представлялись как наглядно-реальные волновые процессы по типу волн акустики, приняли абстрактно-математический облик и получили благодаря немецкому физику М. Борну символическое значение как «волны вероятности». Однако гипотеза де Бройля нуждалась в опытном подтверждении. Наиболее убедительным свидетельством существования волновых свойств материи стало обнаружение в 1927 г. дифракции электронов американскими физиками К. Дэвисоном и Л. Джермером. Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств. Тот факт, что один и тот же объект проявляется и как частица и как волна, разрушал традиционные представления. Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления. Квантовомеханическое описание микромира основывается на соотношении неопределенностей, установленном немецким физиком В. Гейзенбергом, и принципе дополнительности Н. Бора. В своей книге «Физика атомного ядра» В. Гейзенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра -- координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И, наоборот, при точном измерении скорости нельзя определить место расположения частицы. С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и, в принципе, не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование. Фундаментальным принципом квантовой механики, наряду с соотношением неопределенностей, является принцип дополнительности, которому Н. Бор дал следующую формулировку «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего». С теоретической точки зрения, микрообъекты, для которых существенным является квант действия М. Планка, не могут, рассматриваться так же, как объекты макромира, ведь для них планковская константа h из-за ее малой величины не имеет, значения. В микромире корпускулярная и волновая картины сами по себе не являются достаточными, как в мире больших тел. Обе «картины» законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую, т. е. быть комплементарными. Только при учете, обоих аспектов можно получить общую картину микромира. Согласно современным представлениям, структура элементарных частиц описывается посредством непрерывно возникающих и снова распадающихся «виртуальных» частиц. Например, мезон строится из виртуального нуклона и антинуклона, которые в процессе аннигиляции (лат. annihilatio - уничтожение) непрерывно исчезают, а затем образуются снова. Формальное привлечение виртуальных частиц означает, что внутреннюю структуру элементарных частиц невозможно описать через другие частицы. Удовлетворительной теории происхождения и структуры элементарных частиц пока нет. Многие ученые считают, что такую теорию можно создать только при учете космологических обстоятельств. Большое значение имеет исследование рождения элементарных частиц из вакуума в сильных гравитационных и электромагнитных полях, поскольку здесь устанавливается связь микро - и мегамиров. Фундаментальные взаимодействия во Вселенной, в мегамире определяют структуру элементарных частиц и их превращения. Очевидно, потребуется выработка новых понятий для адекватного описания структуры материального мира. После создания квантовой механики возникли новые проблемы, в частности проблема, связанная с пониманием физической природы волн де Бройля. Дифракционная картина для микрочастиц - это проявление статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая. Необходимость вероятностного подхода к описании микрочастиц - важная отличительная особенность квантовой теории. Борн в 1926 предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченно объеме. В квантовой механике состояния микрочастиц описывается с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Согласно двойственный корпускулярно-волновой природе частиц вещества, для описания свойств микрочастиц используются либо волновые, либо корпускулярные представления. Приписать им все свойства частиц и все свойства волн нельзя. Возникает необходимость введения некоторых ограничений в применении к объектам микромира понятий классической механики.

2. Выведение гипотезы Бройля

Если по мере возрастания частоты света его волновые свойства всё труднее обнаружить, то можно предположить существование ещё более коротких волн, чем у г -излучения, связанных каким-то образом с частицами вещества - электронами, нейтронами, атомами, молекулами. Де Бройль обобщил соотношение сф =h/л, предположив, что оно имеет универсальный характер для любых волновых процессов, связанных с частицами, обладающими импульсом с:

л = h /с.

Эта формула называется формулой де Бройля и является одним из соотношений, лежащих в основе современной физики. Для частиц массой m, движущейся со скоростью х«c,

л = h / (mх).

Если частица имеет кинетическую энергию W, то, учитывая, что с = ?2mW, можно записать предыдущую формулу в виде

л = h / (2mW)Ѕ.

В частности для электрона, ускоряющегося в электрическом поле с разностью потенциалов ?ц, имеем W = Ѕ mх = ??ц, где ? - заряд электрона. Поставив в предыдущую формулу выражение для W и значения всех постоянных, получим формулу, обычно применяемую в практических расчётах (?ц, B; л, 10П10 м):

л = 12,25/??ц.

Гипотеза Бройля состоит в следующем: частица с энергией E и импульсом, абсолютная величина которого равна p, может быть сопоставлена с волной, дебройлевская длина волны которой

Согласно гипотезе де Бройля, условие квантования орбит в атоме водорода mvr = nh/ (2p) при разных n означает, что (в простейшем случае) на длине окружности орбиты укладывается целое число дебройлевских волн. В этом случае атом водорода находится в стационарном состоянии с определенной энергией. Если гипотеза де Бройля верна, то частицы вещества должны при определенных условиях проявлять свойства, характерные только для волн, например, демонстрировать интерференцию и дифракцию на препятствии.

Ввиду достаточно большой величины импульса электрона в атоме, соответствующая длина волны де Бройля для электронов очень мала. Так, для электрона на первой боровской орбите. l = 0,4 нм, т.е. порядка величины расстояния между атомами в кристаллической решетке. Волновые свойства электрона, если они действительно есть, могут наблюдаться только в случае, когда размеры препятствий сравнимы с длиной волны. В то же время для макроскопического тела (допустим, теннисного мяча, летящего со скоростью 25 м/с) длина волны де Бройля ничтожно мала, ~ 10-34 м, что на 24 порядка меньше размера атома! Таким образом, волновые свойства макроскопических тел наблюдаться не могут. В классической механики всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс. Но микрочастицы отличаются от классических, нельзя говорить о движении микрочастицы по определенной траектории и об одновременных точных значениях ее координаты и импульса. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 к выводу: объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой, и импульсом. Согласно соотношению неопределенностей Гейзенберга, микрочастица (микрообъект) не может иметь одновременно координату Х и определённый импульс р, причем неопределенности этих величин удовлетворяют условию: то есть произведение неопределенностей координаты и импульса не может быть меньше постоянной Планка. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является квантовым ограничением применимости классической механики к микрообъектам. Соотношение неопределенностей позволяет оценить, в какой мере можно применять понятия классической механики к микрочастицам. Соотношение неопределенностей, не давая возможности точно определить координаты и импульсы (скорости) частиц, устанавливает границу познаваемости мира и существования микрообъектов вне пространства и времени. Существует принцип тождественности микрообъектов. Все макросистемы индивидуальны, в то время как микрообъекты одинаковы. Признак симметрии волновой функции: (ничего не изменилось). Волновая функция обладает симметрией относительно перестановки микрообъектов. Отсюда волновая функция бывает 2 типов (+-1): симметричные частицы - бозоны (фотоны, гравитоны), антисимметричные - фермионы (нейтрон, электрон, кварки, античастицы). Элементарные частицы - это маленькие вращающиеся волчки. Они характеризуются моментом импульса. Спин - собственный вращательный момент объектов. Спин бозонов принимает целочисленные значения: 0,1,2….*h. Спин фермионов - полуцелый: +-1/2,+-3/2…*h. Поведение фермионов и бозонов отличается. Для фермионов действует принцип Паули: в одном квантовом состоянии может находиться только один фермион. Для бозонов характерно такое поведение: в одном квантовом состоянии может находиться сколь угодно бозонов; чем больше бозонов, тем сильнее они «заманивают» других. Следствия принципа Паули: 1) богатство химических элементов; 2)для каждого типа атома (H, He) электронная конфигурация совершенно разная. У разных химических элементов разные оболочки. Квантовая механика (Шредингер) объяснила разнообразие химических элементов и периодическую систему Менделеева, она очень многое объяснила из химии.

3. Экспериментальные проявления корпускулярно-волнового дуализма

Дифракция электронов. В начале 1927 г. Ч. Дэвиссон и Л. Джермер убедительно подтвердили волновую природу электронов. Пучок электронов ускорялся в электрическом поле, проходя разность потенциалов U. При этом электроны приобретали кинетическую энергию mv2/2 = eU, т.е. импульс p = mv = (2meU)1/2. Затем пучок электронов направлялся на мишень, состоявшую из сравнительно крупных кристаллов никеля. Подвижный детектор измерял количество электронов, рассеянных под разными углами. Возникшая картина полностью соответствовала картине рассеяния рентгеновских лучей на кристалле. Пользуясь условием Брэгга, Дэвиссон и Джермер определили длину волны электронов l = h/p и сравнили с вычислениями, основанными на гипотезе де Бройля, получив прекрасное согласие.

Вывод: при определенных условиях электрон и другие микрочастицы проявляют волновые свойства. Схема опыта изображена на рисунке 1.

Опыт: Нить накала электронной пушки, нагреваемая током от источника напряжения накала U нагревает катод K, который испускает электроны. Последние разгоняются ускоряющим напряжением Uуск и выходят из отверстия в аноде, приобретая определённую скорость. С помощью делителя напряжения (потенциометра) можно изменять ускоряющее напряжение и сообщать различные скорости выходящим из пушки электронам. Они падают на поверхность кристалла и, вообще говоря, отражаются от него. Отражённые электроны улавливаются цилиндром Фарадея (металлической полостью). Об интенсивности отражённого электронного луча можно судить по силе тока I, созданного отражёнными электронами и измеряемого гальванометром G. Электронная пушка, кристалл и цилиндр Фарадея находятся в вакууме.

При неизменном фиксированном угле падения электронного луча на кристалл непрерывно изменялось ускоряющее напряжение, и при этом регистрировались показания гальванометра.

Результаты опытов представлены на рисунке 2. Кривая зависимости I от vUуск имеет несколько максимумов, равноотстоящих друг от друга.

Результаты опытов Девиссона и Джермера можно объяснить, если привлечь идею де Бройля о волновых свойствах электронов. Выразим скорость электрона через ускоряющее напряжение по формуле:

х = ?2 (e/m)Uуск.

Теперь можно найти импульс и вычислить дебройлевскую длину волны:

л = h/ mх = h/ m v2 (e/m) Uуск = h v2em Uуск.

Таким образом, идея де Бройля о волновых свойствах частиц и количественное выражение этой идеи - формула де Бройля - получили блестящее опытное подтверждение. Итак, наличие волновых свойств у движущихся частиц представляет собой универсальное явление, не связанное с какой - либо спецификой частицы. Естественно, возникает вопрос о том, почему волновые свойства не обнаруживаются у макроскопических тел, например у летящей пули. Ответ на этот вопрос связан с особенностью формулы де Бройля и всех других формул квантовой физики, содержащих постоянную Планка. Если в формулах квантовой физики нельзя пренебречь постоянной h, мы всегда будем получать неклассические результаты. Наоборот, если в формулах можно считать, что h 0, то результаты квантовой физики совпадают с классическими. В частности, для тел, масса которых несоизмеримо велика по сравнению с массой атомов и молекул, принято, что h 0 и никаких волновых свойств у таких тел не обнаружится (л 0). Например, в случае с пулей массой m=10П3 кг при скорости х = 102 м/с. Легко сообразить, что такая длина волны никаким дифракционным опытом не может быть обнаружена. Поэтому можно считать, что волновые свойства у макроскопических тел практически отсутствуют.

Вторым независимым от формулы де Бройля соотношением, углубляющим представления о корпускулярно-волновой двойственности свойств частиц вещества, является перенесённая на эти частицы связь между энергией W свободной частицы и частотой х волн де Бройля:

W = hх = hщ

где h = h/ (2р), щ-циклическая частота. Она заимствуется из оптики, где в аналогичной форме связаны энергия фотона и частота света. Таким образом, соотношение между частотой и энергией фотона приобретает в современной физике характер универсального соотношения, справедливого для любых объектов, изучаемых в квантовой или волновой механике - разделе современной физики, в котором изучаются законы движения частиц в области микромира. Объектами изучения квантовой механики являются атомы, молекулы, кристаллы, а также атомные ядра и «элементарные» частицы.

Соотношение в отличие от формулы де Бройля не являлось объектом экспериментальной проверки. Его справедливость вытекает из согласия с опытом тех теоретических результатов, которые были получены с его помощью в квантовой механике, атомной и ядерной физике.

Список литературы

Базаров И.П. Волны де Бройля. М.1991 г.

Карери Д. Порядок и беспорядок в структуре материи. М., 1995 г.

Курдюков С.П. Элементы квантовой механики. М. 2000 г.

Николис Г., Пригожин И. Познание сложного. М., 1990 г.

Пригожин И. От существующего к возникающему. М., 1995 г.

Шелепин Л.А. Корпускулярно-волновой дуализм. М., 1987 г.

Эйген М., Шустер П. Большой энциклопедический словарь. М., 2005.

Савельев, Трофимов Физика. М., 2001 г.


Подобные документы

  • Сущность гипотезы де–Бройля о двойственной природе микрочастиц. Экспериментальное подтверждение корпускулярно-волнового дуализма материальных частиц. Метод Брэгга. Интерференция рентгеновских лучей в кристаллах методом Лауэ и методом Дебая—Шеррера.

    курсовая работа [326,6 K], добавлен 10.05.2012

  • Исторический путь научного исследования микрочастиц. Содержание планетарной модели атома с электронами Резерфорда и теории корпускулярно-волнового дуализма частиц веществ Луи де Бройля. Характеристика принципов неопределенности и дополнительности.

    контрольная работа [22,5 K], добавлен 11.10.2010

  • Дуализм в оптических явлениях. Недостатки теории Бора. Дифракция частиц, рассеяние микрочастиц (электронов, нейтронов, атомов) кристаллами или молекулами жидкостей и газов. Опыты по дифракции частиц. Корпускулярно-волновой дуализм микрочастиц вещества.

    презентация [4,8 M], добавлен 07.03.2016

  • История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.

    реферат [37,0 K], добавлен 25.10.2010

  • Физический смысл волн де Бройля. Соотношение неопределенности Гейзенберга. Корпускулярно-волновая двойственность свойств частиц. Условие нормировки волновой функции. Уравнение Шредингера как основное уравнение нерелятивистской квантовой механики.

    презентация [738,3 K], добавлен 14.03.2016

  • Открытие явления фотоэффекта не вписывалось в рамки классической физики. Это привело к созданию квантовой механики. Фотоэлектрический эффект и дискретная природа света. Дифракция электронов. Применение явления корпускулярно – волнового дуализма.

    реферат [39,6 K], добавлен 24.06.2008

  • Дифракция света как явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Сущность и закономерности корпускулярно-волнового дуализма. Боровская модель атома. Понятие и свойства идеального газа.

    контрольная работа [400,8 K], добавлен 24.05.2014

  • Корпускулярно-хвильовий дуалізм речовини. Формула де Бройля. Стан частинки в квантовій механіці. Хвильова функція, її статистичний зміст. Рівняння Шредінгера для стаціонарних станів. Фізика атомів і молекул. Спін електрона. Оптичні квантові генератори.

    курс лекций [4,3 M], добавлен 24.09.2008

  • Поняття ядерної моделі атома, її сутність і особливості, історія розробок і розвитку, сучасний стан і значення. Нездоланні суперечки, пов’язані з існуючою теорією атомних часток, спроби їх усунення Н. Бором. Розробка гіпотези та формули де Бройля.

    реферат [215,8 K], добавлен 06.04.2009

  • Фундаментальные понятия квантовой механики: гипотеза де Бройля, принцип неопределённостей Гейзенберга. Квантовое состояние, сцепленность, волновая функция. Эксперимент над квантовомеханической системой: движение микрочастиц, принципы проведения измерений.

    реферат [99,1 K], добавлен 26.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.