Реконструкция электротехнической части фермы КРС на 200 голов

Анализ хозяйственной деятельности предприятия СПК "Садовод". Электрификация технологических процессов фермы с выбором оборудования. Расчет годового потребления электроэнергии животноводческим комплексом, а также стоимости потребленной электроэнергии.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 05.09.2010
Размер файла 118,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ ФГОУ ВПО

Механико-технологический институт

Кафедра «Энергообеспечение сельского хозяйства»

Тема: Реконструкция электротехнической части фермы КРС на 200 голов ОАО «Запсибхлебагро» Аббатского района Тюменской области с разработкой теплообменной системы вентиляции коровника.

Реферат

В данном дипломном проекте произведено следующие:

1) Сделан анализ хозяйственной деятельности предприятия СПК «Садовод», из которого сделаны соответствующие выводы и предложения.

2) Произведена электрификация технологических процессов фермы с выбором технологического оборудования. В данном разделе приведены рисунки для пояснения текста. Разработана схема управления навозоуборочной установкой с выбором пускозащитной аппаратуры. Рассчитаны осветительные установки и произведена компоновка осветительной сети. Произведен расчет внутренних силовых сетей с выбором силового щита и кабелей.

3) Составлены графики нагрузки в зимний и летний период с наглядным изображением на двух рисунках, там же подсчитано годовое потребление электроэнергии животноводческим комплексом а также стоимость потребленной электроэнергии.

4) Произведен расчет наружных электрических сетей с выбором марок проводов, также произведен выбор комплектной трансформаторной подстанции для питания всей фермы.

5) В разделе техники безопасности сделан анализ производственного травматизма в совхозе, произведен расчет молниезащиты животноводческого комплекса с наглядным озображением схемы защиты.

6) Произведен технико- экономический расчет эффективности от внедрения выбранной системы навозоудаления по сравнению с гидравлической системой удаления навоза. Также произведен анализ экономической эффективности от внедрения новой системы электроснабжения

В конце диплома приведено заключение в котором отражена проделанная работа по дипломному проектированию, приведен список используемой литературы и содержание пояснительной записки.

Введение

В основных направлениях экономического и социального развития страны

предусматривается ускорение социально-экономического развития России, интенсификация всех отраслей народного хозяйства на основе научно-технического прогресса. В создании и использовании принципиально новых видов техники и технологий предусматривается пять приоритетных направлений: электронизация сельского хозяйства, комплексная автоматизация, атомная энергетика, новые материалы и технологии их производства, биотехнология. Внедрение новых технологий, оборудования, электронных систем управления и автоматизация, а также новых форм организации труда позволит перевести сельскохозяйственное производство на высокоиндустриальную основу, превратив его в высокорентабельное и эффективное.

Актуальным вопросом научно-технического прогресса в сельском хозяйстве является создание и строительство полностью механизированных и автоматизированных объектов. Производственный цикл в них будет осуществляться автоматически без вмешательства человека, функции которого будут сводиться к контролю за работой и эксплуатации технологического оборудования.

В сельском хозяйстве возникла необходимость применения современных систем автоматического управления технологическими процессами, которые при помощи электронных вычислительных машин не только автоматически управляли бы технологическими циклами на производственных объектах, но и выбирали оптимальный вариант производства, обеспечивающий минимальные трудовые затраты, наименьшую себестоимость продукции и наилучшее её качество. В ближайшие годы предусматривают добиться, чтобы прирост потребностей в топливе и энергии на 75…80% удовлетворялся за счёт их экономии. Первоочередные задачи энергитической программы в системе сельскохозяйственного производства следующие :

1)Экономия топлива и энергии во всех сферах хозяйства, прежде всего за счёт совершенствования технологии производства, создания и внедрения энергосберегающего оборудования, машин и аппаратов, сокращение всех видов энергетических потерь и повышения уровня использование вторичных энерго-ресурсов .

2)Замещения в хозяйстве нефтепродуктов природным газом и другими энергоносителями

3)Экономия энергии путём рационального её использования и оптимальной загрузки оборудования.

Потребители электрической энергии в сельской местности разбросаны по значительной территории. В связи с этим плотность электрической нагрузки сельских электрических сетей небольшая. Она составляет порядка 5…10квт/км?, а иногда может достигать 15…20квт/км?. Поэтому сельские электрические сети имеют большую протяженность.

На огромной территории нашей страны есть, районы куда подводить сети единой энергетической системы экономически невыгодно. Там сооружают современные сельские электростанции мощностью порядка 1000 квт и более, дизельные с полной автоматизации работы, а также гидравлические. В мире отмечается повышенный интерес к использованию нетрадиционных возобновляемых источников, к которым относят ветроэлектрические станции, гелиостанции, гидравлические, биоэлектрические станции работающие на отходах сельскохозяйственных предприятий и другие. Доля к нетрадиционным возобновляемым источникам электроэнергии (НВИЭ) в мировом топливоэнергетическом балансе мира составляет около 20%. В России также имеются возможности получения электроэнергии от НВНЭ. Интенсивно ведутся, научно-иследовательские работы в этом направлении и предполагается, что в будущем для электроэнергии полученная таким способом в России составит до 10%.

Электрические нагрузки в сельском хозяйстве постоянно меняющаяся

величина: подключаются новые потребители, растёт нагрузка на вводе в дома. Если электрическая нагрузка увеличиваеся, то пропускная способность электрических сетей становится недостаточной и появляется необходимость в их реконструкции. При этом часть воздушных линий заменяют подземными кабелями. При реконструкции широко внедряются мероприятия по повышению надёжности электроснабжения сельских потребителей, которая ещё далеко не совершена.

Краткая характеристика хозяйства.

Совхоз «Быструшенский» организован в 1959 году, и главным направлением производственной деятельности было возделывание с/х культур и развитие животноводства. В 1999 году был переорганизован в ООО «Быструшенский». Расположен в центральной части сельскохозяйственной зоны Тюменской области.
Центральная усадьба-село Прогресс, находится в 7 километров от районного центра-города Ялуторовска. До областного центра-города Тюмени 65 километров.

Основное направление ООО «Быструшенский» молочное. В хозяйстве имеется 2 фермы на 200 голов крупно рогатого скота. Транспортная связь с пунктом сдачи осуществляется по одной дороге: асфальтной от центральной усадьбы до районного цента. Расстояние до железно дорожного сообщения 3 километра. Как продукция животноводства так и растениеводства продается хозяйством через райцентр.

Мясо через Ялуторовский мясокомбинат.

Молоко через АОЗТ «Ялуторовскмолоко» (МКК).

Зерно через Ялуторовский комбинат хлебопродуктов.

Материальное обеспечение хозяйства осуществляется объединением «Агропромснаб» и находится в Ялуторовске. Ремонт зерноуборочных комбайнов и тракторов производится в Бердюжском ремонтно тракторном парке, ремонт автомобилей на Ялуторовском автомоторном предприятии.

Территория хозяйства расположена в теплом умерено- увлажненном агротехническом районе Тюменской области. Климат резкоконтенинтальный, холодный, продолжительная зима и ранние осенние заморозки. Эти условия приходятся учитывать при подборе зерновых, промаслинных и других видов культур. В течении года на территории хозяйства преобладают западные и юго-западные ветры со средней скоростью 6 метров в секунду. Осадков выпадает с избытком, хотя в отдельные годы бывают засухи и суховеи.

Таблица 1 Показатели характеризующие размер предприятия

Показатели

2006г

2007г

2008г

2008г к

2005г%

1

2

3

4

5

Валовая продукцияв сопоставимых ценах 1994г, т.руб.

6994

8532

7480

106,9

Товарная продукция, т.руб

3948

5501

4894

123,9

Общая земельная площадь,га в.т.ч. с/х угодий пашни

4994

3437

1356

4994

3437

1356

4994

3437

1356

100

100

100

Стоимость ОПФ, т.руб.

7613

8122

9859

129,5

Численность работников

занятых в сельском хозяйстве,

121

103

84

64,1

Условное поголовье

животных

165

163

178

105,6

Энергетические мощности, л.с.

4782

3829

4162

87

Стоимость товарной продукции в 2008. увеличилась на 23,9% по сравнению с 2005 годом, а в сравнении с 2007. в 2008году выпуск валовой и товарной продукции снизился. Земельная площадь в хозяйстве осталась неизменной. Стоимость основных производственных фондов увеличилась за все три анализируемых года. В хозяйстве наблюдается снижение численности работников и уменьшение расхода энергетических мощностей. В целом предприятие работает стабильно, т.к. увеличивается стоимость товарной продукции и основных производственных фондов.
Товарная продукция это та часть продукции которая реализуется непосредсвено на рынке сбыта. Структура товарной продукции это отношение стоимости отдельных видов продукции к общей стоимости.
Таблица 2 Состав и структура товарной продукции
Виды продукции.

2006.

2007.

2008

тыс.

руб.

%
тыс.

руб.

%
тыс.

руб.

%

1

2

3

4

5

6

7

1.Продукция стениводства всего

817

20,6

590

28,9

1042

21,2

в т.ч. а) прочая продукция растениводства

36

0,9

137

2,5

7

0,14

Пшеница

718

18,1

1295

23,5

899

18,3

Продукция растениеводства

собственного производства

реализуемая в переработанном

виде.

63

1,5

58

2,87

136

2,77

Продукция животноводства,в.т.ч

К.Р.С.Молоко

236

2450

5,9

62

519

3026

9,4

55

420

2899

8,5

59,2

Прочая продукция

животноводства.

5

0,12

10

0,18

4

0,08

Продукция животноводства собственного производства, реализуемого в переработанном виде.

171

4,3

83

3,3

154

3,1

Итого по животноводству

2862

72,4

3738

67,9

3477

71,0

3.Продукция переработки покупного сырья (товары).

168

4,2

-

-

-

-

4.Продукция подсобных промыслов

27

0,68

-

-

-

-

5.Прочая продукция, работы и услуги

74

1,87

173

3,1

375

7,6

Всего.

3948

100%

5501

100%

4894

100%

Наибольший удельный вес в структуре товарной продукции за все 3 года занимает производство молока, продукция растениеводства идёт на втором месте. Товарная продукция крупно рогатого скота занимает третью позицию в удельном весе.
Продукция собственного производства реализуемая в переработанном виде занимает наименьший удельный вес по отношению к лидирующим отраслям. Товарная продукция подсобных промыслов и переработанного покупного сырья присутствует лишь в 2006 году, затем производство данных видов продукции было приостановлено. Наибольшее количество продукции пшеницы было получено хозяйством в 2007г, а наименьшее количество в 2006г. Наибольшую товарную продукцию хозяйство получило в 2007 году а наименьшую в 2006 году Данное предприятие специализируется в основном на продукции животноводства, т.к. молоко и мясо К.Р.С. доминируют в структуре товарной продукции в качестве дополнительной отрасли выступает продукция растениеводства, которая направлена в основном на производство пшеницы.
Таблица 3 Состав и структура работников по категориям

Категории работников

2006г.

2007г.

2008

чел.

%

чел.

%

чел.

%

1

2

3

4

5

6

7

По сельской организации всего в т. ч.

131

100

111

100

92

100

Работники занятые в с/х производстве из них

121

92,3

103

92,7

84

91,3

а)рабочие постоянные

62

47,3

61

54,9

59

64,1

б)трактористы-машинисты.

21

16

22

19,8

20

21,7

в)операторы машинного доения.

10

7,6

10

9

10

10,7

г)Скотники КРС

8

6,1

6

5,4

9

9,7

Рабочие сезонные и

постоянные

38

29

28

25,2

12

13

Служащие из них
Руководители

Специалисты

13
8

3

9,9
6,1

2,3

14
8

3

12,6
7,2

2,7

13
6

4

14,1
6,5

4,3

Рабочие занятые в
подсобных промышленных

предприятиях и промыслах

8

6,1

8

7,2

8

8,6

Наибольший удельный вес в структуре работников за все три года занимают
постоянные рабочие. Сезонные рабочие в 2006 и 2007 году в удельном весе по категориям занимают 29 и 25,2 % соответственно уступая лишь постоянным
рабочим, а в 2008 году их поток значительно сократился. Служащие, куда входят руководители и специалисты занимают относительно небольшой удельный вес. На предприятии идёт уменьшение количество работников с каждым годом. Такая тенденция наблюдается как и у обычных работников занятых в с/х так и у руководителей и специалистов.
Труд это целесообразное деятельность человека направленное на видоизменение и приспособления предметов для удовлетворения своих потребностей. Основные показатели трудовых ресурсов это коэффициент трудообеспечинности, использование годового фонда рабочего времени, среднесписочная численность работников, среднегодовая численность работников.
Таблица 4 Использование годового фонда рабочего времени

Показатели

2006г.

2007г.

2008г.

Среднегодовая численность работников
(чел).

Состоит по списку на конец года (чел).

131

85

111

72

92

85

Трудообеспеченность %

64,8

64,8

92,3

Фактически отработа но за год одним работником.

человеко-дней человеко-часов

239,6

1942,1

271,8

2176,9

297,6

2404,7

Коэффициент

использывания годового фонда рабочего времени

0,82

0,93

1,02

Нормативный фонд
рабочего времени
человека-дней

человека-часов

290

2030

290

2030

290

2030

Потери перерасход (-:+) нормативного времени
человека-дней

человека-часов

-50,4

-87,9

-18,2

-105,9

+7,6

+374,7

Трудообеспечиность в 2006г и 2007г составила 64,8% и лишь увеличилась в 2008году и составила 92,3%. Это объясняется снижением потока временных рабочих. 100% использования фонда рабочего времени наблюдается в 2008 году, по составленным годам коэффициент не перешагнул 100% барьер. Нормативный фонд рабочего времени был перерасходован в 2008 году, в 2006 году происходят потери нормативного времени.
Производительность труда это способность конкретного труда человека производить определенное количество потребительских стоимостей в единицу времени. Учет совокупных затрат труда в рабочем времени является основой для определения стоимости сельхоз продукции.
Таблица 5 Результаты расчетов показателей производительности труда.

Показатели

2006г.

2007г.

2008г.

2008к

2006г%

Произведено валовой продукции в целом по хозяйству (т.руб.) в расчете на одного работника (т.руб) в расчете на 1 чел/час (руб.)

6994
53,3

27,4

8532
76,8

35,9

7480
81,3

33,8

106,9
152,5

123,3

Получено валового дохода, т.руб.
в расчете на 1 работника (т.руб.)

в расчете на 1 чел/час (руб)

2842
21,6

11,1

3850
34,6

16,2

3523
38,2

15,9

123,9
176,8

143,2

Трудоемкость 1 центнера продукции (ч/час) зерно молоко мясо

1,7
4,9

2,1

3,0
4,3

2,0

2,2
4,0

2,5

129,4
81,6

119,0

Среднегодовая заработная плата 1 работника (т.руб.)

9,2

13,6

17,1

185,8

Оплата 1 ч/час (руб)

1,8

2,7

3,5

194,4

Наибольшая стоимость валовой продукции наблюдается в 2007г и составляет 8532 тысяч рублей. В хозяйстве идет увеличение затрат труда на производство зерна и мяса, а затраты труда на производство молока снижается, для уменьшения показателя трудоемкости нужно проводить автоматизацию и механизацию технологических процессов. В целом производительность труда в 2008 году увеличивается по отношению к 2006 году и уменьшается по отношению к 2007 году. Для увеличения производительности труда нужно: повышать интенсивность использования основных фондов, углублять специализацию и усилить концентрацию производства, внедрять ресурсосберегающие и прогрессивные технологии, улучшать организацию труда и повышать его интенсивность.
Фонды предприятия делятся на основные и оборотные, которые различаются разницей способа перемещения их стоимости на вновь созданный продукт. Оборотные фонды это те фонды которые свою стоимость на себестоимость продукции переносят полностью. Основные производственные фонды это те средства производства которые свою стоимость на себестоимость продукции переносят по частям в виде амортизационных отчислений.
Таблица 6 Оснащенность предприятия фондами и их эффективность.

Показатели.

2006г

2007г

2007г.

2008 к 2006г.%

Фондообеспеченность,т.руб.

1,4

1,7

1,5

93,3

Энергообеспеченность, л.с.

0,9

0,7

0,8

88,8

Фондовооруженность,т.руб.

58,1

73,1

107,1

184,3

Энерговооруженность,л.с.

36,5

34,4

45,2

123,8

Фондоотдача

0,9

1,05

0,7

77,7

Фондоемкость

1,08

0,9

1,3

120,3

Уровень рентабельности, %

0,02

14,2

4,4

220

В хозяйстве идет снижение показателя энергообеспеченности вследствие снижения машина тракторного парка, увеличение энерговооруженности объясняется снижением количества работников. Наибольшая фондоотдача наблюдается в 2007 году. Наибольшая рентабельность вышла в 2007 году и составила 14,2%, наименьшая была в 2006 году и составила всего 0,02%. Оснащенность предприятия энергетическими мощностями снижается. В целом по хозяйству основные производственные фонды используются эффективно, т.к. их стоимость увеличивается с каждым годом.

От того как будет реализована продукция зависит нормальное функционирование производства. При производстве продукции нужно стремится к снижению материальных затрат чтобы в итоге себестоимость продукции была ниже ее рыночной стоимости. Основными показателями при реализации являются прибыль и уровень рентабельности. Прибыль это выручка от реализованной продукции без затрат на ее производство выраженная в денежной форме. Уровень рентабельности это процентное отношение прибыли к выручке полученной при реализации определенного вида продукции.

Таблица 7 Финансовые результаты от реализации продукции.

Продукция

2003г

зерно

молоко

мясо

план

факт

план

факт

план

факт

Выручено от реализации

продукции, т.руб.

830

899

2600

2889

485

420

Полная себестоимость продукции, т.руб.

725

669

2120

2422

430

586

Прибыль, т.руб.

105

230

480

477

55

-166

Уровень рентабельности,%

14,4

34,3

22,6

19,6

12,7

-

Окупаемость затрат, руб.

-

-

-

-

-

0,7

Предприятие выгодно реализовало продукцию зерна и молока, прибыль соотвественно составила 230 и 477 тысяч рублей, а продукция мяса была продана со значительно меньшей стоимостью чем ее себестоимость и убыток составил 166 тысяч рублей. Прибыль вышла больше плана лишь по продукции зерна по остальным видам продукции фактическая прибыль ниже запланированной. В целом хозяйство сработало рентабельно, т.к. прибыль составляет более значительную часть чем убыток полученный при реализации мяса. Для того, чтобы производство было более рентабельным нужно увеличивать производительность труда, снижать себестоимость продукции и искать более выгодные рынки сбыта.

Электрификация технологических процесов фермы

Комплексная электрофикация и механизация технологических процессов животноводческих ферм заключается в применении систем машин и механизмов, связанных между собой технологической взаимосвязью и производительностью и охватывает весь комплекс работ по созданию определенного вида продукции или выполнении определенного процесса. Она обеспечивает лучшее использование средств, внедрение интенсивных технологий производства продукции животноводства, резкое повышение производительности труда, способствует ликвидации различий между умственным и физическим трудом. В основу систем машин для комплексной механизации и автоматизации животноводства закладываются пути по увеличению производства высококачественной продукции, росту производительности труда, улучшение условий труда и др.

3.1Выбор технологии содержания животных

По способу содержания различают две основные системы: со свободным выходом животных за пределы здания, в котором они размещаются, и с ограниченным перемещением животных в здании. Существенное влияние на выбор системы содержания животных оказывают природно- климатические условия, вид и половозрастные особенности животных, тип, размер и направление хозяйства, а также другие факторы.

Принимаем привязное содержание коров. Содержание коров стойлово- пастбищное, привязное, в стойлах размерами 1,9·1,2 м. Для привязи предусмотрено стойловое оборудование ОСК-25А с групповым отвязыванием животных. Стойла располагаются в четыре ряда, образуя два кормовых проезда шириной 2,25 метров и три навозных прохода: два пристенных шириной 1,8 метра и один в середине здания шириной 2,28 метра (между окончаниями стойл). В одном непрерывном ряду размещается 25 коров.

В зимнее время в течении дня при благоприятных погодных условиях возможна организация прогулок коров продолжительностью не менее 2 часов на выгульных площадках с твердым покрытием из расчета 8 м? на одну голову.

Кормление коров зимой предусмотрено в здании из стационарных кормушек кормосмесями в состав которых входят: сено, силаж, корнеплоды, концентраты, и минеральная подкормка.

В летний период коровы пасутся на пастбище с организацией подкормки из зеленого корма и концентратов.

Поение скота водой предусмотрено из индивидуальных поилок ПА-1А, установленных из расчета одна поилка на две головы.

Технология содержания животных предусматривает использование подстилки (соломенной резки) в течении года из расчета 0,5 килограмм в сутки на одну голову. Годовая потребность в подстилке 365 центнеров.

3.1.1Выбор системы для удаления навоза

Уборка навоза- трудоемкий процесс, который занимает в производственном цикле ферм и комплексов значительное время. Поэтому создание устройств, обеспечивающих автоматическое управление навозоуборочных устройств, в животноводческих помещениях -важная задача.

Существуют следующие системы уборки навоза: гидравлическая система уборки навоза , где навоз поступает в навозоприемный канал, затем поступает в магистральный канал предназначенный для самотечной транспортировке навоза к сборнику, после чего насосами перекачивается к месту хранения. Также существуют мобильные навозоуборочные средства, где на транспортное средство навешивается агрегат для уборки навоза и затем транспортируют к месту хранения. Наибольшее распространение на животноводческой ферме получили скребковые транспортеры кругового движения, которые при помощи скребков прикрепленных к цепи перемещают навоз по специальным каналам и подают его в транспортные средства. Для уборки навоза на ферме применяем именно эту систему, т.к. она проста и удобна в эксплуатации, не требует больших затрат в процессе ее монтажа, имеет приемлемый расход электроэнергии и поэтому получила широкое распространение.

Для уборки навоза на ферме принимаем и 2 вертикальных и 2 горизонтальных навозоуборочных транспортеров кругового движения ТСН-160 каждый из которых может обслуживать 100 голов крупно рогатого скота. стр96 [л-1]

Таблица 3.1 Технические данные ТСН-160.

Производительность,т/ч

5

Скорость движения скребков транспортера,м/с

горизонтального наклонного

0,18

0,72

Шаг скребков, мм

920

Максимально допустимая длина цепи, м

160

Масса, кг

1825

ТСН-160 состоит из горизонтального и наклонного транспортера. Горизонтальный транспортер при помощи скребков прикрепленных к цепи перемещает навоз по специальным каналам из помещения к наклонным транспортерам, которые подают его в транспортное средство. Сначала включается наклонный транспортер, затем горизонтальный. Отключают их в обратной последовательности. После отключения горизонтального транспортера, наклонный отключают через промежуток времени, достаточный для освобождения его от навоза.

Для определения время работы данной установки определяем суточный выход навоза.

mсут=N·m=200·50=10000кг/с=10т/ч(3.1)

где, N-количество животных.

m-суточный выход навоза от одного животного стр139 таблица 37 [л-1]

Анализ состава навоза животноводческих ферм показал, что в нем содержится до 20-95% технической воды, подстилки 12-18%, остатки кормов 8-12%, грунта и прочих примесей до 19%.

Суточный выход навоза с учетом содержимого прочих примесей.

mобщ=kn·mсут=1,2·10=12т/с (3.2)

где, kn-поправочный коэффициент, учитывающий подстилку и остатки корма, принимают равным (1,1-1,25) стр56 (л-1)

Время уборки навоза.

t=mобщ/Q·N=12/5·2=1,2ч (3.3)

где, Q-производительность одного транспортера,т/ч (для ТСН-160 Q=5т/ч[л-1])

N-количество транспортеров

3.1.2Выбор оборудования для доения коров

Доение коров -одно из наиболее трудоемких процессов. Машинное доение облегчает работу людей и повышает производительность труда. В зависимости от системы содержания животных и применяемых установок можно снизить затраты труда по сравнению с ручным доением в2…5 раз, что уменьшает потребность в рабочей силе.

Различают два способа машинного доения: отсос при помощи вакуума и механическое выжимание. Последний способ, как подражательный ручному доению разработан неудолетворительно и практически не применяется. При доении вакуумом молоко при помощи вакуума отсасывается из вымени коровы и затем поступает в доильную емкость после чего фильтруется, охлаждается и перекачивается в резервуар для хранения молока. Выбираем вакуумный способ машинного доения, т.к. он более автоматизирован и имеет значительное преимущество по сравнению с механическим выжиманием.

Для доения коров на животноводческой ферме принимаем установку вакуумного доения АДМ-8 в варианте расчитанном на 200 коров.

Необходимая подача вакуум насоса доильной установки.

Qп=k·g·n=2,5·1,8·12=54 м?/ч (3.4)

где, k=2…3 стр.207 (л-2)- коэффициент учитывающий неполную герметизацию системы.

g-расход воздуха 1 доильным аппаратом (g=1,8 табл 13.1 стр 204 [л-2])

n-число доильных аппаратов в установке.(n=12 табл 13.1 стр204 [л-2])

Выбираем ваккум насос УВУ-60/45 с подачей ваккуума 60 м?/ч

Таблица 3.2 Технические данные АДМ-8 2 комплектации.

Обслуживаемое поголовье, гол

200

Число операторов

4

Пропускная способность, кор/ч

100

Тип доильного аппарата

АДУ-1

Ваккум-насос

УВУ-60/45

Масса установки, кг

2000

Технологический процесс установки протекает в таком порядке: пуск установки подготовка животных к доению, включение доильных аппаратов, постановка их на вымя, доение, отключение аппаратов после машинного додоя и перенос его на следующее рабочее место. Полученное молоко по молокопроводу проходит в молочную, где фильтруется, охлаждается и перекачивается в резервуар для хранения молока. Т.к. в комплект поставки не входят холодильная машина и резервуар охладитель то их выбираем отдельно.

Продолжительность работы вакуумных насосов в течении дойки.

tд=0,88N/Q·n+Дt=0,88·200/25·4=2,1ч(3.5)

где, N-число коров (0,88N число дойных коров)

Q-производительность оператора машинного доения (Q=25 стр. 204 [л-2])

n-число операторов (n=4 табл. 13.1 стр204 (л-2))

Дt=0,3…0,4ч- продолжительность промывки молокопровода стр.204 [л-2]

3.1.3Выбор резервуара для хранения молока

Резервуар предназначен для сбора и охлаждения молока. Для доильной установки АДМ-8 рекомендуется применять танки-охладители ТОВ-1 или ТО2 и поэтому выбираем танк охладитель ТО-2 емкостью 2000л, предназначенный для хранения молока на фермах с поголовьем 200 коров. Может работать с доильными установками всех типов. Состоит из емкости прямоугольной формы с двойными стенками, наклонным днищем в сторону сливного крана, фильтра молока, мешалки с электродвигателем и редуктором, через отверстия полого вала которого разбрызгивается моющая жидкость, промывочного устройства включающего вихревой самозасасывающий насос ВКС-2/46.В качестве хладоносителя используют воду из водопровода или воду охлаждаемую холодильной установкой.

Таблица 3.3 Технические характеристики ТО-2.

Емкость, л

2000

Продолжительность охлаждения молока, ч (от 35?С до 4?С)

3,25

Насос для промывки

ВКС-2/26

Частота вращения мешалки, об/мин

50

Габаритные размеры, мм

длина

ширина

высота

2820

1350

1550

Масса, кг

808

3.1.4Выбор холодильной установки

Охлаждение- важнейший способ сохранения качества и удлинение сроков сохранности сельскохозяйственных продуктов, замедляющий протекания в них биологических процессов. Холодильные машины и установки широко применяются на прифермских молочных, предприятиях переработки сельскохозяйственной продукции, в хранилищах картофеля, овощей, фруктов. Охлаждение основано на переносе теплоты от охлаждаемой среды с нижним температурным уровнем к окружающей среде. Этот же принцип можно использовать для нагрева материалов и сред.

В обоих случаях происходит изменение (трансформация) температурного потенциала предмета труда: при охлаждении- понижение, а при нагреве- повышение. Устройства, осуществляющие перенос теплоты от среды с более низкой температурой к среде с более высокой температурой, называют трансформаторами теплоты. В зависимости от целей процесса один и тот же трансформатор теплоты может охлаждать рабочую среду, либо нагревать или одновременно охлаждать одну среду и нагревать другую.

Т.к. в основном для получения холодоносителя для охлаждения молока в танке охладителе ТО-2 применяют холодильную установку МХУ-8С, а также ее рекомендуют применять совместно с доильной установкой АДМ-8, то выбираем именно ее.

МХУ-8С предназначена для получения исскуственного холода, который используется для охлаждения циркулирующей воды в молочных охладителях в стационарных условиях. Состоит из бака аккамулятора холода и машинного агрегата представляющий собой компрессор с электродвигателем, конденсатора обдуваемого потоком воздуха с помощью вентилятора, на конденсаторе установлено термореле управляющие электродвигателями приводящими в действие компрессор и вентилятор. Водяной центробежный насос поставляется отдельно, поэтому бак аккумулятор холода снабжен дополнительным патрубком для присоединения всасывающего патрубка насоса.

Таблица 3.4 Технические данные МХУ-8С.

Холодопроизводительность, кДж/ч

25120,8

Компресор.

тип

количество

частота вращения, об/мин

число цилиндров, шт

ФВ-6

1

1450

2

Конденсатор.

теплообменная поверхность, м?

производительность вентилятора, м?/ч

60

5000

Водяной насос.

тип

производительность, м?/ч

Е-1,5КМ-Б

6

Таблица 3.5 Выбранное технологическое оборудование.

N?

Наименование машины.

количество

1

ТСН-160

горизонтальный транспортер.

вертикальный транспортер.

2

2

2

АДМ-8 2 комплектации расчитанный на обслуживания 200 коров.

1

3

ТО-2

1

4

МХУ-8С

1

Выбор технологического оборудования на 2 животноводческом комплексе аналогичен и поэтому его не приводим.

3.3Расчет электроприводов

3.3.1Расчет электропривода новозоуборочного транспортера ТСН-160

При выборе электродвигателя для горизонтального транспортера определяют максимальную возможную нагрузку в начале уборки и по условиям пуска находят достаточный пусковой момент и мощность электродвигателя.

Усилие транспортной цепи при работе на холостом ходу.

Fx=m·g·l·fx=8,8·9,81·0,5=6,9 кН(3.6)

m-масса 1 метра цепи со скребками (m=8,8 стр.198 (л-2))

g-ускорение силы тяжести (g=9,81 стр.198 (л-2))

fx-коэффициент трения цепи по деревянному настилу (fx=0,5 стр.198 (л-2))

l-длина цепи (l=160 стр. 97 (л-1))

Усилие затрачиваемое на преодоление сопротивления трения навоза о дно канала при перемещении навоза по каналу.

Fн=mн·g·fн=1,5·9,81·0,97=14,2 кН(3.7)

где, mн-масса навоза в канале приходящееся на одну уборку.

mн=mобщ/z=6/4=1,5

где,mобщ-общий суточный выход навоза на ферме, т.к выбрано 2 горизонтальных транспортера а общий выход навоза в предыдущих расчетах составил 12 тонн, то на 1 транспортер приходится 6 тонн навоза.

z-число уборок навоза в сутки.

fн-коэффициент трения навоза о дно канала (fн=0,97 стр.198 [л-2])

Усилие затрачиваемое на преодоление сопротивления трения навоза о боковые стенки канала.

Fб=Рб·fн=7,3·0,97=7,1 кН(3.8)

где, Рб-давление навоза на боковые стенки канала, принимают равным 50% общего веса навоза стр198 (л-1)

Рб=mн·g/2=1,5·9,81/2=7,3

Усилие на преодоление сопротивления заклинивания навоза, возникающего между скребками и стенками канала.

Fз=l·F1/а=160·15/0,46=5,2 кН(3.9)

где, F1=15 Н стр.198 (л-2) усилие затрачиваемое на преодоление сопротивления заклинивания, приходящейся на один скребок

а=0,46м стр198 (л-2) расстояние между скребками

Общее максимальное усилие, необходимое для перемещения навоза в канале, когда весь транспортер загружен.

Fmax=Fн+Fб+Fз+Fх=6,9+14,2+7,1+5,2=33,4 кН(3.10)

Момент сопротивления приведенный к валу электродвигателя при максимальной нагрузке.

Мmax=Fmax·V/(щ·зп)=33400·0,18/(157·0,75)=51,3 Н·м

где, V-скорость движения скребков горизонтального транспортера, м/с (V=0,18 м/с (л-2)) щ-угловая скорость электродвигателя, для расчета принимаем двигатель с 2 парами полюсов.

Момент трогания от максимального усилия сопротивления.

Мт.пр.=1,2·Мmax=1,2·51,3=61,5 Н·м(3.11)

Требуемый момент электродвигателя.

М=Мт.пр./kІ·м-0,25=61,5/(1,25)І·2-0,25=21,9 Н·м(3.12)

где, м-кратность пускового момета (для электродвигателей мощностью до 10 кВт м=2 стр.199 (л-1))

Необходимая мощность электродвигателя.

Р=М·щ=21,9·157=3500 Вт=3,5кВт(3.13)

Выбор мотор редектора.

Частота вращения приводного вала.

n=60V/D=60·0,18/0,32=33,7 об/мин(3.14)

где, V-скорость движения скребков горизонтального транспортера, м/с

D-диаметр звезды

Предполагается выбор редуктора с двигателем, у которого n=1400 об/мин

Требуемое передаточное отношение редуктора.

iпер=nд/nв1400/33,7=41,5(3.15)

Время работы электропривода 1,2 часа в сутки, при спокойной безударной нагрузки и 4 включения в час.

Коэффициент эксплуатации.

F.S.=?в·?а=0,8·1=0,8(3.16)

где, ?в-коэффициент, зависящий от характера нагрузки и продолжительности работы привода в сутки (при безударной нагрузке и времени работы 1,2 часа в сутки ?в=0,8 стр.6 [л-3] ?а-коэффициент, зависящий от числа включений в час (при 4 включениях в час

?а=1 стр.5 [л-3])

Выбираем мотор редуктор серии 7МЦ2-120 n2=32об/мин F.S.=1,1 iпер=46

М2=1185 Н·м укомлектованном электродвигателем серии RA112М4 с Рн=4кВт n=1400об/мин зн=85,5% Кiп=2,2 Кimax=2,9 Iн=9А cosц=0,84, у данного привода выполняется условие F.S.при.>F.Sрасч

Расчет электропривода наклонного транспортера.

Мощность двигателя наклонного транспортера расчитывается по следующей формуле.

Р=Q/367зр·(L·f+h/зт)=5/367·0,72(15,7·1,3+5,7/0,6)=1,32(3.17)

где, Q-производительность траспортера, т/ч

зр-КПД редуктора (зр=0,72 стр.203 (л-2))

L-горизонтальная составляющая пути перемещения груза.

L=l·cosб=16,9·cos20?=15,7м(3.18)

где, б-угол наклона.

l-длина подъема, м

h-высота подъема, м

h=l·sinб=16,9·sin20?=5м(3.19)

f-коэффициент сопротивления движению (f=1,3 стр.203 (л-2))

Выбор мотор редуктора наклонного транспортера.

Частота вращения приводного вала.

n=60·V/D=60·0,72/0,32=135об/мин(3.20)

где, V-скорость движения скребков наклонного транспортера, м/с

D-диаметр звезды

Предполагается выбор редуктора с двигателем у которого n=1400 об/мин

Требуемое передаточное отношение редуктора.

iпер=nд/nв=1400/135=10,3(3.21)

Коэффициент эксплуатации электропривода наклонного транспортера.

F.S.=?а·?в=1·1=1(3.22)

Т.к. электропривод работает с умеренной нагрузкой, то ?в=1 стр.6 (л-3), число включений в час аналогично приводу горизонтального транспортера и поэтому ?а=1

Выбираем мотор редуктор 7МЦ2-75 у которого iпер=10 М2=135 Н·м

n2=138 об/минF.S.=3 укомплектованном электродвигателем RA90L4 с nном=1410об/мин з=78,5% cosц=0,8 Iн=4А Кiп=2,3 Кimax=2,8 КiIп=5,5, у данного привода выполняется условие F.S.при.>F.S.расч

3.3.2Расчет электропривода ваккумных насосов доильной установки

Для нормальной работы доильных установок в ваккум-проводе должен поддерживаться ваккум 50000 Па (380 мм рт.ст.). В предыдущих расчетов для доильной установки был выбран ваккум-насос марки УВУ-60/45 с подачей Q=60м?/ч и ваккумом р=10,8 Н/м?

Необходимая мощность электродвигателя для ваккум-насоса

Р=Q·р/1000·зн·зп=60·10,8/1000·0,25·0,72=3,7 кВт(3.23)

где, Q-подача ваккума насосом

р-давление ваккума

зп-КПД передачи (зп=0,72 стр.207 (л-2))(3.24)

зн-КПД ваккум насоса (зн=0,25 стр207 (л-2)) (3.25)

Для ваккум-насоса УВУ-60/45 выбираем электродвигитель серии RA112М4 с с Рн=4кВт n2=1430 об/мин з=85,5 КiIп=9 Кiп=2,2 Кimax=2,9

Дальнейший расчет не приводим сводя выбранные электродвигатели в таблицу.

Таблица 3.6 Выбранные электродвигатели для электроприводов.

Наименование

машины

Тип токоприемника

Номинальная

мощность, кВт

Номинальный

ток, А

ТСН-160

RA112М4

RA90L4

4

1,5

9

4

АДМ-8А

RA112М4

RA90S4

4

1,1

9

3

МХУ-8С

4АХ100L2У3

4АХ71А4У3

4АХ71В2У3

4,5

0,6

1,7

10

2

3

ТО2

4А100L4У3

4АА63В4У3

4

0,37

9

1

3.4Расчет отопления и вентиляции

В воздушной среде производственных помещений, в которых находятся люди животные, оборудование, продукты переработки всегда есть некоторое количество вредных примесей, а также происходит отклонение температуры от нормированных значений, что отрицательно влияет на состояние здоровья людей, продуктивность животных, долговечность электрооборудования.

Вентиляциооные установки применяют для поддержания в допустимых пределах температуры, влажности, запыленности и вредных газов в воздухе производственых, животноводческих и других помещений.

Уравнение часового воздухообмена по удалению из лищнего содержания углекислоты.

1,2·C+L·C1=L·C2(3.26)

где, 1,2-коэффициент учитывающий выделение углекислоты микроорганизмами в подстилке.

С- содержание СО2 в нужном воздухе, л/м?, для сельской местности С1==0,3л/м3,[ л-1],

L-требуемое количество воздуха, подаваемое вентилятором, чтобы обеспечить в помещении допустимое содержание СО2 м?/ч,

С2- допустимое содержание СО2 в воздухе внутри помещения, л/м?, принимаем по таблице 10.2 , стр157, С2=2,5 л/м?, (л-2).

Определяем количество углекислого газа, выделяемого всеми животными.

С=С`·п=110·200=22000 л/ч.(3.27)

где, С`- количество СО2 выделяемого одним животным , л/ч, по таблице 10.1

принимаем С`=110л/ч [ л-1] ,

п-количество поголовья животных, 200голов.

Требуемое количество воздуха подаваемого вентилятором.

L=1,2·С/(С2-С1)=1,2·22000/(2,5-0,3)=12000 м?/ч(3.28)

Расчетная кратность воздухаобмена.

К=L/V=12000/4057=3(3.29)

V-объем ветилируемого помещения, равняется 4057м?

L-требуемое количество воздуха, подаваемого вентилятором

Часовой воздухообмен по удалению излишней влаги.

Lи=1,1·W1/(d2-d1)=1,1·28600/(7,52-3,42)=5200 г/м?(3.30)

где, W1-влага выделяемая животными внутри помещения

d2-допустимое влагосодержание воздуха.

d1-влагосодержание наружного воздуха

Влага выделяемая животными

W1=w·N=143·200=28600 г/ч(3.31)

где, w-влага выделяемая одним животным w=143 г/ч стр75(л-1)

N-количество животных

Допустимое влагосодержание внутри помещения

d2=d2нас·ц2=9,4·0,8=7,52 г/м?(3.32)

где, d2нас-влагосодержание насыщенного воздуха внутри помещения при оптимальной температуре +10?С по табл.10.3 (л-2) d2нас=9,4 г/м?

ц-допустимая относительная влажность внутри помещения, по табл. 10.2 (л-2)

ц=0,8

Влагосодержание наружного воздуха.

d1=d1нас·ц=3,81·0,9=3,42(3.33)

где, d1нас-влагосодержание насыщенного наружного воздуха

ц-относительная влажность наружного воздуха.

Т.к. сведений значений расчетной температуры и относительной влажности наружного воздуха нет то ориентировочно расчетную температуру наружного воздуха можно принять равной -3?С и при такой температуре d1нас=3,81 ц=0.9

Давление вентилятора.

Р=Рд+Рс=105,6+1154,9=1260,5 Па(3.34)

где, Рд и Рс-динамические и статические составляющие давления вентилятора.

Динамическая составляющая давления

Рд=с·V?/2=1,25·13?/2=105,6 кг/м?(3.35)

где, с-плотность воздуха

V-скорость воздуха, м/с V=10…15м/с (л-1)

Определяем плотность воздуха.

с=с0/(1+б·U)=1,29/(1+0,003·10)=1,25кг/м?(3.36)

где, с0-плотность воздуха при 0?С с0=1,29 кг/м? стр34 [л-1]

U-температура воздуха

б-коэффициент учитывающий относительное увеличение объема воздуха при

нагревание его на один градус б=0,003 стр.35 [л-1]

Статическая составляющая давления.

Рс=l·h+Рм=66,8·1.8+1035,1=1154,9 Па(3.37)

где, Lh-потеря давления, затрачиваемое на преодоление трения частиц воздуха о стенки трубопровода.

l-длина трубопроводов, равная 66,6м

h-потери давления на 1 метр трубопровода, Па/м

Рм-потери давления затрачиваемое на преодоление местных сопротивлений.

Потери напора на 1 метре трубопровода.

h=64,8·V ·/d ·(с/1,29) =64,8·13· /750 ·(1,25/1,29) =1,8 Па/м(3.38)

где, V-скорость воздуха в трубопроводе, м/с

d-диаметр трубопровода

d=2·а·в/(а+в)=2·1000·600/(1000+600)=750 мм(3.39)

где, а и в стороны прямоугольного сечения трубопровода а=1000мм в=600мм (л-5)

Потери напора в местных сопротивлениях.

Рм=Уо·Рд=Уо·с·U?/2=9,8·1,25·13?/2=1035 Па/м(3.40)

где, о-коэффициент местного сопротивления, Уо=9,8 стр.75(л-2)

Вентилятор подбираем по их аэродинамическим характеристикам. По наибольшему значению L и расчетному значению Р.

С учетом равномерного распределения вентиляторов в коровнике выбираем вентилятор Ц4-70 с подачей L=6000 м?/ч, при давлении 630 Па.

Ц4-70 N5 n=1350 об/мин з=0,8

Определяем число вентиляторов.

n=L/Lв=12000/6000=2(3.41)

где, Lв- подача воздуха одним вентилятором.

Принимаем 2 вентилятора один из которых будет располагаться в начале здания другой в конце здания.

Масса воздуха проходящего через вентилятор.

m1=с·S·V=1,29·0,6·13=10 кг/с(3.42)

где, с-плотность наружного воздуха, с=1,29кг/м? стр45(л-1)

S-площадь сечения трубопроводов S=0,6м? стр45(л-2)

Полезная мощность вентилятора.

Рпол=m1·V?/2=10·13?/2=845Вт(3.43)

Мощность электродвигателя для вентилятора.

Р=Q·Р/1000·зв·зп=1,6·630/1000·0,8·0,95=1,3 кВт(3.44)

где, Q-подача вентилятора Q=1,6м?

Р-давление создаваемое вентилятором Р=630Па

зв-КПД вентилятора зв=0,8

зп-КПД передачи зп=0,95, для ременной передачи стр80 (л-1)

Расчетная мощность двигателя для вентилятора.

Рр=Кз·Р=1,15·1,3=1,5 кВт(3.45)

где, Кз- коэффициент запаса Кз=1,15 стр80(л-1)

Для вентилятора выбираем электродвигатель серии RA100L4 с Рн=1,5 кВт Iн=4А

Расчет калорифера.

Определяем мощность калорифера.

Рк=Qк/860·зк=16191/860·0,9=20,9 кВт(3.46)

где, Q-требуемая калорифера , ккал/ч

зк-КПД установки зк=0,9

Теплопередачу установки находят из уравнения теплового баланса помещения.

Qк+Qп=Qо+Qв(3.47)

отсюда

Qк=Qо+Qв-Qп=114744+26047-124600=16191 ккал/ч

где, Qо-теплопотери через ограждения, ккал/ч

Qв-тепло уносимое с вентилируемым воздухом

Теплопотери через ограждения

Qо=УК·F·(Vп·Qм)=8·2049·(10-3)=114744 ккал/ч(3.48)

где, К-коэффициент теплопередачи ограждения, ккал/ч К=8 (л-2)

F-площадь ограждений, м? F=2049 (л-3)

Uп- температура воздуха, подведенная в помещение, Uп=+10?С

Uн- расчетная температура наружного воздуха, Uнм=-3?С

Тепло, уносимое с вентилируемым воздухом.

Qв=0,237·н·V(Qп-Uм)=0,239·1,29·12171·(10-3)=26047 ккал/ч(3.49)

где, н-плотность воздуха, принимаемая равной 1,29 кг/м? стр.56 (л-1)

V-обьем обогащаемого воздуха за 1 час

V=Vп·Коб=4057·3=12171м?(3.50)

где, Vп- объем помещения равный 4057м?

Коб- часовая кратность воздухообмена

Тепловыделение в помещение

Qп=g·N=623·200=124600 ккал/ч(3.51)

где, g-количество тепла выделяемого одним животным за 1 час, для коров весом до 500 кг g=623 ккал/ч стр89 (л-1)

N-число коров.

Считаем, что в каждую фазу включены по два нагревательных элемента.

Определяем мощность одного нагревательного элемента.

Рэ=Рк/м·n=10,4/3·2=1,6 кВт(3.52)

где, n- число нагревателей.

м- число фаз.

Рабочий ток нагревательного элемента

Iраб=Рэ/Uф=1,6/0,22=7,2 А(3.53)

где, Uф- фазное напряжение.

Принимаем 6 ТЕН мощностью 2 кВт: ТЕН-15/0,5 Т220

Принимаем 2 калорифера СФОЦ-15/0,5Т один из которых устанавливаем в начале комплекса другой в конце

Таблица 3.7 Технические данные калорифера.

Тип калорифера

Мощность

калорифера, кВт

Число cекций

Число

нагревателей

СФОЦ-15/0,5Т

15

2

6

3.5Расчет осветительных установок

Свет является одним из важнейшим параметром микроклимата. От уровня освещенности, коэффициента пульсации светового потока зависит зависит производительность и здоровье персонала.

Ферма состоит из 2 животноводческих комплексов и расположенного между ними молочного блока.

3.5.1Расчет осветительных установок животноводческого комплекса

Таблица 3.8 Характеристики здания.

Наименование

помещения.

площадь м?

длина м

ширина м

высота м

Среда.

Стойловое помещение

1380

69

20

3,22

сыр.

Площадка для весов.

9,9

3,3

3

3,22

сыр.

Инвентарная

9,9

3,3

3

3,22

сух

Венткамера

14,4

4,8

3

3,22

сух.

Помещение для

подстилки кормов

9,9

3,3

3

3,22

сыр.

Электрощитовая.

9,9

3,3

3

3,22

сух.

Тамбур.

12,6

4,2

3

3,22

сыр.

3.5.1.1Расчет мощности осветительной установки площадки перед входом.

Согласно СНиП принимаем дежурное, общее равномерное освещение. Нормированная освещенность Ен=2 Лк стр36. (л-4)

Т.к. площадка перед входом согласно ПУЭ относится к сырым помещениям то принимаем степень защиты светильника IР-53, с такой степенью защиты принимаем светильник НСП03.

Определяем расчетную высоту осветительной установки.

Нр=Н-Нс-Нр.п.=3-0,2-0=2,8(3.54)

где, Н-высота подвеса светильника

Нс- высота свеса подвесного светильника.

Нр.п.- высота рабочей поверхности.

Расчет производим точечным методом, т.к. это открытое пространство.

Расстояние от точки проекции светильника до контрольной точки.

Р=v(а/2)?+в?=v(3/2)?+2?=2,5м(3.55)

где, а-длина площадки

в-ширина площадки

Расстояние от источника света до контрольной точки.

dа=vНр?+Р?= 2,8?+2,5?=3,7м(3.56)

Угол под которым видна контрольная точка из светильника.

б=arctgР/Нр=arctg2,5/2,8=39?(3.57)

Условная освещенность в контрольной точке.

lа=Iб·cos?б/Нр?=150·cos?39?/2,8?=7,5 Лк(3.58)

где, Iа-сила света в зональном углу ксс «М» отнесенная к 1000А

Световой поток светильника.

Фс=1000·Ен·Кз/lа·м·зс=1000·2·1,3/7,5·1·0,85=408 Лм(3.59)

где, Ен-нормированная освещенность

Кз-коэффициент запаса

м-коэффициент учитывающий дополнительную освещенность от удаленных светильников (т.к. удаленных светильников нет то м=1) 1000-световой поток условной лампы.

зс-КПД светильника (зс=0,85 стр39. табл1 [л-4])

По полученному значению светового потока выбираем тип лампы Б220-40 с

Фк=400 Лм

Отклонение светового потока лампы.

ДФ=Фк-Фс/Фс=400-408/408·100%=-0,2%(3.60)

Отклонение каталажного светового потока от расчетного, должно находиться в пределах -10…+20%, выбранная лампа проходит по этому условию и окончатель--но принимаем светильник НСП03-60 с лампой Б220-40.

Расчет для других площадок аналогичен, т.к. они имеют одинаковые размеры.

3.5.1.2Расчет мощности осветительной установки стойлового помещения.

Согласно СниП принимаем рабочее общее равномерное освещение т.к. работы ведутся с одинаковой точностью, нормированная освещенность составляет Ен=75Лк на высоте 0.8м от пола стр35 [л-4]

Т.к. помещение сырое и с химически агрессивной средой то принимаем светильник ЛСП15 со степенью защиты IР54 стр.41 табл 2 [л-4]

Расчетная высота осветительной установки.

Нр=Н-Нс-Нр.п=3,22-0-0,8=2,42.(3.61)

где, Н-высота помещения

Нс- высота свеса светильника, принимаем равной нулю, т.к. крепежные

кронштейны устанавливаться не будут.

Нр.п.- высота рабочей поверхности.

Расстояние между светильниками.

L=Нр·лс=2,42·1,4=3,3м(3.62)

где,лс- светотехническое наивыгоднейшее расстояние между светильниками

при кривой силы света «Д» лс=1,4

Количество светильников в ряду

nс=а/L=69/3,3=21 шт.(3.63)

где, а- длина помещения

Количество рядов светильников.

nр=в/L=20/3,3=6 ряд.(3.64)

где, в- ширина помещения

Расчет производим методом коэффициента использования светового потока, т.к. нормируется горизонтальная освещенность, помещение со светлыми ограждающими стенами без затемняющих предметов.

Индекс помещения.

i=а·в/Нр·(а+в)=69·20/2,42·(69+20)=6,4(3.65)

Согласно выбранному светильнику, индексу помещения и коэффициентам отражения ограждающих конструкций (сп=30 сс=10 ср.п.=10) выбираем коэффициент использования светового потока Uоу=0,67 стр.17 табл.3 (л-4)

Световой поток светильника.

Фс=А·Ен·Кз·z/nс·Uоу=1380·75·1,3·1,1/126·0,67=3861 Лм(3.66)

где, А-площадь помещения, м?

Ен-нормированная освещенность, Лк

Кз-коэффициент запаса

z-коэффициент неравномерности (z=1,1…1,2 стр.23 (л-4))

Световой поток одной лампы.

Фл=Фс/nл=3861/2=1930,5 Лм(3.67)

где, nл-число ламп в светильнике.

Принимаем лампу ЛД-40-1 с Фк=2000 Лм Рн=40Вт

Отклонение светового потока.

ДФ=Фк-Фр/Фр·100%=2000-1930/1930·100%=3,6%(3.68)

Отклонение светового потока находится в пределах -10%…+20% и поэтому окончательно принимаем светильник ЛСП15 с лампой ЛД-40-1

3.5.1.3Расчет мощности осветительной установки электрощитовой

Согласно СНиП принимаем рабочее, общее равномерное освещение, нормированная освещенность Ен=100Лк на вертикальной плоскости на высоте 1,5м от пола стр34(л-4)

Помещение электрощитовой сухое поэтому принимаем светильник ЛСП02 со степенью защиты IР20

Расчетная высота осветительной установки.

Нр=Н-Нс-Нр.п.=3,22-0-1,5=1,72м(3.69)

Высота свеса равняется нулю, т.к. крепежные кронштейны устанавливаться не будут

Расчет производим точечным методом, т.к. в ней нормируется освещенность на вертикальной плоскости.

0,5·Нр=0,5·1,72=0,86<Lа=1,2 поэтому расчитывается линейный источник света.

Расстояние от точки проекции светильника до контрольной точки в центре щита.

Р=в/2-Сщ=3/2-0,38=1,1м(3.70)

где, в-ширина помещения,м

Сщ-ширина шита,м

Расстояние от светильника до контрольной точке.

dл=vНр?·Р?=v1,72?·1,1?=2м(3.71)

Угол между вертикалью и линией силы света к контрольной точке.

г=arctgР/Нр=arctg1,1/1,72=32?(3.72)

Угол под которым видна светящееся линия.

б=arctgLл/dл=arctg1,2/2=57,7?=1 рад(3.73)

Условная освещенность в контрольной точке.

Еа=Iг·cos?г/2Нр·(б+1/2sin2б)=155·cos?32?/2·1,72(1+sin(2·1)/2)=38,8 Лк(3.74)

где, Iг=155 кд сила света светильника ЛСП02 в поперечной плоскости под углом г=32?

Перейдем к вертикальной освещенности.

Еа.в.=Еа·(cosИ+Р/НрsinИ)=38·(cos90+1,1/1,72sin90)=40,8 Лк(3.74)

где,И=90?-угол наклона поверхности.

Световой поток светильника.

Фс=1000·Ен·Кз·Нр/м·Еа.в.=1000·100·1,3·1,72/1·40,8=4142 Лм(3.75)

Световой поток одной лампы.

Фл=Фс/2=4142/2=2071 Лм(3.76)

По полученному значению светового потока выбираем лампу ЛДЦ40-4 с Фк=1995Лм

Отклонение светового потока.

ДФ=Фк-Фр/Фр=1995-2071/2071·100=-3,7%(3.77)

Отклонение светового потока находится в пределах -10%…+20% и окончательно принимаем светильник ЛСП02 с 2 лампами ЛДЦ40-4

Расчет мощности осветительных установок остальных помещений производим методом удельной мощности, т.к. они относятся к вспомогательным помещениям, а также этим методом разрешают расчитывать когда расчет осветительных установок не входит в основную часть задания.

3.5.1.4Расчет мощности осветительной установки венткамеры

Согласно СНиП освещенность нормируется на горизонтальной плоскости на высоте 0,8м от пола, т.к. помещение венкамеры сухое то принимаем светильник НСП17 со степенью защиты IР20

Расчетная высота осветительной установки.

Нр=Н-Нс-Нр.п.=3,22-0-0,8=2,42м(3.78)

Расстояние между светильниками

L=Нр·лс=2,42·1,4=3,3м(3.79)

при кривой силе света «Д»-косинусойдной лс=1,4

Количество светильников

nс=а/L=4,8/3,3=1,45=2шт(3.80)

Количество рядов светильников.

nр=в/L=3/3,3=1ряд(3.81)

Мощность лампы

Рл=Руд·А/N=25,3·14,4/2=182,1Вт (3.82)

где, Руд-удельная мощность лампы (при h=3-4м А=14,4м? с ксс «Д» Руд=25,3

Вт/м? стр.19(л-4)

N-количество светильников.

Принимаем лампу типа Б-215-225-200 с Рн=200Вт, выбранный ранее светильник расчитан на лампы мощностью до 200Вт и окончательно принимаем 2 светильника НСП17 с лампами Б-215-225-200, расчет помещения для второй венткамеры аналогичен и поэтому его не приводим.

3.5.1.5Расчет мощности осветительной установки помещения для подстилки

Согласно СНиП освещение нормируется на горизонтальной плоскости на высоте 0,8м от пола, т.к. помещение сырое то принимаем светильник НСР01 со степенью защиты IР54

Расчетная высота осветительной установки.

Нр=Н-Нс-Нр.п.=3,22-0-0,8=2,42м(3.83)

Расстояние между светильниками.

L=Нр·лс=2,42·2=4,8м(3.84)

при кривой силе света «М» лс=2

Т.к. помещение небольшое а расстояние между светильниками вышло больше длины помещения то принимаем 1 светильник расположенный в центре помещения.

Мощность лампы.

Рл=А·Руд/N=9,9·19,5/1=193Вт(3.85)

При А=9,9м? h=3-4м с ксс «М» Руд=19,5

Окончательно принимаем светильник НСР01 с лампой Б-215-225-200

с Рн==200Вт

Расчет мощности осветительной установки площадки для весов аналогичен, т.к. площадь помещений одинакова и имеют одинаковую среду по электробезопасности.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.