Главные выводы общей и специальной теории относительности
Общая теория относительности - современная теория тяготения, связывающая его с кривизной четырехмерного пространства-времени. Принцип эквивалентности и геометризация тяготения. Классические опыты по проверке теории. Эйнштейновский принцип относительности.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 06.09.2010 |
Размер файла | 30,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2
План
- I. Введение
- 1. Главные выводы общей теории относительности
- 1.1 Принцип эквивалентности и геометризация тяготения
- 1.2 Классические опыты по проверке ОТО
- 1.3 Черные дыры
- 1.4 Пульсар PSR 1913+16 и гравитационные волны
- 1.5 Гравитационные линзы и коричневые карлики
- 2. Главные выводы специальной теории относительности
- 2.1 Эйнштейновский принцип относительности
- 2.2 Синхронизация часов
- 2.3 Преобразования Лоренца
- 2.4 Собственное время, события и мировые линии частиц
- 2.5 Замедление времени
- Заключение
- Литература
I. Введение
Название “теория относительности" возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени. Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.
Название же “принцип относительности" или “постулат относительности" возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.
Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии с теорией упругости, сложилось ложное представление о необходимости существования абсолютной неподвижной системы отсчета, связанной с электромагнитным эфиром. Зародилось, таким образом, представление об абсолютном движении относительно системы, связанной с эфиром, представление, противоречащее более ранним воззрениям классической механики (принцип относительности Галилея). Опыты Майкельсона и других физиков опровергли эту теорию “неподвижного эфира" и дали основание для формулировки противоположного утверждения, которое и получило название “принципа относительности”. Так это название вводится и обосновывается в первых работах Пуанкаре и Эйнштейна.
Эйнштейн пишет: “. неудавшиеся попытки обнаружить движение Земли относительно “светоносной среды" ведут к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя, и даже более того, - к предположению, что для всех координатных систем, для которых справедливы уравнения механики, имеют место те же самые электродинамические и оптические законы, как это уже доказано для величин первого порядка. Мы намерены это положение (содержание которого в дальнейшем будет называться “принципом относительности”) превратить в предпосылку... “. А вот что пишет Пуанкаре: “Эта невозможность показать опытным путем абсолютное движение Земли представляет закон природы; мы приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и примем его без оговорок".
Но крупнейший советский теоретик Л.И. Мандельштам в своих лекциях по теории относительности разъяснял: “Название “принцип относительности" - одно из самых неудачных. Утверждается независимость явлений от неускоренного движения замкнутой системы. Это вводит в заблуждение многие умы”. На неудачность названия указывал и один из творцов теории относительности, раскрывший ее содержание в четырехмерной геометрической форме, - Герман Минковский.
Таким образом, мы видим, что названия “принцип относительности" и “теория относительности" не отражают истинного содержания теории.
Общая теория относительности (ОТО) - современная теория тяготения, связывающая его с кривизной четырехмерного пространства-времени. В своем, так сказать, классическом варианте теория тяготения была создана Ньютоном еще в XVII веке и до сих пор верно служит человечеству. Она вполне достаточна для многих, если не для большинства, задач современной астрономии, астрофизики, космонавтики. Между тем ее принципиальный внутренний недостаток был ясен еще самому Ньютону. Это теория с дальнодействием: в ней гравитационное действие одного тела на другое передается мгновенно, без запаздывания. Ньютоновская гравитация так же соотносится с общей теорией относительности, как закон Кулона с максвелловской электродинамикой. Максвеллу удалось изгнать дальнодействие из электродинамики. В гравитации это сделал Эйнштейн.
В замечательной работе Эйнштейна 1905 года была сформулирована специальная теория относительности, и она завершила в идейном отношении развитие классической электродинамики. У этой работы несомненно были предшественники, среди которых нельзя не упомянуть работы Лоренца и Пуанкаре. В их статьях уже содержались многие элементы специальной теории относительности. Однако ясное понимание, цельная картина физики больших скоростей появились лишь в упомянутой работе Эйнштейна.
Что же касается ОТО, то все ее основополагающие элементы были созданы Эйнштейном. Впрочем, предчувствие того, что физика может быть связана с кривизной пространства, можно найти в трудах замечательных ученых прошлого века Гаусса, Римана, Гельмгольца, Клиффорда. Гаусс пришел к идеям неевклидовой геометрии несколько ранее Лобачевского и Бойаи, но так и не опубликовал своих исследований в этой области. Его идея вдохновила Римана, полагавшего, что наше пространство действительно искривлено (а на малых расстояниях даже дискретно). Жесткие ограничения на кривизну пространства были получены из астрономических данных Гельмгольцем. Клиффорд считал материю рябью на искривленном пространстве.
Однако все эти блестящие догадки и прозрения были явно преждевременны. Создание современной теории тяготения было немыслимым без специальной теории относительности, без глубокого понимания структуры классической электродинамики, без осознания единства пространства-времени. Как уже отмечалось, ОТО была создана в основном усилиями одного человека. Путь Эйнштейна к построению этой теории был долгим и мучительным. Если его работа 1905 года "К электродинамике движущихся сред" появилась как бы сразу в законченном виде, оставляя вне поля зрения читателя длительные размышления, тяжелый труд автора, то с ОТО дело обстояло совершенно иначе. Эйнштейн начал работать над ней с 1907 года. Его путь к ОТО продолжался несколько лет. Это был путь проб и ошибок, который хотя бы отчасти можно проследить по публикациям Эйнштейна в эти годы. Окончательно задача была решена им в двух работах, доложенных на заседаниях Прусской Академии наук в Берлине 18 и 25 ноября 1915 года. В них были сформулированы уравнения гравитационного поля в пустоте и при наличии источников.
В последнем этапе создания ОТО принял участие Гильберт. Вообще значение математики (и математиков) для ОТО очень велико. Ее аппарат, тензорный анализ, или абсолютное дифференциальное исчисление, был развит Риччи и Леви-Чивита. Друг Эйнштейна, математик Гроссман познакомил его с этой техникой. И все же ОТО - это физическая теория, в основе которой лежит ясный физический принцип, твердо установленный экспериментальный факт.
Специальная теория относительности (СТО) - фундаментальная физическая теория пространственно-временных свойств всех физических процессов. Основой СТО явились представления о свойствах пространства, времени и движения, разработанные в классической механике Галилеем и Ньютоном, но углублённые и в ряде положений существенно изменённые и дополненные Эйнштейном в связи с теми экспериментальными фактами, которые были обнаружены в физике к концу XIX столетия при изучении электромагнитных явлений.
1. Главные выводы общей теории относительности
1.1 Принцип эквивалентности и геометризация тяготения
Факт этот по существу был установлен еще Галилеем. Он хорошо известен каждому успевающему старшекласснику: все тела движутся в поле тяжести (в отсутствие сопротивления среды) с одним и тем же ускорением, траектории всех тел с заданной скоростью искривлены в гравитационном поле одинаково. Благодаря этому, в свободно падающем лифте никакой эксперимент не может обнаружить гравитационное поле. Иными словами, в системе отсчёта, свободно движущейся в гравитационном поле, в малой области пространства-времени гравитации нет. Последнее утверждение - это одна из формулировок принципа эквивалентности.
Данное свойство поля тяготения отнюдь не тривиально. Достаточно вспомнить, что в случае электромагнитного поля ситуация совершенно иная. Существуют, например, подзаряженные, нейтральные тела, которые электромагнитного поля вообще не чувствуют. Так вот, гравитационно-нейтральных тел нет, не существует ни линеек, ни часов, которые не чувствовали бы гравитационного поля. Эталоны привычного евклидова пространства меняются в поле тяготения.
Геометрия нашего пространства оказывается неевклидовой.
1.2 Классические опыты по проверке ОТО
Гравитационное поле влияет на движение не только массивных тел, но и света. В частности, фотон, распространяясь в поле Земли вверх, совершает работу против силы тяжести и поэтому теряет энергию. Как известно, энергия фотона пропорциональна его частоте, которая, естественно, тоже падает. Этот эффект - красное смещение - был предсказан Эйнштейном еще в 1907 году. Нетрудно оценить его величину. Работа против силы тяжести, очевидно, пропорциональна gh, где g - ускорение свободного падения, а h - высота подъема. Произведение gh имеет размерность квадрата скорости.
При g?103 см/с2, h~103 см относительное смещение ничтожно мало ~10-15. Неудивительно, что экспериментально красное смещение удалось наблюдать лишь спустя полвека, с появлением техники, использующей эффект Мёссбауэра. Это сделали Паунд и Ребка.
Еще один эффект, предсказанный Эйнштейном на заре ОТО, - отклонение луча света в поле Солнца. Для луча света, проходящего вблизи поверхности Солнца, угол отклонения равен 1,75".
Первая мировая война воспрепятствовала проверке. И только во время солнечного затмения 1919 года измерения, проведенные группой Эддингтона, подтвердили последнее предсказание. Это был подлинный триумф молодой общей теории относительности.
И наконец, к числу классических тестов ОТО относится также вращение перигелия орбиты Меркурия. Замкнутые эллиптические орбиты - это специфика нерелятивистского движения в притягивающем потенциале 1/r. Неудивительно, что в ОТО орбиты планет незамкнуты. Малый эффект такого рода удобно описывать как вращение перигелия эллиптической орбиты. Задолго до появления ОТО астрономы знали, что перигелий орбиты Меркурия поворачивается за столетие примерно на 6000". Поворот этот в основном объяснялся гравитационными возмущениями движения Меркурия со стороны других планет Солнечной системы. Оставался, однако, неустранимый остаток - около 40" в столетие. В 1915 году Эйнштейн объяснил это расхождение в рамках ОТО. Аккуратный расчет при радиусе орбиты Меркурия R?0.6.108 км дает 43" в столетие, снимая таким образом существовавшее расхождение. Ясно, кстати, чем выделяется в этом отношении Меркурий: это планета, ближайшая к Солнцу, планета с наименьшим радиусом орбиты R. Поэтому вращение перигелия орбиты у нее максимально.
1.3 Черные дыры
Однако роль ОТО отнюдь не сводится к исследованию малых поправок к обычной ньютоновской гравитации. Существуют объекты, в которых эффекты ОТО играют ключевую роль, важны стопроцентно. Это так называемые черные дыры.
Еще в XVIII веке Митчел и Лаплас независимо друг от друга заметили, что могут существовать звезды, обладающие совершенно необычным свойством: свет не может покинуть их поверхность. Рассуждение выглядело примерно так. Тело, обладающее радиальной скоростью v, может покинуть поверхность звезды радиусом R и массой M при условии, что кинетическая энергия этого тела mv2/2 превышает энергию притяжения GMm/R, т.е. при v2 > 2GM/R. Применение последнего неравенства к свету (как мы теперь понимаем, совершенно не обоснованное) приводит к выводу: если радиус звезды меньше чем 2GM/v2 то свет не может покинуть ее поверхность, такая звезда не светит! Последовательное применение ОТО приводит к такому же выводу, причем, поразительно, правильный критерий количественно совпадает с наивным, необоснованным.
Черная дыра - вполне естественное название для такого объекта. Свойства его весьма необычны. Черная дыра возникает, когда звезда сжимается настолько сильно, что усиливающееся гравитационное поле не выпускает во внешнее пространство ничего, даже свет. Поэтому из черной дыры не выходит никакая информация.
Занятно выглядит падение пробного тела на черную дыру. По часам бесконечно удаленного наблюдателя это тело достигает гравитационного радиуса лишь за бесконечное время. С другой стороны, по часам, установленным на самом пробном теле, время этого путешествия вполне конечно.
Многочисленные результаты астрономических наблюдений дают серьезные основания полагать, что черные дыры - это не просто игра ума физиков-теоретиков, а реальные объекты, существующие по крайней мере в ядрах галактик.
1.4 Пульсар PSR 1913+16 и гравитационные волны
Нобелевская премия по физике за 1993 год была присуждена Халсу и Тейлору за исследование пульсара PSR 1913+16 (буквы PSR означают пульсар, а цифры относятся к координатам на небесной сфере: прямое восхождение 19h13h, склонение +160). Исследование свойств излучения этого пульсара показало, что он является компонентом двойной звезды. Иными словами, у него есть компаньон, и обе звезды вращаются вокруг общего центра масс. Расстояние между этим пульсаром и его компаньоном составляет всего 1,8 * 106 км. Если бы невидимый компаньон был обычной звездой с характерным радиусом ?106 км, то наблюдались бы, очевидно, затмения пульсара. Однако ничего подобного не происходит. Подробный анализ наблюдений показал, что невидимый компонент - это не что иное, как нейтронная звезда.
Существование нейтронных звезд было предсказано теоретически еще в 30 - е годы. Они образуются в результате бурного гравитационного сжатия массивных звезд, сопровождающегося взрывом сверхновых. После взрыва давление в оставшемся ядре массивной звезды продолжает нарастать, электроны с протонами сливаются (с испусканием нейтрино) в нейтроны. Образуется очень плотная звезда с массой, несколько большей массы Солнца, но очень малого размера, порядка 10 - 15 км, не превышающего размер астероида. Несомненно, наблюдение нейтронных звезд уже само по себе является выдающимся открытием.
Кроме того, тщательное исследование движения этой двойной звезды дало новое подтверждение предсказания ОТО, касающегося незамкнутости эллиптических орбит. Поскольку гравитационные поля в данной системе очень велики, периастр орбиты вращается несравненно быстрее, чем перигелий орбиты Меркурия, он поворачивается на 4,20 в год. Изучение этого и других эффектов позволило также определить с высокой точностью массы пульсара и нейтронной звезды. Они равны, соответственно, 1,442 и 1,386 массы Солнца. Но и это далеко не все.
Еще в 1918 году Эйнштейн предсказал на основе ОТО существование гравитационного излучения. Хорошо известно, что электрически заряженные частицы, будучи ускоренными, излучают электромагнитные волны. Аналогично, массивные тела, двигаясь с ускорением, излучают гравитационные волны - рябь геометрии пространства, распространяющуюся тоже со скоростью света.
Гравитационные волны, однако, отнюдь не игра ума и математическая абстракция. Это в принципе наблюдаемое физическое явление. Так, например, стержень, находящийся в поле гравитационной волны, испытывает деформации, меняющиеся с ее частотой. Увы, оговорка "в принципе" отнюдь не случайна: масса любого объекта на Земле настолько мала, а движение его столь медленно, что генерация гравитационного излучения в земных условиях совершенно ничтожна, не видно сколько-нибудь реального способа зарегистрировать такое излучение. Существует ряд проектов создания детекторов гравитационного излучения от космических объектов. Однако и здесь реальных результатов до сих пор нет.
Следует также сказать, что, хотя плотность энергии гравитационного поля в любой точке можно по своему желанию обратить в ноль выбором подходящей системы координат, полная энергия этого поля во всем объеме, полный его импульс имеют совершенно реальный физический смысл (конечно, если поле достаточно быстро убывает на бесконечности). Столь же наблюдаемой, хорошо определенной величиной является и потеря энергии системой за счет гравитационного излучения.
Все это имеет самое прямое отношение к пульсару PSR 1913+16. Эта система также должна излучать гравитационные волны. Их энергия в данном случае огромна, она сравнима с полной энергией излучения Солнца. Впрочем, даже этого недостаточно, чтобы непосредственно зарегистрировать эти волны на Земле. Однако энергия гравитационных волн может черпаться только из энергии орбитального движения звезд. Падение последней приводит к уменьшению расстояния между звездами. Так вот, тщательные измерения импульсов радиоизлучения от пульсара PSR 1913+16 показали, что расстояние между компонентами этой двойной звезды уменьшается на несколько метров в год в полном согласии с предсказанием ОТО. Любопытно, что потеря энергии двойной звездой за счет гравитационного излучения была впервые рассчитана Ландау и Лифшицем, они поместили этот расчет в качестве учебной задачи в первое издание своей замечательной книги - "Теория поля", которая вышла в 1941 году.
1.5 Гравитационные линзы и коричневые карлики
И наконец, сюжет, еще более свежий, чем пульсар PSR 1913+16. Он тесно связан, однако, с идеей, возникшей еще на заре ОТО. В 1919 году Эддингтон и Лодж независимо друг от друга заметили, что, поскольку звезда отклоняет световые лучи, она может рассматриваться как своеобразная гравитационная линза. Такая линза смещает видимое изображение звезды-источника по отношению к ее истинному положению.
Первая наивная оценка может привести к выводу о полной безнадежности наблюдения эффекта. Из простых соображений размерности можно было бы заключить, что изображение окажется сдвинутым на угол порядка rg /d, где rg - гравитационный радиус линзы, а d - характерное расстояние в задаче. Даже если взять в качестве линзы скопление, состоящее из 104 звезд, а для расстояния принять оценку d ? 10 световых лет, то и тогда этот угол составил бы всего 10-10 радиан. Разрешение подобных углов практически невозможно.
Однако такая наивная оценка просто неверна. Это следует, в частности, из исследования простейшего случая соосного расположения источника S, линзы L и наблюдателя O. Задача эта была рассмотрена в 1924 году Хвольсоном (профессор Петербургского университета, автор пятитомного курса физики, широко известного в начале века) и спустя 12 лет Эйнштейном. Правильный порядок величины угловых размеров изображения оказался намного больше первой, наивной, оценки, и это радикально меняет ситуацию с возможностью наблюдения эффектов гравитационных линз.
Изображение источника в виде окружности (ее принято называть кольцом Эйнштейна), создаваемое гравитационной линзой при аксиально-симметричном расположении, реально наблюдалось. Сейчас известно несколько источников в радиодиапазоне, которые выглядят именно так, кольцеобразно. Если, однако, гравитационная линза не лежит на прямой, соединяющей источник с наблюдателем, картина оказывается иной. В случае сферически-симметричной линзы возникают два изображения, одно из которых лежит внутри кольца Эйнштейна, соответствующего осесимметричной картине, а другое - снаружи. Подобные изображения также наблюдались, они выглядят как двойные квазары, как квазары-близнецы.
2. Главные выводы специальной теории относительности
2.1 Эйнштейновский принцип относительности
Специальная теория относительности (СТО) наряду с предположением о том, что
a) пространство - трёхмерно, однородно и изотропно, (что означает, что в пространстве нет выделенных мест и направлений)
б) время - одномерно и однородно, (нет выделенных моментов времени)
использует следующие два основополагающие принципа:
1. Никакими физическими опытами внутри замкнутой физической системы нельзя определить, покоится ли эта система или движется равномерно и прямолинейно (относительно системы бесконечно удаленных тел). Этот принцип называют принципом относительности Галилея - Эйнштейна, а соответствующие системы отсчёта - инерциальными.
2. Существует предельная скорость (мировая константа c) распространения физических объектов и воздействий, которая одинакова во всех инерциальных системах отсчета. Со скоростью c распространяется свет в вакууме.
Прямая проверка независимости скорости света от скорости источника была выполнена А.М. Бонч-Бруевичем в 1956 г. с использованием света, испускаемого экваториальными краями солнечного диска. Скорости диаметрально противоположных участков диска (за счет вращения Солнца) отличаются на 3,5 · 103м/с, а скорость испущенного ими света изменялась на 65 ±240м/c. Зависимость скорости света от скорости источника не наблюдалось.
Таким образом, все физические явления, включая распространение света (и, следовательно, все законы природы), в различных инерциальных системах отсчета выглядят совершенно одинаково. Такая особенность Законов Природы носит название лоренцевой инвариантности (от латинского invariantis - неизменяющийся).
Согласно СТО, если скорость частицы меньше скорости света в вакууме c в некоторой инерциальной системе отсчета в данный момент времени, то она не может быть сделана равной или большей c ни кинематически - переходом в другую систему отсчета, ни динамически - изменением скорости частицы, приложенными к ней силами. Поэтому распространение электромагнитных волн в вакууме является самым быстрым способом распространения взаимодействия в физических системах.
Это положение принято распространять на все типы частиц и взаимодействий, хотя прямая проверка осуществлена только для электромагнитного взаимодействия. Существование предельной скорости распространения взаимодействия приводит к ограничениям на модели в релятивистской физике. Оказывается, например, недопустимой модель абсолютно твердого тела, так как под воздействием приложенной к нему силы, все точки тела мгновенно изменяют свои механические состояния.
2.2 Синхронизация часов
В упомянутой статье Эйнштейн проанализировал свойства времени и кажущееся "очевидным" понятие одновременности. Он показал, что классическая механика приписывает времени такие свойства, которые, вообще говоря, не согласуются с опытом и являются правильными только при малых скоростях движения. Одним из центральных пунктов эйнштейновского анализа понятия времени является синхронизация часов, т.е. установление единого времени в пределах одной инерциальной системы отсчета. Если двое часов находятся в одной точке пространства (т.е. в непосредственной близости), то их синхронизация производится непосредственно - стрелки ставятся в одно и то же положение (полагают, что часы совершенно одинаковы и абсолютно точны).
Синхронизацию часов, находящихся в двух разных точках пространства, Эйнштейн предложил проводить с помощью световых сигналов. Испустим из точки A в момент t1 короткий световой сигнал, который отразится от некоторого зеркала B и вернется в точку A в момент t2. Времена распространения сигнала туда и обратно конечны (скорость сигнала конечна!) и одинаковы (изотропия пространства!). Поэтому часы в точке B будут согласованы с показаниями часов в точке A в моменты испускания (t1) и возвращения (t2) сигнала соотношениями
t1 = tB - h/c, t2 = tB + h/c,
где h = rAB - расстояние между точками A и B. Отсюда положение, в которое нужно поставить стрелки часов B в момент прихода сигнала: tB = (t1 + t2) /2. Таким способом можно синхронизовать показания всех часов, неподвижных друг относительно друга в некоторой инерциальной системе отсчета S.
Мысленные эксперименты с движущимися часами, аналогичные только что описанному, показывают, что здесь синхронизация невозможна и единого для всех инерциальных систем времени не существует. Расмотрим пример с "эйнштейновским поездом"
Пусть наблюдатель A находится посередине длинного поезда, движущегося со скоростью сравнимой со скоростью света, а наблюдатель B стоит на земле вблизи железнодорожного полотна. Устройства, находящиеся в хвосте и в голове поезда на одинаковых расстояниях от A, испускают две короткие вспышки света, которые достигают наблюдателей A и B одновременно - в тот момент, когда они поравняются друг с другом. Какие выводы сделают из одновременного прихода к ним световых сигналов наблюдатели в поезде и на земле?
Наблюдатель A: Сигналы испущены из точек, удаленных от меня на равные расстояния, следовательно, они и испущены были одновременно.
Наблюдатель B: Сигналы пришли ко мне одновременно, но в момент испускания голова поезда была ко мне ближе, поэтому сигнал от хвоста поезда прошел больший путь, следовательно он и был испущен раньше, чем сигнал от головы.
Этот пример показывает, что часы в системе "поезд" синхронизованы только с точки зрения наблюдателя, который в ней неподвижен. С точки зрения наблюдателя на земле, часы, расположенные на поезде в разных точках (в голове, в хвосте и в середине поезда) показывают разное время. События, одновременные в одной системе отсчета (световые вспышки в системе отсчета поезда), не являются одновременными в другой системе отсчета земли. Синхронизация часов находящихся в разных системах отсчета невозможна. Этот вывод не исключает совпадения показаний часов в отдельный момент времени - например, наблюдатели A и B в момент встречи могут установить одинаковые показания своих часов. Но уже в любой последующий момент показания часов разойдутся.
2.3 Преобразования Лоренца
Преобразования Лоренца, обобщающие формулы Галилея перехода от одной инерциальной системы отсчета в другую, можно получить из анализа еще одного мысленного эксперимента. Пусть начала координат систем отсчета S и S' в начальный момент t = t' совпадают и оси координат в них имеют одинаковую ориентацию. В этот момент времени в их общем начале координат пусть произошла световая вспышка. С точки зрения наблюдателя, находящегося в системе S, в ней распространяется сферическая электромагнитная волна, которая за время t пройдет расстояние r = c t от начала координат.
Но наблюдатель в движущейся системе S' также регистрирует сферическую световую волну, распространяющуюся из начала координат этой системы (точки 0') со скоростью света в вакууме c. По его часам за время t' волна пройдет расстояние r' = c t', где. Это связано с тем, что физические явления в инерциальных системах происходят одинаковым образом. Иначе, регистрируя различия, можно было бы найти "истинно" покоящуюся систему отсчета, что невозможно.
Преобразования Лоренца оставляют неизменными уравнения Максвелла, однако проверка этого утверждения выходит за рамки школьной программы по физике.
Легко видеть, что уравнения Ньютона теперь не сохраняют свой вид при преобразовании. Поэтому второй закон Ньютона необходимо модифицировать. Новая механика, основанная на принципе относительности Эйнштейна, называется релятивистской (от латинского relativus - относительный).
2.4 Собственное время, события и мировые линии частиц
В качестве часов наблюдатели в системах S, S' могут использовать любой периодический процесс, например, излучение атомов или молекул на определенных фиксированных частотах. Время, отсчитываемое по часам, движущимся вместе с данным объектом, называется собственным временем этого объекта. Для измерения длин можно взять некоторый эталон - линейку. Собственной длиной линейки называется ее длина l0 в той системе, в которой она покоится. Величина l0 равна модулю разности координат концов линейки в один и тот же момент времени.
Совокупность декартовых координат и момента времени в некоторой инерциальной системе отсчета определяют событие. Событием является, например, нахождение точечной частицы в момент времени t в точке пространства, указанной вектором.
Множество всех событий образуют "четырехмерный Мир Минковского".
Отдельные точки в четырехмерном пространстве указывают координаты и время некоторого "события". Последовательность кинематических состояний любого тела (его координаты в разные моменты времени) изображается мировой линией. Если частицы движутся только вдоль оси 0x, то наглядно представить "Мир Минковского" можно с помощью плоскости координат. Время удобно умножить на скорость света, чтобы обе координаты имели одинаковую размерность. Это можно сделать, поскольку скорость света - универсальная мировая константа.
Мировыми линиями (в отличие от траекторий классической механики) обладают не только движущиеся, но и покоящиеся в данной инерциальной системе отсчета тела. Так, мировая линия тела, покоящегося в начале координат, будет совпадать с временной осью, а тела, покоящегося в пространственной точке xa - является прямой AB, параллельной оси времени. Приходим к выводу, что новая система координат косоугольна! Если попытаться найти связь между отрезками x', c t' и x, c t, просто проектируя отрезки (так как это делается в эвклидовом случае), то получится неправильный результат. Преобразования Лоренца не только поворачивают оси, но и искажают масштабы координат по осям!
Итак, основной результат состоит в том, что преобразования Лоренца можно интерпретировать как псевдоевклидово вращение системы координат в пространстве Минковского.
2.5 Замедление времени
Рассмотрим часы, покоящиеся в начале координат движущейся системы (x = 0), которые перемещаются относительно лабораторной системы координат со скоростью V, так что их координата x = Vt пропорциональна времени, определяемому неподвижными часами. Инвариантность интервала позволяет тогда определить показания движущихся часов. Время, измеряемое часами, движущимися относительно лабораторной системы отсчета, замедляется. Как ни покажется странным, но тот же вывод справедлив относительно замедления темпа хода часов в лабораторной системе координат с точки зрения наблюдателя из движущейся системы отсчета, т.е. "движущиеся" и "покоящиеся" часы взаимно отстают друг от друга. С последним замечанием тесно связан широко известный парадокс близнецов. Замедление хода времени в движущейся системе отсчета было экспериментально подтверждено американскими физиками Б. Росси и Д.Х. Холлом в 1941 году. Они наблюдали увеличение среднего времени жизни мюонов, двигавшихся со скоростью v в 6-8 раз по сравнению с временем жизни неподвижных мюонов. Особая ценность этого эксперимента состоит в том, что процесс распада мюонов определяется слабым взаимодействием, в то время как СТО была построена для описания систем с электромагнитным взаимодействием.
Заключение
Cпециальная теория относительности" ("СТО") - фундаментальная физическая теория пространственно-временных свойств всех физических процессов. Однако эта гипотеза, получившая официальное признание и вошедшая в учебные программы, с момента своего появления и по сей день вызывает недоумение большой части думающих ученых. Многим авторам было отказано в публикации их работ только на том основании, что предлагаемый ими материал противоречит теории относительности. Более того, многие учёные находят СТО и вообще не состоятельной.
Литература
1. ???????? ?. ? ??????????????? ?????????? ???. ????. ??????, ?.1.?., ?????, 1965.
2. ??????? ??????? "??????? ? ?? ????????? ?? ?????????"
3. ???????? ????????? ????????????
4. ?????????????
5.?. ?. ???????, "???? ?????? ???????????????", ???????: ?????????, 1989.
6.?. ?. ???????, ?.?. ???????? "???????????????? ??? ? ?????????????? ?????? ??????????", ?: ???-?? ????. ??-??, 1986.
7. ?.?. ??????, "???????? ?????? ????????", ?.: "?????? ?????", 1985.
15.?. ??????. ??????? ??????????? ??????. - ?.: ???, 1977.
16. ?.?. ???????. ???????? ?????? ??????????????? - ???????????? ????????? ??????????? ?????? ???????????????.
Список использованных источников:
1. “??????? ???????????????" ??????, ????????, ???????? ? ??????????; ????; 1935 ?., ???.134
2. ?????? ???????? ??????, ?.?. ???????????; ??? 5, ???.172
3.?. ????????. ? ??????????????? ?????????? ????. - ?.: 1966.
4. "????? ?????? ???????????????"; ?.?. ????????; ??????., 1927 ?
5. "????????? ?????? ???????????????"; ?.?. ?????????; ??????., 1965 ?.
6. ?.?. ???????, ??????????? ?????? ? ??????? ?????. ?.: ???????????, 1990.
7.?.?. ??????????, ?.?. ????????????, ?.?. ??????, ?????????????? ???. (??????????? "?????", ?????? 34). ?.: ?????, 1984.
8.?. ??????, ??. ?????, ?????? ???????????? - ???????. ?.: ???, 1969.
9.И. И. Гольденблат, Парадоксы времени в релятивистской механике. М.: Наука, 1972.
10. ?.?. ????????, ?.?. ???????????, ?.?. ?????, 1001 ?????? ?? ?????? ? ????????, ??????????, ?????????. ?????? - ???????, ??????. 1997.
11.?. ?. ???????? ?????? ??????????????? ? ???????. ?.: ?????, 1989.
12. ?.?. ??????, ?.?. ?????, ???????-?????????? ?? ???????????? ??????. ????? 3.?., 1995.
13. ????????, ?. ???????. ???????? ??????. - ?.: 1966.
14.?.?. ????????. ? ?????? ???????????????. - ?.: ?????, 1970.
15.?. ??????. ??????? ??????????? ??????. - ?.: ???, 1977.
16. ?.?. ???????. ???????? ?????? ??????????????? - ???????????? ????????? ??????????? ?????? ???????????????.
17. ?.?.?. ?????. ???????????? ? ??????????? ?????. - ?.: ?????, 1990. [????1]
Подобные документы
История создания общей теории относительности Эйнштейна. Принцип эквивалентности и геометризация тяготения. Черные дыры. Гравитационные линзы и коричневые карлики. Релятивистская и калибровочная теории гравитации. Модифицированная ньютоновская динамика.
реферат [188,4 K], добавлен 10.12.2013Обобщение закона тяготения Ньютона. Принцип эквивалентности сил инерции и сил тяготения. Потенциальная энергия тела. Теория тяготения Эйнштейна. Положения общей теории относительности (ОТО). Следствия из принципа эквивалентности, подтверждающие ОТО.
презентация [6,6 M], добавлен 13.02.2016Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.
реферат [14,5 K], добавлен 24.02.2009Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.
реферат [42,9 K], добавлен 27.07.2010Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.
реферат [16,0 K], добавлен 29.03.2003Основные положения специальной теории относительности. Проведение расчета эффекта искривления пространства на этапе математического описания гравитационного взаимодействия. Сравнительное описание математической и физической моделей гравитационного поля.
статья [42,4 K], добавлен 17.03.2011Экспериментальные основы специальной теории относительности, ее основные постулаты. Принцип относительности Эйнштейна. Относительность одновременности как следствие постоянства скорости света. Относительность пространственных и временных интервалов.
презентация [1,8 M], добавлен 23.10.2013Принцип относительности Г. Галилея для механических явлений. Основные постулаты теории относительности А. Эйнштейна. Принципы относительности и инвариантности скорости света. Преобразования координат Лоренца. Основной закон релятивистской динамики.
реферат [119,5 K], добавлен 01.11.2013Инерциальные системы отсчета. Классический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности Эйнштейна. Релятивистский закон изменения длин промежутков времени. Основной закон релятивистской динамики.
реферат [286,2 K], добавлен 27.03.2012Преобразования Галилея и Лоренца. Создание специальной теории относительности. Обоснование постулатов Эйнштейна и элементов релятивистской динамики. Принцип равенства гравитационной и инертной масс. Пространство-время ОТО и концепция эквивалентности.
презентация [329,0 K], добавлен 27.02.2012