Физико-механические свойства льда и снега

Исследование физико-механических свойств льда и снега. Выбор наиболее вероятных физико-механических характеристик ледяного покрова: плотность льда, коэффициент Пуассона, модуль упругости. Прочность льда при изгибе. Упругие свойства пресноводного льда.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 08.07.2010
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министeрствo oбрaзoвaния и нaуки Рoссийскoй Фeдeрaции

Фeдeрaльнoe aгeнтствo пo oбрaзoвaнию

Урaльский Гoсудaрствeнный Экoнoмичeский Унивeрситeт

Дипломная работа на тему:

«Физико-механические свойства льда и снега»

Каменск-Уральский 2008

Введение

Глава I. Физико-механические свойства льда и снега

1.1 Краткие сведенья о физико-механических свойствах пресноводного льда и снега

1.2 Выбор наиболее вероятных физико-механических характеристик ледяного покрова

1.2.1 Плотность льда

1.2.2 Коэффициент Пуассона

1.2.3 Модуль упругости (модуль Юнга)

1.2.4 Модуль сдвига

1.2.5 Прочность льда при изгибе

1.2.6 Механические свойства

1.2.7 Упругие свойства пресноводного льда

1.3 Несущая способность ледяного покрова

1.4 Экспериментальные исследования деформаций ледяного покрова, вызываемых движущимися нагрузками

Глава II. Выбор наиболее эффективных способов повышения несущей способности ледяного покрова

2.1 Результаты информационно патентного поиска

2.2 Классификация методов повышения несущей способности ледяного покрова

2.2.1 Уменьшение температурного градиента

2.2.2 Армирование

2.2.3 Применение свай

2.2.4 Гидродинамические методы

Введение

В условиях нашей страны, имеющей большие территории, до сих пор единственным способом передвижения наземного транспорта и доставки грузов до некоторых отдаленных населенных пунктов в зимнее время осуществляется через ледовые переправы рек и озер. Некоторые из таких переправ не надежны, что влечет за собой гибель людей и техники.

Но до сих пор еще не разработана такая теория волновых колебаний ледяного покрова, которая бы точно отвечала на практические задачи разрушения льда изгибно-гравитационными волнами (ИГВ) от движущийся по нему нагрузке, которую можно было применить для создания надежных переправ.

На сегодняшний день в России существует два вида переправ официальные и не официальные. Не официальные переправы не организованны для движения транспорта или грузов что влечет за собой большинство несчастных случаев. Официальные переправы, которые создаются только путем расчистки от снега ледяной поверхности, для повышения несущей способности ледяного покрова не эффективны, т.к. не учитывают, что многообразие свойств ледяного покрова не стабильны во времени и зависят от природных факторов, глубины водоема, интенсивности течения и т.д.

Перед данной дипломной работой ставиться цель - найти эффективные методы увеличения несущей способности ледяного покрова и способы создания надежных переправ на любых акваториях нашей страны. Данная цель достигается в решении задач связанных в установлении физико-механических свойств пресноводного льда и снега, исследований характера деформаций ледяного покрова под действием движущийся нагрузки и анализа имеющихся на сегодняшний день патентов для создания ледяной переправы.

Глава I. Физико-механические свойства льда и снега

1.1 Краткие сведенья о физико-механических свойствах пресноводного льда и снега

Лед принадлежит к числу давно известных материалов, но, тем не менее, свойства его изучены далеко не достаточно. Это объясняется большим разнообразием структуры, составов, физико-механических состояний. Существенную роль в поведении льда играют и временные процессы. Однако здесь рассмотрим лишь те характеристики льда и ледяного покрова, которые определяющим образом влияют на его взаимодействие со средствами передвижения транспортных средств.

Лед представляет собой поликристаллическое тело, состоящее из множества кристаллов неправильной формы, называемых зернами. Зерна состоят из упорядоченных в пространстве однотипных элементарных ячеек, образующих кристаллическую решетку. Существует много типов решеток. Кристаллическая структура льда определяется строением молекул воды.

Во льду атомы кислорода расположены в виде гексагональных колец (рис.1). Каждый атом кислорода, в, свою очередь, находится в центре тетраэдра, четыре вершины которого также заняты атомами кислорода.

Такая кристаллографическая упорядоченная сетка атомов кислорода связана атомами водорода, положение которого в этих связях неупорядоченное.

Единичная ячейка кристаллической структуры содержит четыре молекулы размерами примерно 4,5 х 4,5 х 7,4, плотностью 0,917 г/см3 при 0°С. Базисная плоскость (0001) является плоскостью скольжения решетки, и поэтому касательное напряжение, приложенное параллельно ей, вызывает скорость деформации на два порядка больше, чем напряжение, приложенное по нормали.

В обычных условиях лед существует при температурах, весьма близких к точке плавления. Это в значительной степени определяет его физико-механические свойства и поведение под нагрузкой. В разных условиях лед проявляет упругость, нелинейную вязкость, хрупкое разрушение, разрушение при ползучести и т. д. Связано это с тем, что процессы деформирования льда часто сопровождаются фазовыми переходами.

Известно, что даже наиболее чистые формы пресноводного льда содержат примеси в виде твердых частиц, растворимых веществ и газов. Эти примеси в значительной степени влияют па процесс образования зародышей и движение дислокаций, определяя прочность ледяного покрова. Именно движение дислокаций решительным образом меняет свойства кристаллических тел и объясняет, почему прочность реальных кристаллов в сотни и тысячи раз меньше теоретической.

Кристаллическое строение льда зависит от многих причин, в том числе от истории ледообразования. У пресного льда кристаллы имеют больший размер, чем у морского. Это влияет на деформацию и прочность речного льда.

Эксперименты показали, что при одном и том же напряжении сдвига скорости деформаций поликристаллического льда много меньше, чем в кристалле. Это связано с хаотичной ориентировкой плоскостей скольжения, затрудняющей сдвиги. Именно разная форма и размеры зерен, и хаотическое их расположение в поликристаллическом льду не позволяют проявиться индивидуальным особенностям кристаллов. При оценке механических свойств структура материала не так важна, важнее некоторые макроскопические свойства - прочность, вязкость, модуль упругости и т. д.

Хаотическое расположение зерен в поликристаллическом льду позволяет с достаточной для практики точностью рассматривать ледяной покров как тело изотропное и однородное. Лишь по толщине льда необходимо учитывать анизотропию, связанную с температурными градиентами и историей ледообразования.

В дальнейшем будем полагать, что размеры образцов льда велики по сравнению с размерами зерен и кристаллов, входящих в этот образец.

Оценка прочности ледяного покрова в значительной степени зависит от объективной оценки его физико-механических характеристик, определяемых при испытаниях по соответствующим методикам в лабораторных или полевых условиях.

Как правило, получаемые результаты испытаний значительно расходятся между собой, что объясняется как разными условиями их проведения, так и тем, что многочисленные и важные факторы (размеры образцов, температура льда, объем полостей воздуха в нем, история ледообразования и т. д.) часто при этом не учитываются.

Для возможности сопоставления механических свойств при испытаниях необходимо соблюдать подобие геометрическое, технологическое, механическое, физическое и энергетическое.

Приведем лишь основные физико-механические свойства для пресноводного льда, в том объеме, который необходим для дальнейшего изложения.

Предполагается, что при температурах от -3°С и ниже, и при кратковременных воздействиях лед ведет себя как вполне упругое тело, подчиняющееся закону Гука. Пластическая деформация при этом не успевает развиться.

При определении модуля упругости льда используют статический и динамический способы. Статический способ позволяет получить при статическом нагружении образцов так называемый модуль деформации, который всегда меньше динамического:

ЕСT= (5,69 - 0,648 T)*103МПа; Eд=(8 + 9,8)*103МПа,

где Т - абсолютная температура воздуха.

- Коэффициент Пуассона м=0,31-0,36.

- Модуль сдвига G=(3,0-3,8)*103MПa.

Значение прочности льда на сжатие в зависимости от температуры приведены ниже [14]:

Т, 0C

0 -5

-5-10

10-15

-15-20

у, МПа…

1.63.0

3.03.6

3.63.9

3.04.0

Прочность при растяжении:

Т, 0C

0-10

-10-20

-20-35

уp, МПа...

0.91.2

1.21.5

1.41.8

Прочность льда на изгиб оценивают в ходе разрушения образцов льда при изгибе по измерениям приложенного усилия и размеров этих образцов. Считается, что наиболее надежные результаты дают испытания «клавиш» на плаву, вырезанных из ледяного покрова уu=0.47-0.71 MПа.

Прочность на изгиб существенно зависит от скорости деформации. Представляется обоснованной зависимость прочности льда на изгиб, предложенная В. В. Лавровым [34] и показанная на рисунке 2. Прочность льда при растяжении и сжатии различна, поэтому нейтральная ось смещается при изгибе и часто характер распределения напряжений

по толщине пластины становится нелинейным. Прочность льда на срез при отрицательных температурах воздуха уср=0.6-1,1МПа.

В последнее время развитие получили исследования в области механики роста трещин в различных материалах, несколько опытов было проведено во льду [35,36]. Известно, что основной характеристикой роста трещин является коэффициент вязкости разрушения в вершине трещины отрыва К1С. Так, в работе [36] значения К1С поликристаллического льда, полученные экспериментально, равны 0,300,15 МПа *м1/2 (при температуре от -2 до -14° С). Экспериментальные измерения К1С проведены также Гудменом при температурах -4, -11 и -24°С. Средние значения К1С оказались соответственно равными 0,118; 0,119; 0,108 МПа*м1/2 .

В [36] отмечается, что коэффициент вязкости разрушения практически не зависит от скорости нагружения и температуры.

Коэффициенты трения натурного льда о корпус судна изменяются в широких пределах. Например, динамический коэффициент трения меняется в пределах 0,020,20, а статический коэффициент в пределах 0,041,0 [22]. Плотность льда рл колеблется в пределах от 890 до 920 кг/м. Теплопроводность пресного льда л= 2,22Вт/м*К.

Температуропроводность a=л/cpл где - cp удельная теплоемкость льда при постоянном давлении, например, а= 4,76*107 м2/с при T=-5оС.

Теплоемкость пресноводного льда с = (2.12 ± 0,0078Т) Дж/г*К. Поверхностная энергия (количество работы, необходимой для создания единицы площади поверхности раздела фаз в изотермическом процессе) равна 33 ± 3 МДж/м2.

Снег, лежащий на поверхности льда, влияет на взаимодействие судов с ледяным покровом. Приведем некоторые механические свойства снега. Плотность свежевыпавшего снега рсл=60130 кг/м3, свежего уплотненного ветром рслв=180220 кг/м3, старого рснст=240250 кг/м3.

Рис. 3. Прочность снега на сжатие, срез, растяжение и изгиб.

На рисунке 3 приведены результаты определения пределов прочности снега на срез уср, сжатие усж, изгиб уu и растяжение уp при температуре -10°С [36].

1.2 Выбор наиболее вероятных физико-механических характеристик ледяного покрова

Проведенные исследования позволяют выбрать численные значения параметров, характеризующих прочностные свойства льда: модуль упругости (модуль Юнга), модуль упругости при изгибе, коэффициент Пуассона, пределы прочности льда при изгибе и плотность льда в составе ледяного покрова. Однако значение этих величин сильно разнятся. Это можно объяснить использованием различных методик проведения экспериментов, влиянием масштабного а, несовершенством используемого оборудования, значительной зависимостью свойств льда от условий приготовления экспериментальных образцов, характера ледостава, химического состава воды, структуры и др.

Для оценки влияния физико-механических характеристик льда на НДС ледяного покрова вначале рассмотрим реально возможные диапазоны изменения интересующих параметров.

1.2.1 Плотность льда

Плотность льда в значительной степени определяется структурой льда. Например, для столбчато-гранулированного льда рл=900 кг/м3, а для зернистого полукристаллического рл=850 кг/м3. Возможные диапазоны изменения плотности льда лежат в пределах рл=800917 кг/м3 или рл=890920 кг/м. В качестве среднего значения рл для речного льда при отрицательной температуре может быть принято значение рл=920 кг/м3.

Плотность морского льда незначительно отличается от пресноводного, так приводятся возможные диапазоны этой величины pл=830930 кг/м и в качестве расчетного рекомендуется рл=900 кг/м. По данным исследований В.В. Богородского [19], В.В. Лаврова [34], М.И. Серикова [37], В.Н. Смирнова [38] плотность пресноводного льда колеблется в пределах рл=870920 кг/м3, а для морского льда рл=840930 кг/м3.

Как видно из анализа величина плотности льда довольно стабильна и для морского льда лежит в пределах 840930 кг/м3, а для пресноводного - в пределах 800920 кг/м. Таким образом, реальный диапазон изменения плотности составляет 800930 кг/м3, а наиболее вероятные значения плотности для морского льда составляет 920 кг/м3, для речного 900 кг/м.

1.2.2 Коэффициент Пуассона

Коэффициент Пуассона м характеризует отношение относительной поперечной к относительной продольной деформации и влияет на величину цилиндрической жесткости ледяной пластины D, т.е. на НДС ледяного покрова. Коэффициент Пуассона, так же как и плотность льда, изменяется в пределах узкого диапазона. Так, м колеблется в пределах 0,310,36. Для льда из дистиллированной воды, не содержащей пузырьков газа, при разной температуре и атмосферном давлении по данным таб.3

Таб. 3. Коэффициент Пуассона для дистиллированной воды.

T,°с

м

T,°С

м

-1

0,368

-25

0,358

-10

0,362

-50

0,358

Коэффициент Пуассона соленого льда практически не отличается от речного. По рекомендации лаборатории ледотермики ВНИИГа им. В.Е. Веденеева для льда Финского залива, как для изотропного тела, можно принять м = 0,4 при толщине льда 0,3м < h < 1,0 м [36]. Можно рекомендовать для пресноводного льда м =0,420,34 .

М.И. Сериков [37] с помощью резонансного метода нашел, что м пресноводного льда для диапазона температур от 0 до -31°С равно 0,4140,327.

К.Ф. Войтковский [24] приводит значения коэффициента Пуассона для пресноводного льда, определенные Б.П. Вейнбергом, Б.Д. Карташкиным и Б.А., Савельевым, изменяющиеся от 0,23 до 0,47 (наиболее вероятные значения 0,340,36).

Таким образом, зависимость коэффициента Пуассона от температуры, солености и др. факторов мало заметна. Объясняется это, по-видимому, тем, что м характеризует отношение величин деформации, каждая из которых меняется одинаково в зависимости от ледовых условий.

Для теоретических исследований диапазон изменения м может быть принят 0,300,43, а наиболее вероятные значения для пресноводного льда 0,35, для морского 0,33.

1.2.3 Модуль упругости (модуль Юнга)

Модуль упругости Е характеризует сопротивляемость льда упругой деформации при растяжении или сжатии и линейно связан с цилиндрической жесткостью D ледяной пластины:

(1.1)

Величина модуля определяет глубину и кривизну первоначальной чаши прогиба ледяного покрова при действии статической нагрузки, а значит, влияет не только на амплитуду ИГВ, возбуждаемых движущейся нагрузкой, но и на интенсивность развития волнообразования в неустановившихся режимах.

Модуль упругости сильно зависит от режима нагружения. В связи с этим принято различать статический ( ЕСT ) и динамический ( ЕД ) модули упругости. При динамическом нагружении упругие свойства льда уменьшаются, т.е. модуль упругости возрастает. В работе В.П.Берденникова [15] отмечается зависимость Е от температуры окружающего воздуха:

МПа, (1.2)

где Т- абсолютная температура воздуха.

По данным Гольда (1958г.) модуль Юнга при Т = -5°С равен (9,09,8)*10 дин/см2. Рекомендуется принимать значение модуля упругости в диапазоне (3500062000) кг/см2. В качестве среднего значения Е рекомендуется величина 4,23*10 Кн/см2. Опыты на ледовой трассе Ладожского озера позволили К.Е. Иванову получить для речного льда значение E=40000 кг/см2 [29]

Анализ экспериментальных исследований позволил получить диапазон вероятных значений ЕД в пределах (8,09,8)*103 МПа. Значения ЕД по работе В.В. Богородского [20] представлены в Таблице 4.

Таблица 4. Значения динамического модуля упругости от плотности.

Плотность, кг/м3

ЕД, Н/м2

910-914

90000*105

900

75000*105

700-800

40000*1О5

По рекомендации лаборатории ВНИИГа им. В.Е. Веденеева в ледотехнических расчетах Е должен составлять 4* 10 МПа. Обобщив результаты определения Е на 1940г. Б.П. Вайнборг подсчитал, что наиболее вероятное его значение (7080)* 10 кг/см.

Позднее Б. Д. Карташкин (1947г.) установил, что при сжатии, растяжении и изгибе в интервале температур от -5 до -16°С модуль упругости в среднем равен 40*10 кг/см. В.П. Берденников (1948г.) считал, что модуль упругости монолитного льда равен 90* 10 кг/см.

Анализ имеющихся результатов позволяет сделать заключение, что модуль упругости, характеризующий упругие свойства льда и определяемый в результате упругой деформации является в некоторой степени величиной неопределенной, потому что выделить при деформации ее упругую часть очень трудно. В то же время только при упругих деформациях модуль Юнга может быть определен надежно.

В отличие от деформации упругих тел величина деформации льда зависит от времени приложения нагрузки. Точно также от него зависит и модуль упругости льда, характеризующий зависимость величины деформации от нагрузки. Поэтому модуль упругости для льда следует определять в наиболее короткий промежуток времени приложения нагрузки, а наиболее подходящими методами ее определения следует считать динамические. К.Ф. Войтковский считает наиболее достоверной величиной E=90000 кг/см2, которой и рекомендует пользоваться для расчетов упругой деформации льда при динамическом воздействии нагрузок.

При длительном воздействии нагрузок за упругую деформацию иногда целесообразно принимать величину обратимой деформации, возникшую в течение первых секунд, после приложения нагрузки, как величину, более полно отражающую упругие свойства льда. Для расчетов величины такой деформации, определенной статическими методами при сжатии, растяжении или изгибе, величину модуля упругости льда можно принять равной 40000 кг/см. При этом следует учитывать отмеченную зависимость его величины от напряжений и других факторов. Вследствие того, что лед не чисто упругий материал, В.В.Лавров предлагает Е, определенный статическим методом, назвать модулем деформации.

Определенной зависимости модуля от температуры, по рассмотренным значениям обнаружить не удается. Однако, по мнению Савельева Б.А. повышение температур морского льда ведет к уменьшению значения модуля упругости. Такую тенденцию исследователь объясняет увеличением во льду жидкой фазы.

Для сравнения и более удобного практического использования составлена таблица 5, в которой приведены экстремальные и наиболее вероятные значения модуля Юнга для пресноводного льда.

Таким образом, для исследования влияния значения Е на НДС ледяного покрова следует охватить диапазоны изменения модуля упругости в пределах (З10)*103МПа.

Таблица 5. Модуль Юнга для пресноводного льда, кг/см2.

Метод

Условия нагружения

Температура льда, °С

Модуль Юнга

Статический

Сжатие

-3 -5

3000 84000

Растяжение

0 -8

1700050000

Изгиб

0 -21

6000117000

Изгиб ледяного покрова

-3 -8

29600 44000

Изгиб консольных балок

-

2400045000

Резонансный

По продольным

0 -10

9180098000

колебаниям

-10-40

97000111000

Сейсмический

-

-5 -10

70000125000

Наиболее вероятное значение

-

-5 -10

8500090000

1.2.4 Модуль сдвига

Модуль сдвига характеризует сопротивляемость льда сдвиговым деформациям. Он не является самостоятельной величиной, определяющей другие свойства материала, а зависит от Е и м.

(1.3)

В качестве непосредственных методов измерения G наиболее приемлемым является статический метод, заключающийся в испытаниях цилиндрических или призматических образцов льда на кручение.

В работе [24] К.Ф. Войтковский приводит значения G, определенные статическим методом при различных температурах в таблице 6.

Таблица 6. Значения модуля сдвига при различных температурах.

T, °С

G, кг/см2

0-10

8*10334*103

-10-20

(1021)*10334*103

При сейсмическом методе определения G модуль сдвига вычисляется по формуле (1.3.).

М.И. Сериков [37] определял G динамическим методом. В частности для невского льда при температуре от -3,0 до -8,0°С он получил значения G=(3424036760) кг/см2, а при температуре от -10 до -30°С G= (З600037700) кг/см2. В.В. Богородский в интервале температур -3,8 до -13°С получил G=(1040034300) кг/см2, и К.Ф. Войтковский [25] для расчетов упругой деформации при динамическом воздействии нагрузок предлагает G=(3034)*103 кг/см2. По имеющимся данным составлена таблица 7:

Температура льда, °С

Лед

Морской

Пресноводный

0-5

1570030200

2400036260

-5-15

1040034300

3530049000

-31

-

З660037700

Таким образом, реальный диапазон изменения модуля сдвига составляет (23,8)* 103 МПа.

1.2.5 Прочность льда при изгибе

Из всех прочностных характеристик рассмотрим только предел прочности льда на изгиб. Во внимание принимается только этот вид деформации потому, что волновая нагрузка на лед от распространяющихся ИГВ приводит к разрушению ледяного покрова только в результате деформации изгиба.

Прочность льда на изгиб определяется несколькими способами: по разрушению балок, свободно лежащих на двух опорах, по разрушению консолей, либо по разрушению круговых плит.

Подробный перечень результатов по определению временного сопротивления на изгиб пресноводного льда, полученных в 1897г. и 1953г. дает К.Ф. Войтковский [24]. В.В. Лавров приводит свои данные по результатам пресноводного озерного, лабораторного и структурно-моделируемого льда. Временные сопротивления при изгибе балок морского льда в большом количестве определены И.Г. Петровым [39].

В работе М.И. Серикова [37] приведены значения временных сопротивлений при изгибе балок из морского льда и консолей, выполненных в ледяном покрове. Последние показали временное сопротивление на изгиб равное (5,66,6) кг/см при температуре воздуха до -5°С.

В.В. Лавров обобщил сведения о прочности льда с 1965г. по 1968г. и определил, что среднее значение временного сопротивления морского льда при изгибе и температуре -7°С равно: зимний лед 5,7 кг/см, осенне-зимний 6,7 кг/см, осенний 8,3 кг/см; пак 13,0 кг/см.

1.2.6 Механические свойства

Вязкость

Вязкость льда характеризует сопротивление твердого тела развитию остаточной деформации под действием внешних сил. Количественно коэффициент вязкости (коэффициент внутреннего трения) з определяется касательной силой F, которая должна быть приложена к единице площади S сдвигаемого слоя, чтобы поддержать в этом слое ламинарное течение с постоянной скоростью относительного сдвига е, равной единице:

(1.4),

где ус - напряжение сдвига.

Статическими методами коэффициент вязкости льда определяется многими авторами при деформации кручения, сдвига, растяжения, сжатия и изгиба. Одним из распространенных способов является метод изгиба свободной балки, лежащей на двух опорах, при котором коэффициент з вычисляется по формуле:

(1.5),

где b, l, h - ширина, длина, высота балки соответственно; v - установившаяся скорость пластической деформации.

При растяжении (сжатии) стержня сечением S:

(1.6)

При чистом кручении стержня радиусом r:

(1.7),

где Мкр - закручивающий момент; - скорость изменения угла закручивания.

Коэффициент динамической вязкости можно определить по декременту механических колебаний образца Д на какой-то частоте f и известному модулю упругости Е, используя для этих целей известное соотношение:

(1.8)

Экспериментальные значения коэффициента вязкости льда, полученные статическими методами, настолько разноречивы (от 109 до 10 Па*с), что трудно установить какую-либо закономерность его изменения. В. В. Лавров [34], указывая девять факторов, влияющих на изменчивость значений з (кристаллическое строение, температура, нагрузка, размер кристаллов и др.), приходит к такому же выводу, как и К. Ф. Войтковский [24], считая, что коэффициент вязкости льда - практически условная величина, характеризующая отношение напряжения к скорости ползучести в заданных условиях деформирования и в заданный момент времени, а вязкость льда не удовлетворяет закону Ньютона из-за отсутствия линейной зависимости между напряжением и скоростью деформации.

Время релаксации

Релаксация - необратимый (характеризующийся диссипативными потерями энергии) процесс возвращения в состояние термодинамического равновесия макроскопической замкнутой системы, выведенной из такого состояния. Различают быстрые и медленные процессы релаксации и соответствующие им времена. В первом случае релаксация существенно зависит от микроскопических характеристик системы и, в частности, от параметров, характеризующих взаимодействие между частицами (обычно это время и длина свободного пробега частиц tc и l). Время релаксации быстрых процессов . К быстрым процессам относятся, например, диэлектрическая, упругая и спин-решеточная релаксации.

Частота максимального уменьшения амплитуды колебаний для каждой температуры определяется как величина, обратная времени релаксации.

Дипольное взаимодействие между протонами различных молекул льда способствует релаксации спина [40]. При определении спин-решеточной релаксации использовалась формула Онзагера:

здесь b - внутримолекулярное расстояние между протонами (0,162 нм); - частота Лармора; - протонное гиромагнитное отношение;; коэффициент 0,7 соответствует уменьшению из-за внутримолекулярных взаимодействий.

Медленные процессы релаксации выравнивают, например, температуру, давление, средние скорости и другие характеристики всех частей системы. Время релаксации в этом случае пропорционально размерам системы L и велико по сравнению с tс а именно:

К медленным процессам релаксации относятся также вязкое течение, диффузия, теплопроводность, электропроводность и т. Д. Если отклонение от равновесия мало, то релаксация часто протекает до закону f=f0*e-t/ф, где f0 - равновесное значение некоторой исследуемой функции системы. Время релаксации напряжений во льду, согласно модели твердого тела Максвелла, определяется вязкостью и модулем сдвига:

Таблица 7. Время спин-решеточной релаксации во льду, в секундах, по данным работы Л.К. Раннелса [40].

Время

релаксации

Температура льда, °С

-1,5

-16,8

-20,9

-27,5

Вычислено по фдиэл

3,2

7,8

21

43

Экспериментальное

0,50,8

1,21,9

3,45,1

7,210,2

Например, при з =10121013 Па*с и G = 1500 МПа ф =6606660 с (от 11 мин. до 1,85 часа) [34].

Следовательно, время релаксации льда по аналогии с коэффициентом вязкости не является физической константой. Диапазон изменения ф - от малых долей секунды до нескольких часов [24, 40].

Для случая одностороннего сжатия пресноводного льда (в предположении, что G =1500 МПа) получено следующее эмпирическое уравнение релаксации [24]:

где Т- температура без знака «минус», °С; t- время, ч.

Прочность

Прочность - это свойство материалов в определенных условиях и пределах, не разрушаясь, воспринимать различные механические нагрузки и неравномерные воздействия физических полей.

Прочность льда в значительной степени зависит от многообразия его структурных особенностей.

На прочность льда сильно влияют внешние условия - характер нагрузок, тепловой режим, агрессивность среды, поверхностные эффекты и т. д. Реальный лед содержит многочисленные повреждения - от субмикроскопических и микроскопических дефектов до крупных пор и магистральных трещин.

Основы физических теорий течения и разрушения твердых тел стали успешно развиваться лить в последние годы, поэтому сейчас не всегда возможно, даже качественно объяснить некоторые особенности процесса разрушения. Использование этих теорий для количественной оценки прочности такого сложного тела, как лед, пока малоперспективно. В последние годы значение проблемы прочности льда возросло, что и стимулировало интенсивные исследования в этом направлении.

Теоретический расчет прочности на разрыв уp (напряжении, при котором наступает разрыв) для реальных тел представляет большие трудности. Значение уp при одновременном разрыве всех межатомных связей на поверхности разрыва оценивается в 0,1E, где Е - модуль Юнга. Обычно экспериментальные значения прочности на несколько порядков меньше теоретических. Причина низкой прочности обычных тел - неравномерное распределение внутренних напряжений. При сложении одноименных внешних и внутренних напряжений возникают локальные перенапряжения и разрыв межатомных связей - так зарождаются разрывы оплошности тела. Рост и слияние разрывов образуют макроскопическую трещину, развитие которой приводит к разрушению тела.

В настоящее время проблема прочности имеет механическую и кинетическую концепции. По механической концепции разрушение есть результат потери устойчивости твердого тела. Считается, что для каждого материала имеется определенное пороговое напряжение. При напряжении ниже порога - тело устойчиво и может сохранять целостность под нагрузкой сколь угодно долго. Это пороговое напряжение принимается за меру прочности тела.

В кинетической концепции основным является процесс развития разрушения. Разрушение происходит постепенно вследствие развития и накопления субмикроскопических трещин. Этот процесс развивается в напряженном теле под действием тепловых флюктуации. Вводится понятие о долговечности под нагрузкой, т.е. о времени ф, необходимом для развития процесса от момента погружения тела до его разрушения.

Долговечность тела ф, находящегося под растягивающей нагрузкой, разрывное напряжение у и абсолютная температура Т, согласно С. Н. Журкову, связаны соотношением:

где ф0,u0, - постоянные величины, определяемые физико-химической природой твердого тела и его структурой; k - постоянная Больцмана, причем энергетический барьер близок по своему значению к энергии связи атомов в кристалле. Для льда энергия активации u0 =0,6 Дж/кг, ф =4,6*1017 с, =1,4*1626 м3/молек.[40].

Закономерность Журкова отрицает понятие о пределе прочности. Вопрос о том, какую нагрузку способно выдержать тело, т. е. какова его прочность, без указания времени, в течение которого оно должно сохраниться неразорванным, не имеет однозначного ответа. Это показывает, что термины «предел прочности», «предельное разрывное напряжение» условны. Они теряют смысл при суждении о физической природе прочности твердых тел, но вполне удобны для практики.

Сейчас в качестве критериев прочности применяют следующие характеристики [31]: предел пропорциональности, предел упругости, предел текучести, предел ползучести, предел прочности (временное сопротивление) и предел выносливости.

Предел пропорциональности упц - напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями достигает некоторого определенного значения, устанавливаемого техническими условиями. Критерий упц ограничивает область справедливости закона Гука. При практических расчетах на прочность предел пропорциональности принимается равным пределу текучести.

Предел упругости уу - напряжение, при котором остаточные деформации впервые достигают некоторого значения, характеризуемого определенным допуском, устанавливаемым техническими условиями (например, 0,001; 0,003; 0,03%). Критерий уу ограничивает область упругих деформаций, при практических расчетах принимается равным пределу текучести.

Предел текучести уm - напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих такую площадку. Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести: напряжение, при котором остаточная деформация образца достигает определенного значения, установленного техническими условиями. Если допуск на остаточную деформацию не оговорен, то подразумевается 0,2%. Значение уm устанавливает границу между упругой и упруго-пластической зонами деформирования и является основной характеристикой при оценке прочности пластичных материалов.

Предел прочности (временное сопротивление) ув - условное напряжение (определяемое по отношению действующей силы к исходной площади поперечного сечения образца), отвечающее наибольшей нагрузке, предшествующей разрушению образца. Является основной характеристикой материалов, разрушающихся при малых пластических деформациях.

Предел ползучести упл наибольшее напряжение, при котором скорость или деформация ползучести за определенный промежуток времени не превышает значения, установленного техническими условиями. При пользовании термином обязательно указывается условие определения предела ползучести: температура и допуск на скорость или деформацию ползучести за определенный промежуток времени.

Предел длительной прочности удл (или ) - условное напряжение, равное отношению нагрузки, при которой происходит разрушение растянутого образца через определенный промежуток времени, к первоначальной площади поперечного сечении.

Предел выносливости уr - наибольшее напряжение цикла, которое материал может выдержать повторно без разрушения N раз, где N -заданное техническими условиями большое число (например, 106, 107, 108), r - коэффициент не симметрии цикла, равный отношению наименьшего напряжения цикла к наибольшему напряжению, взятому с алгебраическим знаком.

Широкое распространение получили следующие виды испытаний прочностных характеристик льда: сжатие образцов различной формы (кубы, призмы, цилиндры) и объема (характерный линейный размер равен примерно 5-50см), растяжение (в основном образцы гантелевидной формы с поперечным сечением порядка нескольких десятков квадратных сантиметров), изгиб балок и консолей с поперечным сечением в месте разрыва от нескольких квадратных сантиметров и примерно до 1 м2 и срез (размеры площади разрушения в атом случае обычно не превышали нескольких десятков или сотен квадратных сантиметров). Ниже приводится попытка систематизировать многочисленные экспериментальные данные по прочностным характеристикам льда. Из-за различия в методиках испытаний установить единый критерий прочности затруднительно.

Прочность на растяжение и изгиб определяется на образцах в лаборатории, ледяных пластинах, балках и консолях в естественных условиях на плаву. Прочность на растяжение определяется экспериментами двух типов:

ледяные образцы гантелевидной формы растягиваются на испытательной машине до разрушения, либо полые ледяные цилиндры сжимаются по диаметру к центру. Обобщенные по опубликованным работам данные о прочности льда на растяжение при кратковременном приложении нагрузки к образцам примерно одного и того же размера приведены в таблице 8:

Пресноводный лед

Морской лед

0C

0-10

-10 -20

-20-35

0-10

-10-20

уp, МПа

0,91,2

1,21,4

1,41,8

0,61,1

1,41,8

Расчет на изгиб производится по формулам:

(балка на двух опорах), где Р - разрушающая нагрузка, l - расстояние между опорами, b - ширина образца, h - его высота;

(консоль), здесь l- расстояние от места закрепления балки до точки приложения нагрузки.

Прочность па сжатие и срез (временное сопротивление) для льда рассматриваемая величина является в некоторой степени условной [24], разрушение льда не обусловлено однозначно определенным пределом напряжений. Вследствие ползучести начало разрушения льда и соответствующее этому моменту значение внутренних напряжений существенно зависят от скорости приложения нагрузки, условий деформирования и других факторов. Это является одной из причин больших различий в значениях предела прочности льда, определенных разными исследователями.

Многочисленные экспериментальные значения предела прочности льда при сжатии получены в основном на образцах кубической и реже цилиндрической формы при «быстром» нагружении. Установлено, что усж увеличивается с понижением температуры льда и имеет большие значения при нагрузке, приложенной перпендикулярно к оси кристаллов. Значение усж уменьшается при скорости нагружения у'>0,2 МПа/с и при увеличении размеров образцов. Отмечено увеличение усж с ростом у' (при малых ее значениях) и последующее медленное увеличение прочности с возрастанием у'.

Лед подчиняется реологической модели в виде параллельно соединенных тел Шведова (Бингама) и Гука. В. В. Лавров объясняет этот факт пластичностью льда. При малых скоростях деформации процессы сдвига успевают закрыть («залечить») наиболее опасные дефекты (трещины в полости) и сделать напряженное состояние в образце более однородным. Это обусловливает увеличение предела прочности. При больших скоростях деформации такого явления не возникает. Предел прочности льда на срез ус вычисляется по формуле , где P - разрушающая нагрузка, S - площадь среза.

1.2.7 Упругие свойства

Известно, что упругое поведение кристаллов в общем виде описывается следующими соотношениями между тензорами деформации (еjk) и напряжения (уjk):

еjk = Sikjlуji ; уjk =Cikjlеji

где Sikjl и Cikjl - матричные коэффициенты, представляющие собой соответственно константы податливости и жесткости, а i,k,j,l =1,2,3. Для гексогональных кристаллов, подобных льду, имеется только пять независимых модулей упругости, не равных нулю (C11, C12, C13, C33, C44), или соответствующих им коэффициентов Sikjl. Между ними имеют место следующие соотношения:

;;;;

для

Поликристаллический лед с достаточно малыми размерами входящих в его состав кристаллов (по сравнению с размерами подвергнутых деформациям образцов) можно рассматривать как изотропное тело, упругость которого описывается модулем Юнга Е (модулем нормальной упругости), модулем сдвига G, модулем объемной упругости К и коэффициентом Пуассона v Модули упругости и сдвига определяются через постоянные Ламе м и л которые являются коэффициентами, связывающими механические напряжения в твердом теле с возникающими деформациями. Между указанными характеристиками упругости существует известная аналитическая связь:

;;

;

Различают изотермический и адиабатический модули упругости. При изотермической деформации температура тела не меняется, и модули упругости, соответствующие этому случаю, называются изотермическими. В случае адиабатических деформаций модули с достаточной точностью определяются выражениями:

;

где Т - температура деформируемого тела, б - коэффициент линейного расширения, СР - удельная теплоемкость при постоянном давлении. Для льда различие адиабатических и изотермических модулей мало.

Константы упругости пресноводного льда. Упругое поведение монокристалла обусловливается главным образом изменениями межмолекулярных, расстояний под действием приложенного напряжения. Однако, возбужденные напряжением движения дефектов (дислокаций) также вносят свой вклад в деформацию. При движении дефектов к зонам равновесия твердое тело будет непрерывно деформироваться. Эта деформация, будет не вполне упругой. Однако, если напряжение прикладывается и снимается в течение достаточно короткого промежутка времени (например, при прохождении звуковой волны), дефекты не успевают участвовать в достаточной мере в деформации, которую в этом случае можно считать упругой. По этой причине константы упругости льда, получаемые при высокочастотных акустических измерениях (будем называть их динамическими характеристиками), более надежны, чем те же характеристики, получаемые из экспериментов, в которых измеряется, деформация тела, испытывающего статически приложенную нагрузку.

При температуре от -3 до 40°С лед ведет себя как вполне упругое тело, которое подчиняется закону Гука, если приложенное напряжение все же превышает определенного значения и продолжительность его воздействия достаточно коротка. Это происходит при напряжении сжатия до 0,1 МПа, скорости приложения нагрузки около 0,05 МПа/с и продолжительности воздействия напряжения менее 10 с.

Многочисленные измерения модулей упругости статическими методами (при кратковременном приложении полного цикла нагрузки в течение порядка 510 с) показывают, что модули Юнга поликристаллического льда лежат в пределах 0,3*10311,0*103 МПа. Для столбчато-гранулированного пресноводного льда при действии нагрузки перпендикулярно направлению длинных осей кристаллов выведена зависимость «статического» модуля Юнга (МПа) от температуры в интервале от -3 до -40°С.

Ec=(5,69 - 0,0648Tc)*103

При этом коэффициент Пуассона уменьшается с понижением температуры примерно от 0,5 при -6°С до 0,38 при -40°С. В то же время для монокристалла в диапазоне от 0 до -40°С модуль Юнга и коэффициент Пуассона не зависят от температуры и равны соответственно 8,34*103МПа и 0,35. Это объясняется тем, что в деформировании поликристаллического льда существенную роль играет зависимость скольжения по границам зерен от температуры, а также возможное обратимое движение дислокаций.

Динамические константы упругости могут быть определены по измерению скорости звука во льду. Скорость продольной звуковой волны c1 определяется постоянными Ламе л, м и плотностью вещества

Скорость сдвиговой звуковой волны c1 определяется одной постоянной Ламе, совпадающей с модулем сдвига, и плотностью вещества:

Коэффициент Пуассона рассчитывается по значениям сl и сt по уравнению:

Следовательно, скорости продольных и сдвиговых воли однозначно связаны с константами упругости льда.

В таблице 9 представлены характерные значения динамических констант упругости поликристаллического льда. Динамический модуль Юнга поликристаллического льда увеличивается практически линейно от 7,2*103МПа при температуре льда -10°С до 8,5*103МПа при -180°С. По экспериментам с образцами поликристаллического льда, извлеченного из скважины в гренландском леднике, динамический модуль Юнга уменьшается приблизительно на 20% при уменьшении плотности льда с 915 до 903 кг/м.

Были исследованы структурно-моделированного льда и ледяного покрова реки Нева [34]. Все образцы имели различную структуру и ориентировку кристаллов: моделированный лед состоял из кристаллов, средние размеры которых были 12мм; кристаллы льда реки Нева были размером от 2 до 8см.

Таблица 9. Динамические константы упругости поликристаллического льда при температуре -5°С, определенные импульсным ультразвуковым методом

Модуль Юнга, 102

МПа

Модуль сдвига, 10 МПа

Коэффициент Пуассона

Модуль объемного сжатия, 102 МПа

89,5

-

-

-

91,7

33,6

0,36

113,0

98,0

>

36,8

0,33

96,1

90,0

-

-

-

91,893,8

34,535,2

0,33

88,189,2

99,4

38,0

0,31

87,2

85,0

32,0

0,34

-

86,9

-

-

-

95,0

36,0

0,3

-

88,098,0*

-

-

-

80,092,0

30,032,0

0,350,38

-

* - определен резонансным методом.

Средний модуль Юнга, определенный резонансным методом (размер образцов 3,5 х 4,0 х 33,0 см) при температуре -6°С, имел следующие значения:

ледяной покров реки Нева 9,5*103МПа;

лед структурно-моделированный:

образец вырезан параллельно поверхности 8,8*10 МПа;

образец вырезан перпендикулярно поверхности 9,8*103МПа.

Эти исследования показали, что структурно-текстурная анизотропия упругих свойств льда не превышает 10%.

Измерения были выполнены импульсным ультразвуковым методом на частоте 500 кГц [18]. Блоки льда, выпиленные из ледяного покрова Ладожского озера (толщина 0,60,8 м), прозвучивались перпендикулярно к поверхности.

Значения Е1 и G1 соответствуют прозрачному, почти без пузырьков воздуха, крупнокристаллическому льду плотностью 900 кг/м3; верхний мутный слой (с воздушными включениями) срезался. Значения Е2 и G2 получены при прозвучивании всей толщи блока вместе с мутным слоем, толщина которого составляла 15 см. Значения Е3 и G3 характеризуют наполовину мутный лед, с большим количеством пузырьков воздуха; плотность этих блоков составляла 890 кг/м.

1.3 Несущая способность ледяного покрова

На несущую способность ледяного покрова, т.е. его свойство длительное время противостоять разрушению под действием различных нагрузок, существенное влияние оказывают длительность времени приложения и характер нагрузки. Обычно выделяют три характерных режима нагружения льда: динамический, при котором упругие свойства льда проявляются полностью, а неупругие приводят к диссипации энергии; статический, когда силами инерции можно пренебречь, и режим длительного нагружения, при котором полностью проявляются вязкие свойства льда.

Ледяной покров для большинства статических задач со сравнительно малым временем приложения нагрузки можно рассматривать как упругую однородную пластину, лежащую па упругом основании гидравлического типа. При этом различают грузоподъемность ледяного поля до образования первых сквозных трещин Ркр и полную несущую способность Рр. При наличии сквозных трещин грузоподъемность еще далека от предельной. Полная несущая способность исчезает при проломе ледяного поля. Несущая способность льда вблизи открытой трещины существенно уменьшается. Если нагрузка приложена к одному краю трещины, то несущая способность льда составляет всего 43% по сравнению с несущей способностью при расположении груза в центре.

При нагрузке, приложенной одновременно к обоим краям трещины, несущая способность льда составляет 85% нагрузки, приложеннойк ненарушенному ледяному полю. Согласно многочисленным экспериментальным данным, величина Ркр определяется прочностью льда на изгиб при кратковременном приложении нагрузки. При принятии в качестве критерия прочности при изгибе ледяного покрова предельное растягивающее напряжение методом аналогий получена простейшая зависимость допустимой нагрузки Рр (Мг) от толщины льда h (см):

Pp=A*h2

где А - эмпирический коэффициент, зависящий от многих факторов, (таблица 10).

Таблица 10. Значения А в формуле Pp=A*h2

А, Мг/см2

Литературный источник

0,0100

[113,143]

0,0166

[97]

0,0070

Инструкция [347]

0,0123

-

0,0082

[347, данные И.Ф. Лысухина]

0,0123

Анализ этой формулы и ее многочисленных видоизменений [13] показывает, что для практических целей ее применение не всегда правомерно.

Анализ несущей способности ледяного покрова, основанный на теории изгиба упругих пластин, позволяет получить лишь приближенное описание, особенно при длительных нагружениях. Строгий расчет разрушающих усилий и оценку влияния трещин на грузоподъемность льда в этом случае необходимо производить с учетом ползучести при наличии градиента температуры по толщине льда и других факторов.

На основании данных полевых испытаний временную зависимость относительной разрушающей нагрузки можно выразить следующим уравнением [13]:

По этому уравнению можно рассчитать время безопасной стоянки груза на ледяном покрове:

здесь Рр(0) - нагрузка, достаточная для разрушения пластины сразу же после ее приложения в момент времени tp =0; Pp(tp) - нагрузка, которая разрушает пластину через некоторое время tp при tp>0 Pp(tp)<Pp(0). Очень важно правильно определить значение Рр(0). По-видимому, наиболее близкими к истинным являются результаты экспериментальных работ [13]. Осредненная кривая с небольшим разбросом данных описывается уравнением:

где b - поперечный размер площади, на которой действует нагрузка;

;,

где D - цилиндрическая изгибная жесткость; р - плотность воды; v - коэффициент Пуассона.

Для инженерных задач - необходимо знать нагрузки, при которых объект может медленно двигаться или стоять на плавающей ледяной пластине, либо нагрузки, при которых лед обязательно разрушается (проектирование ледоколов). Этим нагрузкам соответствуют верхняя (В) и нижняя (Н) огибающие экспериментальных точек.

Область под нижней кривой - допустимые нагрузки, выше верхней - разрушающие. Они описываются уравнениями:

Следовательно, для льда при температуре -10°С допустимую сосредоточенную нагрузку для бесконечной пластины в соответствии с данными Панфилова можно определить из условия:

;

здесь значение уp можно брать равным прочности на изгиб консольной балки на плаву.

Согласно данным этого же автора допустимую нагрузку, действующую на края длинной щели в ледяном покрове (например, в случае моста между двумя полубесконечными пластинами), можно определить из условия:

Разрушающая нагрузка для полубесконечной пластины удовлетворяет условию:

.

В экспериментах Панфилова выдерживалось соотношение 0,1<<1,0. Он также получил, что (Pp)H2Pкр, т.е. трещины во льду появляются при половинной разрушающей нагрузке, соответствующей нижнему пределу.

1.4 Экспериментальные исследования деформаций ледяного покрова, вызываемых движущимися нагрузками

Экспериментальному исследованию деформаций ледяного покрова под действием подвижных нагрузок, несмотря на их большой практический интерес, посвящено немного работ.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.