Переходные процессы в электрических цепях
Применение законов Кирхгофа для определения изменения во времени токов и напряжений после коммутации в ветвях электрической схемы при постоянной ЭДС; классический и операторный методы. Правила составления и решения характеристических уравнений.
Рубрика | Физика и энергетика |
Вид | задача |
Язык | русский |
Дата добавления | 16.06.2010 |
Размер файла | 211,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Задача
Дана электрическая цепь, в которой происходит коммутация (Рис. 1). В цепи действует постоянная ЭДС Е. Требуется определить закон изменения во времени токов и напряжений после коммутации в ветвях схемы.
Задачу следует решить двумя методами: классическим и операторным. На основании полученного аналитического выражения построить график изменения искомой величины в функции времени в интервале от t = 0 до
t = ,
где - меньший по модулю корень характеристического уравнения.
Параметры цепи: R1 = 15 Ом; R2 = 10 Ом; С = 10 мкФ; L = 10 мГ; Е = 100 В.
Решение
Классический метод
Решение задачи получается в виде суммы принужденного и свободного параметра:
i(t) = iпр(t) + iсв(t); u(t) = uпр(t)+ uсв(t), (1)
где
, а .
1. Находим токи и напряжения докоммутационного режима для момента времени t = (0-). Так как сопротивление индуктивности постоянному току равно нулю, а емкости - бесконечности, то расчетная схема будет выглядеть так, как это изображено на рис. 2.
Индуктивность закорочена, ветвь с емкостью исключена. Так как в схеме только одна ветвь, то ток i1(0-) равен току i3(0-), ток i2(0-) равен нулю, и в схеме всего один контур.
Составляем уравнение по второму закону Кирхгофа для этого контура:
,
откуда
= 4 А.
Напряжение на емкости равно нулю [uC(0-) = 0].
2. Определим токи и напряжения непосредственно после коммутации для момента времени t = 0+. Расчетная схема приведена на рис. 3.
По первому закону коммутации
iL(0-) = iL(0+),
т.е. ток i3(0+) = 4 А. По второму закону коммутации
uC(0-) = uC(0+) = 0.
Для контура, образованного ЭДС Е, сопротивлением R2 и емкостью С, согласно второго закона Кирхгофа имеем:
или
;
i1(0+) = i2(0+) + i3(0+) = 14 А.
Напряжение на сопротивлении R2 равно
Е - uC(0+) = 100 В,
напряжение на индуктивности равно напряжению на емкости.
3. Рассчитываем принужденные составляющие токов и напряжений для . Как и для докоммутационного режима индуктивность закорачивается, ветвь с емкостью исключается. Схема приведена на рис. 4. и аналогична схеме для расчета параметров докоммутационого режима.
= 10 А;
= 100 В;
;
4. Определяем свободные составляющие токов и напряжений для момента времени t = 0+, исходя из выражений
i(0+) = iпр(0+) + iсв(0+)
и
u(0+) = uпр(0+) + uсв(0+).
iсв1(0+) = 4 А; iсв2(0+) = 10 А;
iсв3(0+) = -6 А; uсвL(0+) = uсвС(0+) = 0;
.
5. Определяем производные свободных токов и напряжений в момент времени непосредственно после коммутации (t = 0+), для чего составим систему уравнений, используя законы Кирхгофа для схемы, изображенной на рис. 3, положив Е = 0.
;
(2)
Производную тока через индуктивность можно найти, используя выражение:
,
а производную напряжения на емкости - из уравнения
.
Т.е.
,
откуда
;
(3)
Подставляя (3) в (2), после решения получаем:
;
;
;
Все полученные результаты заносим в таблицу.
i1 |
i2 |
i3 |
uL |
uC |
uR2 |
||
t = 0+ |
14 |
10 |
4 |
0 |
0 |
100 |
|
10 |
0 |
10 |
0 |
0 |
100 |
||
4 |
10 |
-6 |
0 |
0 |
0 |
||
-105 |
-105 |
0 |
106 |
106 |
-106 |
6. Составляем характеристическое уравнение. Для этого исключим в послекоммутационной схеме источник ЭДС, разорвем любую ветвь и относительно разрыва запишем входное сопротивление для синусоидального тока . Например, разорвем ветвь с сопротивлением R2:
.
Заменим jщ на р и приравняем полученное уравнение нулю. Получим:
или
R2CLp2 + pL + R2 = 0.
Откуда находим корни р1 и р2.
р1 = -1127, р2 = -8873.
7. Определим постоянные интегрирования А1 и А2. Для чего составим систему уравнений:
;
или
;
Например, определим постоянные интегрирования для тока i1 и напряжения uL. Для тока i1 уравнения запишутся в следующем виде:
4 = А1i + А2i;
.
После решения: А1i = -8,328 А, А2i = 12,328 А.
Для напряжения uL:
;
.
После решения: = 129,1 В, = -129,1 В.
8. Ток i1 cогласно (1) изменяется во времени по закону:
i1(t) = 10 - 8,328е-1127t + 12,328e-8873t,
а напряжение uL:
uL(t) = 129,1e-1127t - 129,1 e-8873t.
Подобные документы
Основные методы расчета токов и напряжений в цепях, в которых происходят переходные процессы. Составление системы интегро-дифференциальных уравнений цепи, используя для этого законы Кирхгофа и уравнения связи. Построение графиков токов и напряжения.
курсовая работа [125,4 K], добавлен 13.03.2013Составление на основании законов Кирхгофа системы уравнений для определения токов во всех ветвях схемы. Определение токов во всех ветвях схемы, используя метод контурных токов и на основании метода наложения. Составление баланса мощностей для схемы.
контрольная работа [60,3 K], добавлен 03.10.2012Расчет токов и напряжения во время переходного процесса, вызванного коммутацией для каждой цепи. Классический и операторный методы. Уравнение по законам Кирхгофа в дифференциальной форме для послекоммутационного режима. Составляющие токов и напряжений.
контрольная работа [434,6 K], добавлен 11.04.2010Условия возникновения переходного процесса в электрической цепи, его длительность и методы расчета. Линейные электрические цепи периодических несинусоидальных токов. Сущность законов коммутации. Протекание свободного процесса в электрической цепи.
курсовая работа [340,5 K], добавлен 02.05.2012Составление на основе законов Кирхгофа системы уравнений для расчета токов в ветвях схемы. Определение токов во всех ветвях схемы методом контурных токов. Расчет системы уравнений методом определителей. Определение тока методом эквивалентного генератора.
контрольная работа [219,2 K], добавлен 08.03.2011Решение линейных дифференциальных уравнений, характеризующих переходные процессы в линейных цепях. Прямое преобразование Лапласа. Сущность теоремы разложения. Законы Ома и Кирхгофа в операторной форме. Схема замещения емкости. Метод контурных токов.
презентация [441,7 K], добавлен 28.10.2013Анализ электрического состояния цепей постоянного или переменного тока. Системы уравнений для определения токов во всех ветвях схемы на основании законов Кирхгофа. Исследование переходных процессов в электрических цепях. Расчет реактивных сопротивлений.
курсовая работа [145,0 K], добавлен 16.04.2009Законы коммутации, начальные и конечные условия. Подключение реального конденсатора к источнику постоянного напряжения. Коммутация в цепях с реактивными элементами. Закон Ома, Кирхгофа по схеме замещения. Система уравнений электрического состояния.
презентация [264,7 K], добавлен 14.11.2013Определение закона изменения во времени тока или напряжения после коммутации в одной из ветвей электрической цепи классическим (по закону Кирхгофа) и операторным способами. Построение графика времени на основе полученного аналитического выражения.
контрольная работа [438,8 K], добавлен 07.03.2011Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.
лабораторная работа [27,5 K], добавлен 12.01.2010