Математические модели электромеханических систем
Способы получения уравнений состояния реальных физических объектов, описание с помощью дифференциальных уравнений. Физические законы, положенные в основу работы объекта. Математическая модель электромеханической системы в пространстве состояний.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 10.06.2010 |
Размер файла | 105,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
10
Математические модели электромеханических систем в пространстве состояний
Способы получения уравнений состояния реальных физических объектов ничем не отличаются от способов описания этих объектов с помощью дифференциальных уравнений. Уравнения состояния записываются на основе физических законов, положенных в основу работы объекта.
Рассмотрим электромеханическую систему, состоящую из двигателя постоянного тока с независимым возбуждением, работающего на инерционную нагрузку с вязким трением. Управляющим воздействием для двигателя считаем напряжение на якоре U(t), выходной координатой, угол поворота вала двигателя y(t)=(t). Уравнение электрической цепи имеет вид
,
где - противо ЭДС, - угловая скорость вала двигателя, - единый электромагнитный коэффициент.
Уравнение моментов будет иметь следующий вид
,
где , J - момент инерции нагрузки, приведенный к валу двигателя, f - коэффициент вязкого трения.
Выберем следующие переменные состояния: х1=i, x2=, x3=.
Получим
,
.
Запишем эти уравнения относительно переменных , ,
,
,
,
.
Запишем матричные уравнения
,
,
где
,,.
Рассмотрим структурную схему электромеханической системы с двигателем постоянного тока, работающего на инерционную нагрузку с вязким трением.
Рис. 1. Структурная схема электромеханической системы с двигателем постоянного тока
Запишем уравнение состояния для механической системы, представляющей собой груз массой m, подвешенный на пружине и соединенный с гидравлическим демпфером. К грузу приложена сила P(t), выходная переменная перемещения x(t), управляющие воздействия U(t)=P(t). Уравнение движения груза получаем из уравнения равновесия сил
,
где - инерционная сила, f - коэффициент вязкого трения, - сила сопротивления демпфера, - сила сопротивления пружины.
Выбираем в качестве переменных состояния x(t) и - перемещение и скорость перемещения соответственно.
Рис. 2. Механическая система, включающая в своем составе пружину, массу и вязкий демпфер
Так как дифференциальное уравнение имеет второй порядок, то и количество переменных состояния будет равно двум. Исходное уравнение движения груза можно записать в виде двух уравнений
где U(t)=P(t) - управляющее воздействие.
Добавим к этим уравнениям следующее уравнение выхода
.
Эти уравнения представляют собой уравнения состояния приведенной механической системы. Запишем эти уравнения состояния в матричном виде
,
.
Запишем это уравнение в другом виде
,
,
где, , ,
, .
С данным уравнением состояния можно сопоставлять следующую структурную схему, где двойными линиями показаны векторные переменные.
Рис. 3. Структурная схема
Пример: Рассмотрим электрическую цепь и получим уравнение состояния RLC цепи
Рис. 4. RLC цепь
Динамическое поведение этой электрической системы полностью определяется при tt0, если известны начальные значения: i(t0), ec(t0) и входное напряжение e(t) при tt0, следовательно, эта система полностью определяется переменными состояния i(t) и ec(t). При указанных переменных состояния i(t) и ec(t) имеем следующие уравнения
где , .
Введем следующие обозначения
В соответствии с этими обозначениями получаем
причем
.
Следовательно, для электрической цепи запишем эту систему в векторно-матричном виде
,
.
Запишем матричные уравнения
,
,
где , , ,
Подобные документы
Общая характеристика законов динамики, решение задач. Знакомство с основными видами сил. Особенности дифференциальных уравнений движения точки. Анализ способов решения системы трех дифференциальных уравнений второго порядка, рассмотрение этапов.
презентация [317,7 K], добавлен 28.09.2013Математическая модель системы в пространстве состояния, её структурная схема и сигнальный граф объекта управления (ОУ). Эквивалентная схема ОУ. Передаточная функция формирующего фильтра, прямые и косвенные оценки качества ОУ по полученным зависимостям.
реферат [903,1 K], добавлен 11.03.2012Современная общая теория дифференциальных уравнений. Обзор основных понятий и классификации дифференциальных уравнений в частных производных. Уравнение теплопроводности. Начальные и граничные условия. Численное решение уравнений математической физики.
курсовая работа [329,9 K], добавлен 19.12.2014Основная задача динамики, применение законов Ньютона. Применение основного закона динамики и дифференциальных уравнений движения материальной точки при решении задач. Основные свойства внутренних и внешних сил механической системы. Вычисление работы сил.
курсовая работа [347,8 K], добавлен 11.05.2013Математическая модель и решение задачи очистки технических жидкостей от твердых частиц в роторной круговой центрифуге. Система дифференциальных уравнений, описывающих моделирование процесса движения твердой частицы. Физические характеристики жидкости.
презентация [139,6 K], добавлен 18.10.2015Составление уравнений состояния цепи, построение графиков полученных зависимостей. Решения дифференциальных уравнений методом Эйлера. Анализ цепи операторным и частотным методами при апериодическом воздействии. Характеристики выходного напряжения и тока.
курсовая работа [541,5 K], добавлен 05.11.2011Определение реакций опор составной конструкции по системе двух тел. Способы интегрирования дифференциальных уравнений. Определение реакций опор твердого тела. Применение теоремы об изменении кинетической энергии к изучению движения механической системы.
задача [527,8 K], добавлен 23.11.2009Использование теоремы об изменении кинетической энергии при интегрировании системы уравнений движения. Получение дифференциальных уравнений движения диска. Анализ динамики ускорения движения стержня при падении. Расчет начальных давлений на стену и пол.
презентация [597,5 K], добавлен 02.10.2013Особенности вывода дифференциальных уравнений осесимметрических движений круглой цилиндрической оболочки. Построение частного волнового решения основной системы уравнений гидроупругости вещества. Метод решения уравнения количества движения для жидкости.
курсовая работа [125,7 K], добавлен 27.11.2012Создание математической модели трехконтурной электрической схемы в среде табличного процессора Excel. Система уравнений для расчета контурных токов. Схема электрической цепи. Влияние изменения параметров схемы тяговой сети на токи тяговых подстанций.
контрольная работа [60,2 K], добавлен 14.12.2010