Динамические характеристики средств контроля температуры кипящего слоя

Сравнительное моделирование системы измерения температуры кипящего слоя с использованием традиционного и предлагаемого методов в среде MATLAB. Результаты моделирования систем измерения температуры кипящего слоя, а также анализ результатов моделирования.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 07.06.2010
Размер файла 184,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Донецкий государственный технический университет

Динамические характеристики средств контроля температуры кипящего слоя

Гавриленко Б.В., к.т.н,

Неежмаков С.В., асс.

В качестве теплоносителя при работе автономного воздухоподогревателя используются дымовые газы, получаемые в результате сжигания высокозольного угля в котлоагрегате с топкой низкотемпературного кипящего слоя (НТКС). Схема котлоагрегата и размещения средств измерения приведена на рис. 1.

Рисунок 1 - Котлоагрегат с топкой низкотемпературного кипящего слоя

Продукты сгорания, имея температуру Тпс=600-1000 °С на выходе из кипящего слоя, разбавляются в камере смешения до температуры Ттн=500 °С и далее транспортируются к калориферной установке.

При работе топки НТКС наиболее важным параметром, подлежащим измерению, является температура кипящего слоя ТКС, которая, в зависимости от свойств топлива, лежит в пределах 600-1000 °С с диапазоном изменения 200 °С. В настоящее время для измерения величины ТКС применяются хромель-алюмелевые термо-электрические преобразователи, обладающие существенным недостатком - высокой инерционностью (постоянная термической инерции составляет 120 - 180 сек) [1].

В случае замены существующей системы автоматизации (регуляторов типа Р-25 и Р-29) микропроцессорными средствами управления возможно косвенное измерение температуры кипящего слоя в переходных режимах с коррекцией по температуре слоя в стационарных режимах при условии использования стандартных средств измерения расхода и температуры.

Как известно, температура ожижающего агента после прохождения его через слой имеет температуру слоя, если его высота более 20 эквивалентных диаметров составляющих частиц. Данное условие выполняется, так как высота кипящего слоя более 600 мм, а наибольший диаметр частиц - 13 мм. Таким образом, судить о температуре слоя можно по температуре продуктов сгорания Тпс.

Уравнение теплового баланса для камеры смешения имеет вид:

qпc + qрв = qтн + qпот, (1)

где qпс , qрв - тепло, внесенное в камеру смешения продуктами сгорания и разбавочным воздухом, соответственно.

qтн, qпот - тепло, удаленное из камеры смешения с теплоносителем и потерями в окружающую среду.

Величина qпот нормируется согласно [2] и может быть принята постоянной величиной для конкретного котлоагрегата, так как при изменении режима работы изменяется на 0,2-0,3% от общего количества тепла.

Величины qпс, qрв и qтн определяются, соответственно из выражений:

qпc = Cпc·Qпc·Tпc; (2)

qрв = Cрв·Qрв·Tрв; (3)

qтн = Cтн·Qтн·Tтн, (4)

где: C - теплоемкость, принимается согласно [2], Q - объемный расход и Т - температура - показания датчиков.

В таком случае конечное выражение для определения температуры слоя с учетом выражений 1, 2, 3 и 4 имеет вид:

Учитывая то, что постоянная термической инерции для преобразователей, рассчитанных на температуры до 600°С, составляет 5-8 сек, можно предположить о целесообразности применения предлагаемого метода.

В среде MATLAB произведено сравнительное моделирование систем измерения температуры кипящего слоя с использованием традиционного и предлагаемого методов. На рис. 2 приведена структурная схема исследуемой модели в составе следующих блоков:

«Теплота сгорания» - иммитирует скачкообразный прирост теплоты сгорания топлива (при моделировании принято изменение зольности угля с 55% до 30%; в реальных условиях зольность может изменяться в пределах 20-70%);

«Слой», «Термопара в слое», «Термосопротивление в камере смешения» - задают динамические характеристики кипящего слоя и термопреобразователей, принятые согласно [1 и 3];

«Температура» - позволяет отслеживать реальную температуру слоя и определяемую традиционным и косвенным методами;

«S1», «S2», «Погрешность» - показывяют погрешность измерений при использовании обоих методов;

«Реакция системы управления» - определяет начало реагирования системы автоматизированного управления на изменение температуры при ширине зоны нечувствительности ±10°С и останавливает моделирование при начале реагирования системы с термопарой.

«Запаздывание» - задает транспортное запаздывание при использовании системы косвенного контроля температуры.

Рисунок 2 - Моделирование систем измерения температуры кипящего слоя

Анализ результатов моделирования (рис. 3) показывает, что:

при использовании традиционной системы контроля температуры наблюдается значительное отставание результата измерений (б) от действительной температуры (а) в отличие от результата косвенных измерений (в);

динамическая погрешность (г) традиционного метода заметно выше, погрешности косвенного метода (д);

инерционность термопары вызывает увеличение времени отклика системы управления на возмущающее воздействие (е и ж). Реальное отклонение температуры при этом составило более 50 °С

Рисунок 3 - Результаты моделирования систем измерения температуры кипящего слоя

Таким образом, использование косвенного метода контроля температуры в задачах управления производительностью автономного газовоздушного возду-хоподогревателя с топкой низкотемпературного кипящего слоя позволит повысить качество и достоверность получения требуемой измерительной информации

Список литературы

Расчеты аппаратов кипящего слоя: Справочник/ Под ред. И.П. Мухленова, Б.С. Сажина, В.Ф. Фролова. - Л.: Химия, 1986. - 352 с

Сжигание угля в псевдоожиженном слое/ Махорин К. Е., Хинкис П. А. - Киев: Наук. думка, 1989. - 204 с.

Чистяков В.С. Краткий справочник по теплотехническим измерениям. - М.: Энергоатомиздат, 1990. - 320 с.: ил.


Подобные документы

  • Измерение температуры с помощью мостовой схемы. Разработка функциональной схемы измерения температуры с применением термометра сопротивления. Реализация математической модели четырехпроводной схемы измерения температуры с использованием источника тока.

    курсовая работа [1,4 M], добавлен 19.09.2019

  • Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.

    курсовая работа [476,6 K], добавлен 07.06.2014

  • Анализ модели температуры в радиально бесконечном пласте. Моделирование давления и температуры сигнала, связанного с переменной скоростью. Определение сигнала температуры отдельного слоя связанного с постоянной скоростью добычи слабо сжимаемой жидкости.

    курсовая работа [770,7 K], добавлен 20.02.2021

  • Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.

    учебное пособие [1,3 M], добавлен 18.05.2014

  • Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.

    курсовая работа [224,1 K], добавлен 24.03.2008

  • Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.

    доклад [1,0 M], добавлен 18.03.2014

  • Определение температуры в зоне контакта плиты, слоя. Напряженно–деформированное состояние слоя. Условие термосиловой устойчивости покрытия. Вычисление контактного давления. Нахождение закона изменения толщины покрытия вследствие износа, численные расчеты.

    дипломная работа [526,7 K], добавлен 09.10.2013

  • Материалы активной зоны. Тяжелая авария в реакторе. Установка для моделирования тяжелой аварии. Методика гидростатического взвешивания для измерения плотности твёрдых материалов. Средства измерения температуры. Рентгеновский фазовый структурный анализ.

    дипломная работа [4,7 M], добавлен 17.05.2015

  • Получение экспериментальных зависимостей гидравлического сопротивления и степени расширения слоя от фиктивной скорости газа; определение первой критической скорости. Гидродинамические характеристики псевдоожиженного слоя, сравнение с опытными значениями.

    лабораторная работа [182,7 K], добавлен 29.08.2015

  • Основные динамические характеристики средств измерения. Функционалы и параметры полных динамических характеристик. Весовая и переходная характеристики средств измерения. Зависимость выходного сигнала средств измерения от меняющихся во времени величин.

    презентация [127,3 K], добавлен 02.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.