Расчет переходных процессов в линейных цепях с сосредоточенными параметрами

Выражение для токов в цепи в переходном режиме, расчет классическим и операторным методами. Определение выражения для напряжений на емкости и индуктивности. Кривые напряжения токов во всех ветвях и напряжений на емкости и индуктивности в функции времени.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 17.05.2010
Размер файла 284,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство транспорта Российской Федерации

Федеральное Государственное Образовательное Учреждение

Государственная Морская Академия имени адмирала С.О. Макарова

Кафедра ТОЭ

Курсовая работа №6

Расчет переходных процессов в линейных цепях с сосредоточенными параметрами”.

Вариант № 21

Выполнил: к-т гр. Э-232

Попаденко Н.С.

Проверил: доцент, к.т.н

Попов Ю.В.

Санкт-Петербург

2005

Задана электрическая цепь, изображенная на рисунке 1:

Требуется:

1) Определить выражения для всех токов в цепи в переходном режиме, решив задачу классическим и операторным методами.

2) Определить выражения для напряжений на емкости и индуктивности, решив задачу классическим и операторным методами.

3) Построить кривые напряжения токов во всех ветвях и напряжений на емкости и индуктивности в функции времени.

Заданные параметры цепи:

(Ом);

(Ом);

(Гн);

(мкФ)

1) Для t?0 получим систему уравнений метода переменных состояния. Используя законы Кирхгофа, составим систему уравнений:

(1)

(2)

(3)

(4)

В качестве переменных состояния рассмотрим и , подставим уравнения (2,3,4) в систему (1), сведя ее к системе из двух уравнений:

(5)

Приведем систему уравнений (5) к нормальной форме.

(6)

2) При определим принужденные составляющие. Учтем, что в установившемся режиме

(В/с);

(А/с).

Тогда система (6) примет вид:

(В)

(А);

3) Корни характеристического уравнения можно найти из выражения входного комплексного сопротивления схемы переменному синусоидальному току, т.е для t?0

; заменяем на р и выражение приравниваем к нулю:

(1/с); (рад/с).

4) С помощью законов коммутации находим начальные условия переходного процесса:

(А);

(В).

Подставляя эти значения в систему (6) при t=0, получаем:

(В/с)

(А/с)

5) Определим постоянные интегрирования, для этого составим систему уравнений. Первое уравнение системы - это уравнение искомой величины. Оно записывается в виде суммы принужденной и свободной составляющих. Принужденная составляющая найдена выше. Свободная составляющая записывается в соответствии с видом корней характеристического уравнения. При двух комплексных сопряженных корнях свободная составляющая представляет собой затухающую синусоиду, которая содержит две постоянных интегрирования А и . Для их определения необходимо второе уравнение. Его получают дифференцированием первого:

При t=0 система сведется к виду:

Решение системы дает: ; А= 37,79 (В);

Искомое решение для напряжения на емкости принимает вид: (В).

Аналогичным образом находим решение для тока второй ветви:

При t=0:

0.075= 0.0857+

50=

Искомое выражение для тока второй ветви:

(А);

Определение :

Согласно уравнению (3)

, (В);

Из системы (1):

Операторный метод расчета

1) Составляется операторная схема замещения исходной электрической цепи (Рис.1) для времени . При этом все известные и неизвестные функции заменяются изображениями. Для нахождения параметров дополнительных источников операторной схемы замещения с помощью законов коммутации определяются независимые начальные условия (НУ):

(А);

(В).

2) Находится изображение искомого тока. Операторная схема замещения содержит 3 источника в разных ветвях: основной и два дополнительных. Поэтому для нахождения изображения тока второй ветви воспользуемся законами Кирхгофа в операторной форме:

(7)

Подставим выражения для начальных условий в систему (7). Первое уравнение системы подставим во второе, выразим ток и подставим его в третье уравнение системы, в результате получили одно уравнение с одним неизвестным .

3) По найденному изображению определяется оригинал. Для нахождения корней приравнивается к нулю выражение :

;

;

;

(1/с);

(рад/с).

;

;

; где

;

(А).

Искомое выражение для тока :

(А).

4) Аналогично найдем ток в первой из системы уравнений (7).

Подставим выражения для начальных условий в систему (7). Найденное выражение для тока в пункте (3) подставим во второе уравнение системы (7):

;

;

;

;

(1/с); (рад/с).

;

; где ;

;

Искомое выражение для тока :

5) Найдем напряжения :

;

;

;

;

(1/с); (рад/с).

;

;

где ;

Искомое выражение:

(В);

6) Найдем ток третьей ветви :

;

;

;

;

(1/с); (рад/с).

;

;

где

Искомое выражение для тока:

;

В методе переменных состояния было получено выражение для тока:

Покажем, что это одно и тоже значение:

7) В случае колебательного процесса рассчитать логарифмический декремент затухания.

(А).


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.