Расчет переходных процессов в линейных цепях с сосредоточенными параметрами
Выражение для токов в цепи в переходном режиме, расчет классическим и операторным методами. Определение выражения для напряжений на емкости и индуктивности. Кривые напряжения токов во всех ветвях и напряжений на емкости и индуктивности в функции времени.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.05.2010 |
Размер файла | 284,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство транспорта Российской Федерации
Федеральное Государственное Образовательное Учреждение
Государственная Морская Академия имени адмирала С.О. Макарова
Кафедра ТОЭ
Курсовая работа №6
“ Расчет переходных процессов в линейных цепях с сосредоточенными параметрами”.
Вариант № 21
Выполнил: к-т гр. Э-232
Попаденко Н.С.
Проверил: доцент, к.т.н
Попов Ю.В.
Санкт-Петербург
2005
Задана электрическая цепь, изображенная на рисунке 1:
Требуется:
1) Определить выражения для всех токов в цепи в переходном режиме, решив задачу классическим и операторным методами.
2) Определить выражения для напряжений на емкости и индуктивности, решив задачу классическим и операторным методами.
3) Построить кривые напряжения токов во всех ветвях и напряжений на емкости и индуктивности в функции времени.
Заданные параметры цепи:
(Ом); (Ом); |
(Гн); (мкФ) |
1) Для t?0 получим систему уравнений метода переменных состояния. Используя законы Кирхгофа, составим систему уравнений:
(1) |
(2) (3) (4) |
В качестве переменных состояния рассмотрим и , подставим уравнения (2,3,4) в систему (1), сведя ее к системе из двух уравнений:
(5)
Приведем систему уравнений (5) к нормальной форме.
(6)
2) При определим принужденные составляющие. Учтем, что в установившемся режиме
(В/с);
(А/с).
Тогда система (6) примет вид:
(В)
(А);
3) Корни характеристического уравнения можно найти из выражения входного комплексного сопротивления схемы переменному синусоидальному току, т.е для t?0
; заменяем на р и выражение приравниваем к нулю:
(1/с); (рад/с).
4) С помощью законов коммутации находим начальные условия переходного процесса:
(А);
(В).
Подставляя эти значения в систему (6) при t=0, получаем:
(В/с)
(А/с)
5) Определим постоянные интегрирования, для этого составим систему уравнений. Первое уравнение системы - это уравнение искомой величины. Оно записывается в виде суммы принужденной и свободной составляющих. Принужденная составляющая найдена выше. Свободная составляющая записывается в соответствии с видом корней характеристического уравнения. При двух комплексных сопряженных корнях свободная составляющая представляет собой затухающую синусоиду, которая содержит две постоянных интегрирования А и . Для их определения необходимо второе уравнение. Его получают дифференцированием первого:
При t=0 система сведется к виду:
Решение системы дает: ; А= 37,79 (В);
Искомое решение для напряжения на емкости принимает вид: (В).
Аналогичным образом находим решение для тока второй ветви:
При t=0:
0.075= 0.0857+
50=
Искомое выражение для тока второй ветви:
(А);
Определение :
Согласно уравнению (3)
, (В);
Из системы (1):
Операторный метод расчета
1) Составляется операторная схема замещения исходной электрической цепи (Рис.1) для времени . При этом все известные и неизвестные функции заменяются изображениями. Для нахождения параметров дополнительных источников операторной схемы замещения с помощью законов коммутации определяются независимые начальные условия (НУ):
(А);
(В).
2) Находится изображение искомого тока. Операторная схема замещения содержит 3 источника в разных ветвях: основной и два дополнительных. Поэтому для нахождения изображения тока второй ветви воспользуемся законами Кирхгофа в операторной форме:
(7)
Подставим выражения для начальных условий в систему (7). Первое уравнение системы подставим во второе, выразим ток и подставим его в третье уравнение системы, в результате получили одно уравнение с одним неизвестным .
3) По найденному изображению определяется оригинал. Для нахождения корней приравнивается к нулю выражение :
;
;
;
(1/с);
(рад/с).
;
;
; где
;
(А).
Искомое выражение для тока :
(А).
4) Аналогично найдем ток в первой из системы уравнений (7).
Подставим выражения для начальных условий в систему (7). Найденное выражение для тока в пункте (3) подставим во второе уравнение системы (7):
;
;
;
;
(1/с); (рад/с).
;
; где ;
;
Искомое выражение для тока :
5) Найдем напряжения :
;
;
;
;
(1/с); (рад/с).
;
;
где ;
Искомое выражение:
(В);
6) Найдем ток третьей ветви :
;
;
;
;
(1/с); (рад/с).
;
;
где
Искомое выражение для тока:
;
В методе переменных состояния было получено выражение для тока:
Покажем, что это одно и тоже значение:
7) В случае колебательного процесса рассчитать логарифмический декремент затухания.
(А).
Подобные документы
Определению законов изменения токов и напряжений вдоль цепи. Исследование частотных и временных характеристик цепи относительно внешних зажимов. Графики изменения токов. Расчет переходного процесса операторным методом. Исчисление резонансных частот.
реферат [531,3 K], добавлен 04.12.2012Переходные процессы в цепях первого и второго порядков. Расчет электрической цепи, состоящей из катушки индуктивности, емкости, сопротивлений, источника ЭДС. Способы нахождения токов и напряжений. Реакции в цепи на произвольное импульсное воздействие.
курсовая работа [1,0 M], добавлен 08.01.2016Мгновенные значения величин. Векторная диаграмма токов и топографическая диаграмма напряжений. Расчет показателей ваттметров, напряжения между заданными точками. Анализ переходных процессов в линейных электрических цепях с сосредоточенными параметрами.
реферат [414,4 K], добавлен 30.08.2012Расчет тока в индуктивности и напряжения на конденсаторе до коммутации по схеме электрической цепи. Подсчет реактивного сопротивления индуктивности и емкости. Вычисление операторного напряжения на емкости с применением линейного преобразования Лапласа.
контрольная работа [557,0 K], добавлен 03.12.2011Расчет источника гармонических колебаний. Определение резонансных режимов электрической цепи. Расчет переходных процессов классическим методом. Определение установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии.
курсовая работа [1,8 M], добавлен 18.11.2012Расчёт переходных процессов в электрических цепях классическим и операторным методами, с помощью интеграла Дюамеля. Премущества и недостатки методов. Изображение тока через катушку индуктивности. Аналитическое описание функции входного напряжения.
курсовая работа [2,1 M], добавлен 16.06.2011Расчет токов и напряжения во время переходного процесса, вызванного коммутацией для каждой цепи. Классический и операторный методы. Уравнение по законам Кирхгофа в дифференциальной форме для послекоммутационного режима. Составляющие токов и напряжений.
контрольная работа [434,6 K], добавлен 11.04.2010Определение закона изменения во времени тока или напряжения после коммутации в одной из ветвей электрической цепи классическим (по закону Кирхгофа) и операторным способами. Построение графика времени на основе полученного аналитического выражения.
контрольная работа [438,8 K], добавлен 07.03.2011Влияние величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения резонанса напряжений.
лабораторная работа [105,2 K], добавлен 22.11.2010Расчет источника гармонических колебаний. Составление и расчет баланса мощностей. Расчёт четырёхполюсника, установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии, переходных процессов классическим методом.
контрольная работа [1,0 M], добавлен 11.12.2012