Вечные двигатели
Механические и гидравлические вечные двигатели. Вечный двигатель Конгрева, Кокса, д'Оннекура и др. Первые попытки и расцвет создания "перпетуум мобиле". Колесо с рычагами как элемент вечных двигателей. Вечные часы с системой перекатывающихся шариков.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 13.05.2010 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Реферат
Вечные двигатели
1. Механические вечные двигатели
На предыдущих страницах сайта мы подробно рассмотрели самые ранние образцы вечных двигателей Бхаскары, Вийяра, Леонардо да Винчи и других изобретателей. Во всех этих машинах движущей силой являлась сила земного тяготения, а принцип их действия основывался на известной теореме моментов, справедливость которой для случая рычага была доказана еще Архимедом.
Приведем еще несколько примеров. Так, известный механик середины XVII века Эдуард Сомерсет, маркиз Вустерширский, в свои пятьдесят лет решил на удивление всем заняться постройкой перпетуум мобиле доселе невиданных размеров. Честолюбивые намерения этого достопочтенного и преданного короне дворянина нашли полную поддержку у его государя Карла I. Старый лондонский Тауэр стал свидетелем грандиозных приготовлений. Вместе со своими помощниками маркиз соорудил огромное колесо диаметром более 4 метра с размещенными по его периметру 14 грузами весом по 50 фунтов каждый. К сожалению, в сообщениях об этом широко разрекламированном опыте, при котором присутствовал сам король со своим двором, о результатах экспериментов подробно не говорится. Известно лишь, что к этому своему опыту Сомерсет никогда более не возвращался; позднее он занимался строительством парусного экипажа и другими смелыми по тому времени проектами.
Некоторое видоизменение машины Сомерсета представляет собой перпетуум мобиле, он показан на рисунке 14; откидывающиеся грузы заменены в нем шарами, свободно перекатывающимися в клиновидных камерах, прикрепленных к ступице колеса. Автор проекта исходил из предположения, что шары, подкатившиеся к внешнему краю колеса, будут обладать большим силовым моментом, чем шары, находящиеся в суженной части камер вблизи его оси.
Примерно в то же самое время, в первой половине XVII в., известный астроном и член ордена иезуитов Христофор Шейнер сделал важное открытие -- он обнаружил пятна на поверхности Солнца. Однако для нас более интересным представляется его сочинение «Комментарий к основаниям гномоники», изданное в Ингольштадте в 1616 г. В нем автор описывает оригинальную идею еще одного перпетуум мобиле, которому он дал громкое название «шейнеров гномон в центре мира». Схема этого вечного двигателя изображена на рисунке 15. Постоянное движение гномона сн* Шейнер обосновывал следующим образом. Произвольная точка, выбранная в качестве центра мира, одновременно будет являться и центром гравитации. Если раскрутить рычаг с перпендикулярно установленным на одном его конце гномоном так, чтобы свободный конец рычага проходил через этот центр гравитации, вся система придет в непрерывное вращение, потому что сила, притягивающая гномон с рычагом к центру гравитации, будет одинаковой во всех точках траектории.
Идея Шейнера сразу ж вызвала многочисленные возражения современников. Так, собрат Шейнера по ордену иезуитов астроном Джиованни Баптиста Риччиоли утверждал, что гномон моментально упадет в центр гравитации по наикратчайшему пути Другой математик того времени Марио Беттино не без иронии заявил:
«Да, это будет перпетуум, но не мобиле, а покоя!»
Хотя Галилей и не был приверженцем идеи перпетуум мобиле, один из его учеников -- Клеменс Септимус попытался построить вечный двигатель, подобный тому, что представлен на схеме 16. У этого устройства вместо обычных грузов в плотно закрытом с концов цилиндрическом барабане вращалась плоская непроницаемая лопатка, разделявшая два вещества различной плотности. Одна половина цилиндра, FAG, наполнялась ртутью или водой, другая, FBG, - маслом или воздухом (т.е. более легким веществом). Работа этого устройства предполагалась следующей. Поскольку на CA действует больший вес ртути, то плечо рычага перейдет в положение DE, а центр тяжести окажется в некоторой точке D, лежащей между A и C. Так как ртуть несжимаема и вместе с тем она не может проникнуть в другую половину цилиндра, то весь барабан начнет вращаться в направлении C. Но вследствие этого движения центр тяжести системы опять переместится в исходное положение, и все повторится сначала На основе построенной таким образом функциональной схемы Клеменс пришел к выводу, что данный перпетуум мобиле сразу же после его изготовления должен прийти во вращательное движение и оставаться в этом состоянии вечно без какого-либо подвода энергии извне.
Против ошибочных взглядов Клеменса Септимуса выступил его друг итальянский физик Альфонсо Борелли. В опубликованном в 1670 г трактате «О естественном движении и подвешенных грузах» он подробно описывает машину Клеменса, категорически отрицая возможность ее работы с циклическим движением шаров по замкнутому пути мы уже сталкивались в вечных двигателях Марграфа и Гролье. Несколько иной внешний вид имеет перпетуум мобиле Вильгельма Шреттера, изображенный на рисунке 17. Источником движущей силы здесь является, с одной стороны, совокупность шаров, обращающихся в системе колес K, расположенных в камерах A и B, а с другой -- система трех рычагов X, Y, Z с грузами на концах. Оба этих механизма связаны зубчатой передачей, размещенной в левой части корпуса -- в камере C.
Каспар Шотт в своем сочинении «Достопримечательности техники» 1664 г. Помимо вполне традиционных проектов вечных двигателей описывает построенный Иоганном Иоахимом Бехером так называемый физико-механический вечный двигатель, специально для которого курфюрст Майнца Ханс Филипп Шенборн в 1660 году приказал возвести отдельную каменную башню. У этого перпетуум мобиле, схема 18которого воспроизведена по чертежу того времени, циклическое движение шаров не являлось основой для отсчета точных временных промежутков, -- просто сами эти шары служили в качестве грузов, обеспечивавших постоянно действующую силу, необходимую для приведения в ход отдельного хронометрического устройства. В зависимости от передаточного отношения системы зубчатых колес ABC такие часы могли идти целые недели или даже месяцы, поскольку колесо D под действием веса каждого шара поворачивалось всего лишь на 1/8 полного оборота. После этого данный шар попадал во вращающийся барабан E, одновременно из верхней части барабана выпускался другой шар, который катился по направляющему желобу, вновь приводя в действие часовой механизм. Весь этот процесс скатывания и возвращения шаров в исходное положение управлялся сложной системой зубчатых колес и рычагов, которые приводились в движение силой падающей с башни воды. Сам Шотт в комментариях по поводу работы машины Бехера высказывал сомнение, что подобное устройство могло бы работать как перпетуум мобиле, утверждая, что в земных условиях вообще невозможно обеспечить вечное движение. То же самое писал о своих опытах и сам Бехер:
«Десять лет я занимался этим безумием, потеряв кучу времени, денег и погубив свое доброе имя и славную репутацию -- все это лишь для того, чтобы сегодня с полной убежденностью сказать вечное движение (motus perpetuus) -- неосуществимо»
С механизмами, аналогичными схеме непрерывного движения шаров по замкнутому пути, мы встречаемся в целом ряде хронометрических устройств. Одну из таких попыток, хотя и относящуюся к сравнительно недавнему времени, иллюстрирует рисунок 19. Правда, из-за своей сложности и неуклюжести подобные механизмы производят в целом весьма необычное впечатление, и поэтому не удивительно, что между изобретателями перпетуум мобиле такого типа всегда возникала масса споров о приоритете и об оригинальности самой конструкции.
В 60-х годах XVIII века интересный вариант вечного двигателя с неуравновешенными шарами предложил некий Ульрих из Гранаха. Из рисунка 20 видно, что для подачи шаров к верхней части ведомого колеса автор использовал архимедов винт, т.е. элемент, с которым мы встречались еще у Леонардо да Винчи.
Вечные двигатели с неуравновешенными шарами имели много разновидностей В большинстве случаев принцип их действия оказывался по существу одинаковым, а доставка шаров обратно в исходную точку их траектории осуществлялась различными способами. Так, в перпетуум мобиле, изображенном на рисунке 21, шары поднимаются наверх с помощью бесконечной ленты с черпаками. А согласно схемы 22, где представлена схема вечного двигателя Джорджа Ливтона из Мидлсекса, шары, увенчивающие крутящий момент всей системы, переносятся наверх на концах гибких шарнирно-сочлененных рычагов. При этом перемещение шаров в верхнее положение, как видно из рисунка, осуществляется с помощью самих рычагов.
О том, сколько внимания уделялось изобретателями печным двигателям с неуравновешенными шарами, свидетельствуют рисунки, взятые из иллюстрированного дополнения к рукописи Ханса Хольтцхамера (1602 г), хранящейся в Государственной технической библиотеке (рисунки 23, 24, 25, 26, 27, 28, 29, 30, 31). Авторы большинства механических перпетуум мобиле, приводившихся в действие силой тяжести, либо обращали мало внимания, либо вообще пренебрегали влиянием пассивных сил, которые были главной причиной неудач их экспериментов. В определенном смысле исключением является схема вечного двигателя, представленная на чертеже 32. Пытаясь устранить нежелательные силы сопротивления, создатель проекта предложил, чтобы из камеры, в которой шар двигался без трения по «идеально» гладкой поверхности, полностью откачивался воздух. Другим важным условием успешной работы этого устройства являлась, по мнению автора, «абсолютная» упругость шара.
В следующем примере, заимствованном из того же источника, движущим элементом перпетуум мобиле вновь является сила тяжести. Правда, при первом взгляде на чертеж 33 вам не может не показаться, что этот вечный двигатель несколько великоват: ведь главная его часть -- это вся наша Земля с просверленным насквозь от полюса к полюсу прямым каналом, герметически закрытым с обоих концов. По представлению изобретателя, массивный шар, изготовленный из достаточно плотного материала, должен колебаться от одного конца канала к другому сколь угодно долго. Точно так же, как и в устройстве, показанном на чертеже 32, одним из условий функционирования подобной схемы автор считает наличие вакуума в рабочем пространстве канала.
В заключение этого краткого обзора наиболее часто встречающихся типов механических вечных двигателей приведем еще два интересных примера. Принцип действия первой из этих машин схема 34 по внешнему виду необычайно прост разница в весе между более длинной частью ремня, проходящей между промежуточными роликами, и его прямой, вертикальной частью, обеспечивает неравенство сил, служащее причиной постоянного движения всей системы. Подобный тип перпетуум мобиле был, по-видимому, прежде необычайно популярен, поскольку он часто встречается в литературе во многих вариантах: с ремнями, цепями и т.п.
Еще один перпетуум мобиле, состоявший из звездчатого колеса с восемью рычагами схема 35, имел дополнительно четыре пары взаимно соединенных мехов Связь между противоположными мехами осуществлялась с помощью полых трубчатых рычагов, наполовину заполненных ртутью. Прикрепленные к мехам грузы при повороте колеса поочередно сжимали и разжимали меха, при этом ртуть внутри рычагов переливалась так, что возникавшее в результате неравновесие сил приводило всю систему в режим постоянного вращения.
Многочисленные попытки создания вечного двигателя, приводимого в действие силой тяжести различных масс в виде откидных рычагов, неуравновешенных шаров и т.п., с самого начала исходили из неверного предположения о том, что для приведения такой машины в непрерывное движение достаточно сместить центр тяжести ее вращающейся части (колеса, рычагов и т.д.) из положения равновесия, т.е. сдвинуть его с оси вращения. Это ошибочное понимание закона тяготения, по всей видимости, имело своими главными причинами несколько консервативный взгляд на статику тел, а также почти полное отсутствие опыта практического применения новых законов динамики, установленных Галилеем.
До сих пор при исследовании эволюции идеи перпетуум мобиле мы продвинулись не слишком далеко, сумев подробно рассмотреть лишь механические вечные двигатели, приводившиеся в действие гравитационными эффектами. Колеса, молотки, шары, противовесы, цепи, ремни, рычаги, зубчатые передачи вот главные детали того «конструктора», из которого собирали элементы своих фантастических машин изобретатели тех времен. При этом большинство из них было абсолютно убеждено в глобальной справедливости своей идеи, или же, по крайней мере, проникнуто твердой верой в нее. В самом деле, вряд ли можно найти человека, который занимался бы постройкой какой-нибудь машины, специально задавшись целью доказать ее бессмысленность.
И все же в истории перпетуум мобиле такой случай имеется. Член английского Королевского общества механик и астроном Джеймс Фергюсон в качестве протеста против всё умножавшихся проектов новых вечных двигателей, в бессмысленности которых он нисколько не сомневался, построил модель перпетуум мобиле, показанную на рисунке 36. По внешнему виду эта модель мало чем отличалась от описанных выше устройств. Правда, в дополнение к откидывающимся грузам на концах звездообразно расположенных рычагов Фергюсон использовал еще набор грузов, передвигавшихся в особых каретках в направлении касательной к окружности вращения и перпендикулярно соответствующему рычагу. Одновременно перемещение грузов с помощью совокупности специальных блоков и тросов связывалось с движением откидывающихся рычажков; при этом каждый рычажок соединялся тросом с тем грузом, который отстоял от него по окружности на 90° в направлении движения часовой стрелки. С помощью подобной взаимной комбинации исходных элементов Фергюсон намеренно хотел усилить действие исследуемой машины, чтобы, если все попытки привести ее в движение окажутся безуспешными, наглядно показать, что идея перпетуум мобиле целиком принадлежит царству фантазии. Весьма вероятно, что модель Фергюсона была не единственным выступлением против самой сущности идеи вечного двигателя, поскольку с критикой разных типов этих машин мы встречаемся и в целом ряде других сочинений того времени.
Отметим, что, пожалуй, никто из изобретателей вечного двигателя не задавался более легкой задачей, чем Фергюсон: ведь для своего эксперимента он мог выбрать любую машину своих противников, будучи заранее уверенным, что его попытка доказать невозможность вечного двигателя непременно окажется успешной.
Механические вечные двигатели с перекатывающимися шарами в XVI-XVII вв. были весьма распространенным типом перпетуум мобиле Здесь представлен один из самых простых вариантов.
Проект механического перпетуум мобиле Эдуарда Сомерсета
Главную часть этого перпетуум мобиле составляет пневмогидравлическая система, к работе которой добавляется действие силы тяжести прикрепленных к мехам грузов
2. Гидравлические вечные двигатели
Один из неписаных законов жизни утверждает, что авторы самых важных открытий и изобретений часто остаются безвестными -- время уносит имена этих людей раньше, чем окружающие успевают заметить их свершения. Вот уже тысячи лет вертятся лопатки водяного колеса -- замечательнейшей машины давнего прошлого, машины, сопровождавшей развитие цивилизации с самого начала ее зарождения до настоящего времени. Тысячи мельниц, пил и насосов приводил в действие этот двигатель, который наряду с мускульной силой человека и животных столетиями являлся единственным реальным источником их двигательной силы. Правда, несмотря на свою простоту, водяное колесо обладало и существенным недостатком -- оно нуждалось в достаточном количестве проточной воды вне зависимости от времени года. Должно быть, именно поэтому большой популярностью пользовалась идея работы водяного колеса в замкнутом цикле, что позволило бы сделать его независимым от изменчивых водяных потоков и тем самым обеспечить более широкое его использование. Слабость же этой идеи заключалась в том, что оставалось неясным, как доставлять воду обратно, к лотку, питающему лопатки водяного колеса.
На рисунках 37, 38, 39 представлены старинные, относящиеся к 1661 г., гравюры, изображающие так называемые сухие водяные мельницы. Подобные мельницы приобрели широкое распространение в конце XVII в., создание их часто связывается с именем Хайне, кузнечных дел мастера из Лемсала. Водяные мельницы Хайне привлекли внимание графа Меллина, составившего подробный обзор этих устройств -- «Иллюстрированное описание так называемой сухой водяной мельницы в городе Лемсале в Лифляндии», опубликованный в «Торговой газете» в 1796 году. С аналогичными рисунками и чертежами мы встречаемся и у Каспара Шотта, Атанасия Кирхера, Якобо де Страды и др. Авторы всех этих проектов, взятых из книги Бёклерна «Новый театр машин», изданной в Нюрнберге в 1661 г., использовали для подачи воды в верхний лоток так называемую коклею (водяную спираль), или архимедов винт. К наиболее интересным элементам, изображенным на этих рисунках, относится пропеллерная (лопаточная) турбина, постепенно заменявшая привычное водяное колесо. Предложенный де Страдой в 1629 году проект вечного двигателя, в котором использовалось водяное колесо с верхней подачей воды (по внешнему виду он был аналогичен вечным двигателям, представленным и книги Беклерна), предназначался для привода шлифовальных кругов.
Схемы сухих водяных мельниц, создававшихся по принципу гидравлического перпетуум мобиле, так никогда и не были реализованы на практике. Об этом свидетельствует целый ряд проектов, отличающихся друг от друга лишь некоторыми деталями конструкции. В попытках увеличить количество воды, подаваемой к верхнему лотку колеса, авторы подобных проектов часто прибегали к объединению двух или более архимедовых винтов рисунок 39. Гидравлическим перпетуум мобиле с архимедовым винтом занимался также английский епископ Джон Уилкинс, подробно описавший его в своем сочинении «Математическая магия», опубликованном в 1648 г. Еще один проект гидравлического вечного двигателя, чертеж которого приведен на рисунке 40, представляет собой нечто среднее между трехступенчатым водяным колесом и турбиной в тройном каскаде, сидящими на общем наклонном валу. Внутри этого вала размещался архимедов винт, поднимавший воду из нижнего резервуара на лопатки самого верхнего колеса. Чтобы выяснить всю несостоятельность этих проектов, проанализируем кратко работу водяного колеса и проведем примерную оценку его энергетического баланса. Рассмотрим сначала водяное колесо с подачей воды сверху -- этот единственный гидравлический двигатель, в котором непосредственно используется потенциальная энергия падающей воды. Действительно, находящаяся в верхнем лотке вода падает в ковши рабочего колеса и своей тяжестью заставляет их двигаться вниз до тех пор, пока колесо не повернется примерно на пол-оборота и вода не выльется в отводящий канал.
Диаметр водяных колес обычно выбирался приблизительно равным высоте используемого перепада уровней. Следовательно, в случае значительных перепадов водяное колесо теряло ряд своих преимуществ, поскольку оно становилось слишком большим и тяжелым. Мощность, развиваемая колесами водяных мельниц и пил, составляла обычно от 3,5 до 11 кВт при перепаде от 3 до 12 м и секундном расходе воды порядка 0,1-0,8м3. При этом колесо всегда располагалось строго над поверхностью воды в отводном канале, с тем чтобы при повышении уровня в нем нижний край колеса не оказывался бы в воде. Именно это обстоятельство не позволяло полностью использовать всю потенциальную энергию воды, определявшуюся теоретически только разностью высот верхнего и нижнего уровней. Общая сумма потерь даже у тщательно изготовленного водяного колеса с верхней подачей воды достигала примерно 20%, так что коэффициент полезного действия такого колеса никогда не превышал 80% В эту цифру не включены, однако, потери энергии в передаточном механизме, представляющем собой необходимый элемент каждого двигателя. Таким образом, после подсчета всех потерь и пассивных сопротивлений собственно колеса и передаточных звеньев коэффициент полезного действия всего устройства падает уже до 50-60%; эффективность же колес с подачей воды на среднем и нижнем уровне оказывается еще более низкой. В случае использования водяного колеса в качестве движущего элемента перпетуум мобиле приводимое им в действие перекачивающее устройство должно было доставлять к верхнему лотку ровно такое же количество воды, которое в тот же самый момент вытекало на лопатки самого колеса. Даже если при этом не учитывать потери в перекачивающем насосе, то потребляемая насосом мощность должна в точности соответствовать потенциальной энергии воды, которая определяется упомянутой разностью верхнего и нижнего уровней и которую, как говорилось выше, никакое водяное колесо полностью использовать не может. Это обстоятельство уже само по себе доказывает, почему не может существовать сухая водяная мельница с замкнутым круговоротом воды.
К аналогичному выводу еще в 1724 г пришел Якоб Леупольд, подробно рассматривавший этот вопрос в своей книге «Всеобщий театр машин», изданной в Лейпциге; свою отрицательную точку зрения на подобные устройства он выразил следующими словами: «Один фунт (т.е. груз) способен удержать другой фунт в равновесии, но никогда не сможет привести его в движение».
Чертеж 41, заимствован из рукописи, в которой содержится описание двух любопытных машин, предложенных в 1788 г. флорентийским аббатом Винсентом Ольми. Ведущее колесо изображенного здесь гидравлического перпетуум мобиле имеет лопатки ложкообразной формы, несколько напоминающей форму лопаток современной турбины Пелтона (ковшовой турбины). Подача воды осуществляется с помощью сужающегося желоба, направленного на определенную лопатку в нижней части колеса, которое вращается в вертикальной плоскости; тем самым используется как потенциальная, так и кинетическая энергия воды. Интересно, что это техническое решение оказывается очень похожим на сопловой аппарат турбины Пелтона. Сам Ольми утверждал, что его перпетуум мобиле способен перекачивать большие объемы воды и при том сам приводится этой водой в движение. Вместо архимедова винта для подъема воды из нижней емкости в сборный резервуар выходного сопла здесь используются два черпаковых насоса. В безупречности своего проекта, которому на самом деле нельзя отказать в определенной доле оригинальности, сам Ольми, судя по всему, абсолютно не сомневался, поскольку на последующих страницах рукописи он приводит даже подробные чертежи отдельных его частей. Кроме перпетуум мобиле Ольми занимался разработкой и проектированием других интересных машин. Например, в том же сочинении он описывает и дает чертежи устройства для подъема и транспортировки тяжестей на горных склонах, а также различных вспомогательных приспособлений, предназначенных для военных целей.
На старинном чертеже 42 из парижского «Журнала ученых», относящемся к 1678 г., показан другой вечный двигатель -- гидравлический перпетуум мобиле Станислава Сольского, который он демонстрировал при дворе польского короля в 1609-1610 гг. Принцип его работы, по замыслу автора, заключался в следующем. Главными частями этого вечного двигателя являлись водяной насос и колесо mm. По мере опускания груза V ушат P постепенно поднимается вверх. Одновременно с ним поднимается клапан в насосе, и вода начинает поступать в сосуд abcd. Через выпускной канал n она попадает в круглый резервуар g, открывает в нем заслонку и через кран r выливается в ушат P. В результате ушат P под тяжестью воды начинает опускаться, однако в некоторый момент посредством натянувшейся веревки t, прикрепленной с одной его стороны, он наклоняется и опорожняется. Пустой ушат P вновь поднимается наверх, груз V опять начинает опускаться, и вся процедура повторяется заново. Колесо mm в этом случае должно совершать только колебательные движения.
Два следующих перпетуум мобиле, описания которых приводятся далее, должны были работать в соответствии с законом Архимеда о подъемной силе в жидкостях. Главной частью первого из них, как ясно из схемы 43, является вращающийся вокруг горизонтальной оси барабан с наглухо закрытыми торцами. Внутри барабана располагались две взаимно перпендикулярные перекрещивающиеся тяги с насаженными на них большими пробковыми шарами. На внешних концах этих тяг, пропущенных сквозь боковую поверхность барабана через водонепроницаемые вводы, укреплялись металлические грузы. При этом пробковые поплавки должны были отклонять тяги в соответствующем направлении, что обеспечивало бы необходимое неравновесие сил, приводившее барабан в непрерывное и равномерное вращение.
Гораздо более сложный тип гидравлического вечного двигателя представлен на чертеже 44. В бак с жидкостью погружен ротор, от которого отходят 6 трубчатых рычагов с пузырями на концах. Сами же рычаги укреплены в специальной обойме, вращающейся на полом валу. При вращении ротора через щель в валу воздух из полости вала последовательно поступает в трубки рычагов. Создание избыточного давления и перекачивание воздуха производятся с помощью специального меха, расположенного под баком и приводимого в действие непосредственно от кривошипа на валу ротора Выпускание воздуха из пузырей обеспечивает обозначенный на рисунке черным кружочком специальный кулачок, находящийся над поверхностью жидкости в баке. Для закрывания заслонки в трубке служит другой кулачок, остающийся ниже поверхности жидкости. Принцип действия этого вечного двигателя вполне очевиден из чертежа.
Очень простым по устройству представляется и гидравлический перпетуум мобиле, показанный на чертеже 45. Погруженная в воду часть деревянного барабана, согласно закону Архимеда, подвергается действию выталкивающей силы. Автор этого проекта исходил из предположения, что если эта выталкивающая сила окажется больше силы трения в оси барабана, то барабан будет непрерывно вращаться в направлении, указанном на рисунке стрелкой. В действительности же движения не будет вообще, поскольку архимедова сила будет направлена не вверх, а перпендикулярно к поверхности барабана. В самом деле, если разбить искривленную поверхность барабана на элементарно малые плоские участки и представить, что на каждый из этих участков действует элементарная выталкивающая сила, направленная к центру вращения колеса, то результирующая сила, будучи суммой элементарных сил, также окажется направленной к оси колеса. Понятно, что сила, действующая в радиальном направлении, не сможет вызвать никакого вращательного движения колеса.
Несколько непривычный вид имеет гидравлический вечный двигатель, изображенный на рисунке 46. Основной его частью является равноплечее коромысло с двумя шарнирно-подвешенными бачками на концах. Находясь в верхнем положении, один из бачков автоматически открывает отверстие в дне верхнего резервуара и наполняется вытекающей из него водой. Под тяжестью наполненного водой бачка плечо коромысла начинает опускаться до тех пор, пока бачок не коснется поверхности воды в нижнем резервуаре. При этом специальный неподвижный штырь открывает заслонку в самом бачке и выпускает из него воду в нижний резервуар. В тот же самый момент начинается аналогичный рабочий цикл для бачка на противоположном конце коромысла. Перекачивание воды обратно в верхний резервуар автор намеревался предоставить двум поршневым насосам, приводимым в действие самим коромыслом.
Особую группу гидравлических перпетуум мобиле составляли устройства, в которых использовались известные законы капиллярного поднятия жидкостей. Мы довольно часто сталкиваемся с описанием вечного двигателя, в котором вода или масло поднимаются по капиллярам ткани фитиля в расположенный выше сосуд, далее по другому фитилю рабочая жидкость поднимается еще выше и т.д., пока наконец она не достигает самого верхнего сосуда, откуда и подается по желобу к лопаткам водяного колеса. Колесо поворачивается, жидкость стекает в нижний сосуд, и весь процесс капиллярного поднятия повторяется заново. Если бы мы на самом деле изготовили такое устройство, то оказалось бы, что лопастное колесо этой машины никогда не станет вращаться, поскольку в верхнем сосуде не окажется ни капли воды. Дело в том, что капиллярные силы хотя и позволяют преодолеть силу тяжести, поднимая жидкость в ткани фитиля, но они же и удерживают ее в порах ткани, не позволяя ей вытечь из них. Допустив тем не менее, что под действием капиллярных сил жидкость все-таки может попасть в верхний сосуд, мы одновременно должны считаться и с тем, что она точно так же может стекать по фитилю обратно в нижний сосуд.
В литературе очень часто упоминается еще об одной попытке создания вечного двигателя, использующего капиллярные свойства жидкостей, -- о вечном двигателе Вильяма Конгрева, подробно описанном Иоганном фон Поппе в его книге «Перпетуум мобиле и искусство управления», изданной в Тюбингене в 1832 году. С точки зрения механики устройство экспериментальной машины Конгрева было очень простым, как это видно из схемы 47. Она представляла собой надетую на три ролика бесконечную замкнутую ленту из пористого материала с цепочкой грузов, укрепленных по ее внешнему контуру. Автор предполагал, что его машина будет работать следующим образом. При погружении всей системы в воду так, чтобы оба нижних ролика оказались ниже поверхности воды, погруженная часть ленты пропитается водой. При этом за счет капиллярных сил вода будет подниматься до определенной высоты и по передней, вертикальной части ленты. Грузы же на наклонной части ленты выдавят из нее воду, впитавшуюся в поры материала в то время, пока эта часть ленты находилась под водой. При выдавливании воды из наклонной части ленты нарушится равновесие сил, определяемых весом воды на вертикальном и наклонном участках ленты. Поскольку вертикальная часть ленты, не сдавливаемая грузами, сохранит впитавшуюся в поры воду и тем самым окажется тяжелее ровно на вес воды, поднятой в ней за счет капиллярных сил. Так, если в соответствии с приведенными рассуждениями вода на вертикальном участке ленты поднимется на 1 дюйм (2,54 см), то лента шириной и толщиной в 1 фут будет обладать тяговым усилием за счет пропитавшей ее воды, равным примерно 30 фунтам (133,4H). Если же лента придет в движение, в чем Конгрев абсолютно не сомневался, то поверхность воды в местах ее соприкосновения с лентой немного прогнется, в результате чего высота поднятия воды за счет капиллярных сил окажется несколько большей. Автор считал, что при высоте капиллярного поднятия около 5 дюймов движущая сила достигнет 150 фунтов (667 H), а при высоте 9 дюймов и окружной скорости движения ленты 13,7 м/мин эта сила возросла бы до 180 фунтов (801 Н). В этом случае машина Конгрева по своей производительности уже значительно превзошла бы возможности человека. Несмотря на свои утопические представления относительно увеличения размеров подобной машины, по сообщению «Лондонского журнала ремесел» за май 1827 г., автор сумел разработать вечный двигатель огромных размеров полезной мощностью 58,7 кВт.
Примерно около 1640 г. неким А. Мартином были изобретены и построены знаменитые «гидравлические часы», изображенные на рисунке 48. Самодвижущийся механизм этого устройства предназначался для вращения стрелок на циферблате часов. Находящаяся в герметически закрытом сосуде вода под действием капиллярных сил должна была подниматься по длинной, узкой, загибающейся наверху трубочке и вытекать из нее на лопатки водяного колеса. Уже при первом взгляде на схему «вечного» хронометрического устройства Мартина становится очевидным, что у его создателя также было несколько преувеличенное представление о возможностях капиллярных сил. Дело в том, что явление капиллярности основано на различии величины межмолекулярных сил между отдельными частицами жидкости и сил взаимодействия между этими частицами и твердой стенкой трубки. Именно результирующая этих двух сил определяет, что будет наблюдаться в капилляре: повышение или понижение уровня жидкости, т.е. так называемое капиллярное поднятие или капиллярная депрессия. Это явление ограничивается, однако, определенными рамками. Изобретатель, по-видимому, и не предполагал, что вода в узкой трубке поднимается лишь на такую высоту, при которой гидростатическое давление поднятого водяного столба не превышает величину капиллярных сил сцепления. Так, в стеклянной трубке с внутренним диаметром 1 мм вода, например, поднимется на 30, спирт -- на 12, а эфир -- на 10 мм.
Авторы проектов механических и гидравлических перпетуум мобиле всегда оказывались в затруднении при решении вопроса о доставке грузов или жидкости назад, в исходное положение, что позволяло бы обеспечить непрерывность рабочего цикла их машин. Вместе с тем на всех этих примерах мы могли убедиться, что пути, которыми шли многие из них, оказывались весьма извилистыми и с самого начала не сулили им много успехов. Большинство их экспериментов походило на блуждания в заколдованном круге, где одни изобретатели повторяли ошибки других в надежде оказаться более удачливыми.
Джамбаттиста Порта, знаменитый ученый, экспериментатор и изобретатель «волшебного фонаря», изучая устройство сифона, предложенного еще Героном Александрийским, пришел к идее нового вечного двигателя, который он намеревался использовать для перекачивания воды. Между тем его замыслы побудили архитектора Витторио Цонку заняться непосредственной разработкой проекта такого «сифонного» перпетуум мобиле. Необъяснимое поведение жидкостей в сифоне (например, тот факт, что вода сама поднимается по одной трубке сифона, протекает через изгиб и через вторую трубку вытекает в расположенный ниже сосуд) дало повод к появлению нового понятия -- так называемой боязни пустоты (horror vacui). Сам великий Галилей утверждал, что природа действительно боится пустоты. По его мнению, именно стремление воспрепятствовать возникновению безвоздушного пространства заставляет воду подниматься и опускаться в трубках сифона. В свое время анализу понятия вакуума посвятил часть своих философских рассуждений еще Аристотель. Так, он утверждал, что вакуум никогда не может появиться в природе, потому что для возникновения стремительного движения всегда необходим воздух, который бы сначала расступался перед телом, а затем опять смыкался за ним. Из учения Аристотеля, благодарно воспринимавшегося консервативно настроенными схоластическими кругами, постепенно и развилась средневековая теория «боязни природы перед пустым пространством», которая послужила основой многих фантастических попыток использовать эту «боязнь» в своих целях.
Известно, что работа, затрачиваемая на подъем жидкости в сифоне, производится давлением воздуха, обусловленным разницей уровней жидкости в сосудах, которые соединяют оба колена сифона. В то же время для того, чтобы жидкость могла протекать через сифон, максимальная высота его изгиба не должна превосходить высоту столба жидкости, уравновешиваемого давлением внешнего воздуха. Для ртути, например, эта высота при нормальном барометрическом давлении составляет 76 см, а для воды -- около 10 м. Конечно, Джамбаттиста Порта всего этого мог тогда и не знать -- ведь он был уверен, что с помощью своего «вечного» сифона сможет перекачивать воду даже через высокие горы.
Как мы уже упоминали, перенос этой идеи в область разработки перпетуум мобиле впервые осуществил городской архитектор из Падуи Витторио Цонка. Правда, в отличие от Порты он вовсе не собирался строить гигантские сифоны для перекачивания воды через горные хребты. На рисунке 49 представлено изображение предложенной им сифонной мельницы с турбинным водяным колесом. Работу этой «сухой мельницы» Цонка представлял себе примерно так. После закрытия обоих концов трубы через отверстие в ее наивысшей точке трубу до самого верха заливают водой. Затем верхнее отверстие закрывается; при открытии же обоих нижних отверстий сифона в мельнице, по мнению автора, автоматически должно возникнуть установившееся течение воды.
В 1607 г., когда Цонка опубликовал описание своего изобретения в книге «Новый театр машин и сооружений», свойства барометрического давления практически еще не были известны. Впрочем, это следует уже из самого рисунка машины Цонки. Ведь если отверстие всасывающего колена сифона лежит ниже выходной горловины, то перекачка воды оказывается невозможной, даже если высота точки изгиба трубы удовлетворяет указанному ранее условию. Цонка попытался преодолеть возникшую перед ним трудность, расширив сечение трубы вблизи выпускной горловины в надежде, что увеличение массы воды, сосредоточенной в этой части сифона, увеличит всасывающий эффект в другом его колене.
Горняки и колодезных дел мастера в своей работе часто сталкивались с эффектом «боязни пустоты», однако в своих рассуждениях они не считали полностью правыми ни Порту, ни Цонку, поскольку, например, оказывалось, что обычные поршневые насосы не в состоянии были выкачивать воду больше, чем с десятиметровой глубины. Сам Галилей признавал, что «боязнь пустого пространства» в природе имеет свои границы, определяемые «неспособностью водяного столба удерживать в трубе собственный вес». Только после его смерти Торричелли сумел раскрыть сущность этого явления, использовав в своих опытах с вакуумом вместо воды ртуть. При этом он экспериментально установил Спецтехника ногинск. Продажа японской спецтехники. Спецтехника., что столбику ртути высотой в 76 см соответствует десятиметровый столб воды -- это и была как раз та граница, которую не могли преодолеть копавшие колодцы мастера, не раз старавшиеся увеличить высоту всасывания своих насосов. При этом Торричелли указал, что не «страх» перед безвоздушным пространством, а давление окружающего воздуха удерживает ртуть или воду в запаянной наверху трубке с открытым нижним концом. Своим открытием Торричелли одновременно решил две проблемы: во-первых, он нанес тяжелый удар общепризнанной до того времени механике Аристотеля и, во-вторых, показал, насколько нереальными являлись представления Порты и Цонки по поводу мнимого «страха» природы перед пустотой с точки зрения создания перпетуум мобиле.
К сожалению, неудачи в попытках построения вечных двигателей на основе использования законов гидростатики и эффекта капиллярности не являлись для сторонников гидравлических перпетуум мобиле достаточно весомым аргументом в научных спорах. Исследованию подобных возможностей отдали дань даже некоторые известные ученые-физики. На схеме 50 приведен перпетуум мобиле, предложенный знаменитым математиком Иоганном Бернулли -старшим. Принцип действия этого вечного двигателя основывался на использовании явления осмоса -- взаимной диффузии двух жидкостей, разделенных пористой стенкой. Устройство Бернулли не имело никаких движущихся частей -- непрерывное движение обеспечивалось одной из использовавшихся в нем жидкостей. Главной и но существу единственной его частью являлся сосуд со вставленной в него стеклянной трубкой, нижний конец которой закрывался мембраной, пропускавшей через свои поры только более легкую жидкость. Автор предполагал заполнить сосуд тяжелой жидкостью B, а снабженную мембраной трубку -- менее плотной жидкостью A. При этом длину трубки a и высоту жидкости b в сосуде он рекомендовал выбирать таким образом, чтобы выполнялось соотношение
b/a > 2В /(А+В).
По мнению автора, при выполнении этого условия более легкая жидкость проникала бы через мембрану из сосуда в трубку, в результате чего смесь обеих жидкостей переливалась бы через верхний край трубки и вновь попадала в сосуд -- весь этот процесс должен был продолжаться бесконечно. Сам Бернулли утверждал, что принцип, использованный им в этом устройстве, является, собственно, не его идеей, а чистой аналогией грандиозного естественного явления -- круговорота воды в природе. С его точки зрения, природа сама доказывает возможность существования перпетуум мобиле с замкнутым циклом влагооборота. Ведь именно в природе вода сама поднимается из глубин океана к поверхности и, испаряясь, выпадает потом на склоны гор, откуда через родники, ручьи и реки стекает обратно в океан. Морская же вода содержит много солей, следовательно, ее плотность больше, чем у чистой воды. Мембраной, или по существу гигантским фильтром, является здесь сама Земля, задерживающая в себе соли и пропускающая к родникам одну лишь чистую воду. Иоганн Бернулли -старший был не единственным, кто интересовался принципом двухжидкостного перпетуум мобиле. Его современник, французский аббат Жан д'От-Фей, известный физик, механик и часовых дел мастер, исходя из тех же предположений, выбрал, однако, более сложный путь -- создать вечный двигатель с использованием химической реакции. Полость A его устройства, изображенного на схеме 51, заполняется растворами винного камня и купороса. При их перемешивании начинается реакция с выделением газов, которые, закрывая клапаны у отверстий на концах двухколенной изогнутой трубки C, выдавят часть смеси в камеру D где с определенного момента возникает избыточное давление. Это давление закрывает действующий лишь в одну сторону клапан на конце трубки B и отделяет тем самым жидкость в камере D от жидкости, оставшейся в полости A. Аббат От-Фей предполагал, что смесь из камеры D будет постепенно отфильтровываться так, что в одном колене трубки C окажется чистый раствор винного камня, а в другом -- раствор купороса. При этом через нижние клапаны оба раствора должны были снова вытекать в полость A и объединяться в исходную смесь. К сожалению, рассуждения автора основывались на неправильном допущении, что по окончании химической реакции, возникшей при смешивании первичных веществ, возможно вновь получить оба компоненты в исходном их состоянии и тем самым продолжать процесс бесконечно.
В 1685 г. в одном из выпусков лондонского научного журнала «Философские труды» был опубликован предложенный французом Дени Папеном проект гидравлического перпетуум мобиле, принцип действия которого должен был опровергнуть известный парадокс гидростатики. Как видно из изображенного на рисунка 52, это устройство состояло из сосуда, сужавшегося в трубку в форме буквы C, которая загибалась кверху и своим открытым концом нависала над краем сосуда. Автор проекта ошибочно предполагал, что вес воды в более широкой части сосуда обязательно будет превосходить вес жидкости, находящейся в трубке, т.е. в более узкой его части. Это означало, что жидкость своей тяжестью должна была бы выдавливать саму себя из сосуда в трубку, по которой ей вновь приходилось бы возвращаться в сосуд, -- тем самым достигалась требуемая непрерывная циркуляция воды в сосуде. К сожалению, Папен не осознавал того, что решающим фактором в данном случае является Рекомендуем гидравлические тележки для склада не разное количество (а с ним и различный вес жидкости в широкой и узкой частях сосуда), а прежде всего свойство, присущее всем без исключения сообщающимся сосудам: давление жидкости в самом сосуде и изогнутой трубке всегда будет одинаковым. Гидростатический парадокс как раз и объясняется особенностями этого по существу своему именно гидростатического давления. Называемый иначе парадоксом Паскаля, он утверждает, что суммарное давление, т.е. сила, с которой жидкость давит на горизонтальное дно сосуда, определяется только весом столба жидкости, находящейся над ним, и совершенно не зависит от формы сосуда (например, от того, сужаются или расширяются его стенки) и, следовательно, от количества жидкости.
На рисунках 53, 54, 55, 56, 57 представлены примеры различных гидравлических перпетуум мобиле с водяными колесами, поршневыми насосами и нориями (черпаковыми подъемниками). Далее, на последующих рисунках 58, 59, 60 изображены некоторые типы вечных двигателей с использованием принципа сифона и эффекта капиллярного поднятия в том виде, как они представлялись их конструкторам на рубеже XVI - XVII вв. Из того же источника заимствованы изображения двух перпетуум мобиле на рисунке 61 и рисунке 62. Они привлекают наше внимание несколько необычным решением своих кинематических механизмов. Первый из них рисунок 61 представляет собой вечный двигатель, относящийся к тому небольшому классу машин, в которых в качестве рабочего тела использовался сыпучий материал -- песок. Ковши, укрепленные на специальных рычагах рабочего колеса, подавали песок в верхний наклонный желоб. Далее по нижнему желобу песок возвращался обратно, в камеры, размещенные между щеками рабочего колеса. По мере вращения колеса камеры поочередно оказывались в крайнем нижнем положении, в этот момент песок из них высыпался и затем снова подхватывался ковшами, в результате чего весь цикл должен был повторяться вновь. На рисунке 62 изображен вечный двигатель, который приводился в движение сжатым воздухом, поступавшим к нему от кузнечного меха. При этом работа меха обеспечивалась с помощью неравноплечего рычажного механизма, связанного с кривошипом, который в свою очередь должен был приводиться в действие зубчатой передачей от вала лопастного колеса воздушного мотора.
Анализ собрания старинных чертежей и рисунков из рукописи Хольтцхамера вновь подтверждает тот факт, что исследование проблемы вечного движения являлось весьма благодарной темой для ученых и инженеров эпохи позднего Возрождения и раннего барокко; при этом среди большого количества стандартных технических решений и однотипных идей мы обнаруживаем и такие, которые выделяются известным остроумием и значительной долей оригинальности.
Если бы мы захотели подвергнуть рассмотрению и разбору проекты всех без исключения гидравлических перпетуум мобиле, это заняло бы у нас слишком много места и времени Подарки, Что подарить. Правда, с некоторыми из них мы еще встретимся в другом разделе, где описываются попытки создания вечных двигателей в XIX и XX веках. Однако и на этих примерах мы опять сможем убедиться в главном -- основой для комбинаций, из которых современные изобретатели создавали десятки конструктивных вариантов, всякий раз выдавая их за оригинальное решение, почти всегда служили все те же несколько основных физических принципов.
Гидравлический перпетуум мобиле поляка Станислава Сольского, относящийся к 1610 г. Его внешний вид и принцип действия представляются достаточно сложными. Привычное вращение колеса заменено здесь крутильными колебаниями блока.
Двухжидкостный перпетуум мобиле Иоганна Бернулли Вечное движение должно было осуществляться в результате взаимного проникновения и последующего обратного разделения обеих жидкостей.
3. Вечный двигатель Вильямса Конгрева начало XIX в.
Относящийся к началу XIX в. вечный двигатель Вильямса Конгрева является одним из многочисленных гидравлических вечных двигателей, в которых использовались капиллярные свойства жидкостей.
4. Гидравлический перпетуум мобиле аббата Винсента Ольми
Чертеж гидравлического перпетуум мобиле аббата Винсента Ольми из Флоренции (1788 г.) Сам автор говорит о нем, как о «машине, с легкостью подымающей большое количество воды на некоторую высоту с помощью движения, которое сообщает ей сама вода, стекая по наклонной плоскости»
5. Наиболее ранние сведения о вечных двигателях
Попытки исследования места, времени и причины возникновения идеи вечного двигателя -- задача весьма сложная. Не менее затруднительно и назвать первого автора подобного замысла. К самым ранним сведениям о перпетуум мобиле относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде. В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своем стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикрепленными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле, как видно из рисунка 1, был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещенных на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто:
«Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе».
Интересно, что схемы первых вечных двигателей строились на основе простых механических элементов и даже в более поздние времена включали в себя все те же рычаги, которые закреплялись по окружности колеса, вращавшегося вокруг горизонтальной оси. Выбор этих механических элементов логически вытекал из того факта, что самыми доступными и наиболее глубоко исследованными областями науки в ту пору являлись механика твердых тел и механика жидкостей. Заслуживает внимания также и то обстоятельство, что в качестве основного конструктивного элемента использовалось именно колесо. Древнеиндийские философы учили, что регулярно повторяющиеся события, составляющие воображаемый круговой цикл, играют очень важную роль в жизни человека, являясь для него символом вечности и совершенства. Еще в ведической религии -- религии древних индусов, колесо символизировало божественное начало. Размеренное движение солнечного диска, а также Луны с ее характерной круглой формой в период полнолуния служили источником вдохновения не только из-за своего внешнего вида, но и благодаря удивительной регулярности их циклически повторяющегося движения. Так колесо сделалось символом движения, а наука уже в самом начале своего развития стала заимствовать для своих целей некоторые религиозные атрибуты, воплощая их на практике в виде конструктивных элементов различных машин.
В сознании человека того времени движение небесных тел представлялось образцом вечно продолжающегося движения, связанного прежде всего с божественным всемогуществом.
Именно поэтому в движении космических тел многие ученые того времени стали усматривать знак или пример того, как в доступных человеку условиях смоделировать вечные и непрестанно повторяющиеся явления природы, связывавшиеся до тех пор лишь с неограниченными возможностями богов и их бессмертием. Впрочем, в мифологии почти всех народов мира существовали упоминания о созданных рукой человека предметах и вещах, проявление или действие которых обладало неограниченными временными характеристиками. С этой точки зрения одним из бесспорных видов перпетуум мобиле можно считать и описанную Блаженным Августином вечную лампу хотя, несомненно, недостаток внешнего сходства оказывается тут весьма ощутимым. Непрестанно продолжающееся движение подменено здесь вечным светом, который якобы испускала эта лампа в храме Венеры: несмотря на то, что лампу никогда не заправляли маслом, пламя ее было таким мощным и сильным, что его не могли загасить ни дождь, ни ветер. Лампа, упоминаемая Августином, не была единственной в истории всех этих странных и загадочных явлений. Так, сохранилась легенда о том, что в 1345 г. на могиле дочери Цицерона Туллии был найден аналогичный светильник, горевший без перерыва полторы тысячи лет.
Подобные документы
Вечный двигатель — устройство, совершающее полезную работу без приложения механических усилий и сжигания топлива: история, неудачные конструкции; патенты и авторские свидетельства; известные изобретатели. Значение вечного двигателя как источника энергии.
презентация [568,2 K], добавлен 23.09.2012Создание вечного двигателя. Вечный двигатель как воображаемый, но неосуществимый двигатель, который совершает работу неограниченно долгое время. Виды моделей вечного двигателя. Основа работы двигателя – энергия. Исключение создания перпетуум-мобиле.
контрольная работа [50,9 K], добавлен 17.11.2010Сущность вечного двигателя. Самая древняя модель механизма такого типа. Описание особенностей конструкции мнимых вечных двигателей различных авторов и их основные ошибки. Теоретические соображения о принципиальной возможности разработки Рerpetuum mobile.
презентация [295,9 K], добавлен 16.01.2014Рассмотрение идеи разных типов и видов вечных двигателей и суть их устройства. Исследование изобретений различных ученых-изобретателей и исторических личностей, связанных с вечным двигателем. Анализ типичных ошибок и заблуждений при их создании.
курсовая работа [865,7 K], добавлен 22.03.2011История создания тепловых двигателей и общий принцип их действия. Виды тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Использование современных альтернативных источников энергии.
презентация [1,3 M], добавлен 23.02.2011Система управления с шаговыми двигателями, контроллер шагового двигателя. Двигатели с переменным магнитным сопротивлением. Двигатели с постоянными магнитами. Гибридные двигатели. Биполярные и униполярные модификации. Режимы работы и питание обмоток.
лекция [1,5 M], добавлен 20.11.2010Общая теория электрических ракетных двигателей. Особенности двигательных установок с малой тягой. Электрические ракетные двигатели и перспективные двигательные установки других типов. Ионный двигатель и его основные элементы. Контактные ионные источники.
курсовая работа [1,7 M], добавлен 01.02.2010История и разнообразие гипотез о создании вечного двигателя. Магнитный двигатель как вариант вечного двигателя, работающего непрерывно посредством излучения магнитной энергии. Примерная схема магнитного двигателя и его модель, воплощенная на практике.
доклад [1,2 M], добавлен 23.12.2010Шаговые двигатели - разновидность бесколлекторных двигателей. Их основные типы: с переменным магнитным сопротивлением, с постоянными магнитами, гибридные. Варианты исполнения обмоток двигателя. Режимы и способы управления им, особенности использования.
реферат [672,0 K], добавлен 18.02.2013История тепловых двигателей. Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. Паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель.
реферат [5,5 K], добавлен 17.05.2006