Модели ядерных оболочек

Структура, капельная и оболочечная модели ядер с точки зрения квантовой теории элементарных частиц. Несферичность ядер, ротационная модель. Сверхтекучесть ядерного вещества и другие модели ядерных оболочек, положения одночастичной оболочечной модели.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 17.04.2010
Размер файла 904,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

21

Содержание:

1. Структура ядра и модели ядер

2. Капельная модель

3. Оболочечная модель

4. Несферичность ядер. Ротационная модель

5. Сверхтекучесть ядерного вещества и другие модели ядерных оболочек

6. Модель ядерных оболочек. Одночастичные состояния

Список литературы

1. Структура ядра и модели ядер

Многочастичная квантовая система с сильным взаимодействием, каковой является Я. а., с теоретической точки зрения объект исключительно сложный. Трудности связаны не только с количественно точными вычислениями физических величин, характеризующих ядро, но даже с качественным пониманием основных свойств ядерных состояний, спектра энергетических уровней, механизма ядерных реакций. Тяжёлые ядра содержат много нуклонов, но всё же их число не столь велико, чтобы можно было с уверенностью воспользоваться методами статистической физики, как это делается в теории конденсированных сред.

Поскольку межнуклонное взаимодействие сводится к обмену мезонами, объяснение свойств ядра в конечном счёте должно опираться на релятивистскую квантовую теорию элементарных частиц, которая сама по себе в современном её состоянии не свободна от внутренних противоречий и не может считаться завершенной. Хотя сравнительно небольшие в среднем скорости нуклонов в ядре (0,1 с) несколько упрощают теорию, позволяя строить её в первом приближении на основе нерелятивистской квантовой механики, ядерная задача многих тел остаётся пока одной из фундаментальных проблем физики.

По всем этим причинам до сих пор, исходя из «первых принципов», рассматривалась только структура простейших ядер -- дейтрона и трёхнуклонных ядер 3H и 3He. Структуру более сложных ядер пытаются понять с помощью ядерных моделей, в которых ядро гипотетически уподобляется какой-либо более простой и лучше изученной физической системе.

2. Оболочечная модель

Её прообразом является многоэлектронный атом. Согласно этой модели, каждый нуклон находится в ядре в определённом индивидуальном квантовом состоянии, характеризуемом энергией, моментом вращения j его проекцией m на одну из координатных осей и орбитальным моментом вращения l = j± 1/2 [чётность состояния нуклона P = (--1) l].

Энергия уровня не зависит от проекции момента вращения на внешнюю ось. Поэтому в соответствии с Паули принципом на каждом энергетическом уровне с моментами j, l может находиться (2j + 1) тождественных нуклонов (протонов и нейтронов), образующих «оболочку» (j, l). Полный момент вращения заполненной оболочки равен нулю. Поэтому если ядро составлено только из заполненных протонных и нейтронных оболочек, то его спин будет также равен нулю.

Всякий раз, когда количество протонов или нейтронов достигает магического числа, отвечающего заполнению очередной оболочки, возникает возможность скачкообразного изменения некоторых характеризующих ядро величин (в частности, энергии связи). Это создаёт подобие периодичности в свойствах ядер в зависимости от A и Z, аналогичной периодическому закону для атомов. В обоих случаях физической причиной периодичности является принцип Паули, запрещающий двум тождественным фермионам (частицам с полуцелыми спинами) находиться в одном и том

Происходит это главным образом потому, что в ядрах индивидуальные квантовые состояния частиц («орбиты») возмущаются взаимодействием («столкновениями») их друг с другом гораздо сильнее, чем в атомах. Более того, известно, что большое число ядерных состояний совсем не похоже на совокупность движущихся в ядре независимо друг от друга нуклонов, т. е. не может быть объяснено в рамках оболочечной модели.

Наличие таких коллективных состояний указывает на то, что представления об индивидуальных нуклонных орбитах являются скорее методическим базисом теории, удобным для описания некоторых состояний ядра, чем физической реальностью.

В этой связи в оболочечную модель вводится понятие квазичастиц -- элементарных возбуждений среды, эффективно ведущих себя во многих отношениях подобно частицам. При этом Я. а. рассматривается как квантовая жидкость, точнее как ферми-жидкость конечных размеров. Ядро в основном состоянии рассматривается как вырожденный ферми-газ квазичастиц, которые эффективно не взаимодействуют друг с другом, поскольку всякий акт столкновения, изменяющий индивидуальные состояния квазичастиц, запрещен принципом Паули.

В возбуждённом состоянии ядра, когда 1 или 2 квазичастицы находятся на более высоких индивидуальных энергетических уровнях, эти частицы, освободив орбиты, занимавшиеся ими ранее внутри ферми-сферы, могут взаимодействовать как друг с другом, так и с образовавшейся дыркой в нижней оболочке. В результате взаимодействия с внешней квазичастицей может происходить переход квазичастиц из заполненных состояний в незаполненное, вследствие чего старая дырка исчезает, а новая появляется; это эквивалентно переходу дырки из одного состояния в другое.

Т. о., согласно оболочечной модели, основывающейся на теории квантовой ферми-жидкости, спектр нижних возбуждённых состояний ядер определяется движением 1--2 квазичастиц вне ферми-сферы и взаимодействием их друг с другом и с дырками внутри ферми-сферы. Этим самым объяснение структуры многонуклонного ядра при небольшых энергиях возбуждения фактически сводится к квантовой проблеме 2--4 взаимодействующих тел (квазичастица -- дырка или 2 квазичастицы -- 2 дырки).

Применение теории ферми-жидкости к Я. а. было развито А.Б. Мигдалом (1965). Трудность теории состоит, однако, в том, что взаимодействие квазичастиц и дырок не мало и потому нет уверенности в невозможности появления низкоэнергетического возбуждённого состояния, обусловленного большим числом квазичастиц вне ферми-сферы.

В других вариантах оболочечной модели вводится эффективное взаимодействие между квазичастицами в каждой оболочке, приводящее к перемешиванию первоначальных конфигураций индивидуальных состояний. Это взаимодействие учитывается по методике теории возмущений (справедливой для малых возмущений). Внутренняя непоследовательность такой схемы состоит в том, что эффективное взаимодействие, необходимое теории для описания опытных фактов, оказывается отнюдь не слабым.

Кроме того, как показывает сравнение теоретических и экспериментальных данных, в разных оболочках приходится вводить разные эффективные взаимодействия, что увеличивает число эмпирически подбираемых параметров модели.

Основные теоретические разновидности модели оболочек модифицируются иногда введением различного рода дополнит, взаимодействий (например, взаимодействия квазичастиц с колебаниями поверхности ядра) для достижения лучшего согласия теории с экспериментом.

Т. о., современная оболочечная модель ядра фактически является полуэмпирической схемой, позволяющей понять некоторые закономерности в структуре ядер, но не способной последовательно количественно описать свойства ядра.

В частности, ввиду перечисленных трудностей непросто выяснить теоретически порядок заполнения оболочек, а следовательно, и «магические числа», которые служили бы аналогами периодов таблицы Менделеева для атомов.

Порядок заполнения оболочек зависит, во-первых, от характера силового поля, которое определяет индивидуальные состояния квазичастиц, и, во-вторых, от смешивания конфигураций. Последнее обычно принимается во внимание лишь для незаполненных оболочек.

Наблюдаемые на опыте магические числа нейтронов (2, 8, 20, 28, 40, 50, 82, 126) и протонов (2, 8, 20, 28, 50, 82) отвечают квантовым состояниям квазичастиц, движущихся в прямоугольной или осцилляторной потенциальной яме со спин-орбитальным взаимодействием (именно благодаря ему возникают числа 28, 40, 82 и 126). Объяснение самого факта существования магических чисел было крупным успехом модели оболочек, впервые предложенной М. Гёпперт-Майер и Й. Х. Д. Йенсеном в 1949--50.

Др. важным результатом модели оболочек даже в простейшей форме (без учёта взаимодействия квазичастиц) является получение квантовых чисел основных состояний нечётных ядер и приближённое описание данных о магнитных дипольных моментах таких ядер. Согласно оболочечной модели, эти величины для нечётных ядер определяются состоянием (величинами j, I) последнего «неспаренного» нуклона. В этом случае I = j, P = (--1) l. Магнитный дипольный момент m (в ядерных магнетонах), если неспаренным нуклоном является нейтрон, равен:

В случае неспаренного протона:

Здесь mn = 1,913 и mp = 2,793 -- магнитные моменты нейтрона и протона. Зависимости m от j при данном l = j ± 1/2 называются линиями Шмидта.

Магнитные дипольные моменты практически всех нечётных ядер, согласно опытным данным, лежат между линиями Шмидта, но не на самих линиях, как это требуется простейшей оболочечной моделью (рис. 1, 2).

Тем не менее близость экспериментальных значений магнитных дипольных моментов ядер к линиям Шмидта такова, что, зная j -- I и m, можно в большинстве случаев однозначно определить

Рис.1

Рис.2

Рис.3

Данные о квадрупольных электрических моментах ядер значительно хуже описываются оболочечной моделью, как по знаку, так и по абсолютной величине. Существенно, однако, что в зависимости квадрупольных моментов от А и Z наблюдается периодичность, соответствующая магическим числам.Все эти сведения о ядрах (значения IP, электрических и магнитных моментов основных состояний, магические числа, данные о возбуждённых состояниях) позволяют принять схему заполнения ядерных оболочек, приведённую на Рис. 3.

3. Несферичность ядер. Ротационная модель

Согласно экспериментальным данным в области массовых чисел 150 < A < 190 и А > 200, квадрупольные моменты Q ядер c I>1/2 чрезвычайно велики, они отличаются от значений, предсказываемых оболочечной моделью, в 10--100 раз. В этой же области значений А зависимость энергии нижних возбуждённых состояний ядер от спина ядра оказывается поразительно похожей на зависимость энергии вращающегося волчка от его момента вращения. Особенно четко это выражено у ядер с чётными А и Z. В этом случае энергия x возбуждённого уровня со спином I даётся соотношением:

где J -- величина, практически не зависящая от I и имеющая размерность момента инерции. Спины возбуждённых состояний в (10) принимают, как показывает опыт, только чётные значения: 2, 4, 6,... (соответствует основному состоянию).

Эти факты послужили основанием для ротационной модели несферического ядра, предложенной американским физиком Дж. Рейнуотором (1950) и развитой в работах датского физика О. Бора и американского физика Б. Моттельсона Согласно этой модели, ядро представляет собой эллипсоид вращения Его большая (a1) и малая (a2) полуоси выражаются через параметр деформации b ядра соотношениями:

Электрический квадрупольный момент Q несферического ядра выражается через b. Параметры b, определённые из данных по квадрупольным моментам (не только по статическим, но и динамическим -- т. е. по вероятности испускания возбужденным ядром электрического квадрупольного излучения), оказываются по порядку величины равными 0,1, но варьируются в довольно широких пределах, достигая у некоторых ядер редкоземельных элементов значений, близких к 0,5.

От параметра b зависит также момент инерции ядра. Как показывает сравнение опытных данных по энергии возбужденных состояний несферических ядер с формулой (10), наблюдаемые значения J значительно меньше моментов инерции твёрдого эллипсоида вращения относительно направления, перпендикулярного оси симметрии. Нет так же ротационных уровней, соответствующих вращению эллипсоида вокруг оси симметрии. Эти обстоятельства исключают возможность отождествить вращение.

Для ротационной модели несферических ядер принимается схема, аналогичная квантованию движения двухатомной молекулы с идентичными бесспиновыми ядрами: вращательный момент ядер такой молекулы относительно её центра тяжести всегда перпендикулярен оси симметрии (линии, соединяющей ядра).

Из-за свойств симметрии волновой функции относительно перестановки ядер допустимы только чётные значения момента вращения (0, 2, 4 и т. д.), что как раз соответствует значениям I для ротационных состояний несферических ядер с чётными А и Z.

Для ядер с небольшими значениями параметров деформации b, наблюдаемые значения близки к моменту инерции той части эллипсоида вращения, которая находится вне вписанного в эллипсоид шара.

Такой момент инерции мог бы иметь идеальный газ, помещенный в сосуд в форме эллипсоида вращения, или, что то же самое, частицы, движущиеся независимо друг от друга в несферической эллипсоидальной. потенциальной яме

С ростом b момент инерции ядра в такой модели растет довольно быстро, достигая твердотельного значения. Это противоречит опытным данным, согласно которым рост l с увеличением Р происходит значительно медленнее, так что для реальных ядер I принимают значения, лежащие между моментами инерции части эллипсоида, находящейся вне вписанного в него шара и твёрдого эллипсоида вращения.

Это противоречие устраняется учётом взаимодействия между частицами, движущимися в потенциальной яме. При этом, как оказывается, гл. роль играют парные корреляции «сверхтекучего типа» .

В связи с появлением физически выделенного направления -- оси симметрии эллипсоида, сохраняется проекция момента вращения каждой из частиц на эту ось. Момент вращения частицы при этом перестаёт быть определённым квантовым числом.

Практически, однако, для всех ядер смешивание орбит с разными j мало, так как несферичность ядра в движении частиц сказывается главным образом на появлении дополнительного квантового числа.

Для нечетных ядер спин ядра I получается векторным сложением ротационного момента всего ядра как целого и момента вращения «последнего» нечётного нуклона. При этом энергия ротационного уровня зависит не только от I, но и от проекции момента вращения К нечётного нуклона на ось симметрии ядра. Разным значениям К отвечают разные «ротационные полосы». Общая формула, определяющая энергию x (I)

ротационного уровня нечётного ядра, имеет вид:

где dK,1/2 = 0, если К № 1/2 и dK,1/2 = 1. при K = 1/2; a -- эмпирически подбираемая константа, характеризующая «связь» момента вращения частицы и ротационного момента ядра. Моменты инерции для чётных и нечётных по А несферических ядер по порядку величины одинаковы и таковы, что энергия возбуждения первого ротационного уровня у ядер редкоземельных элементов около 100 кэв (это отвечает значениям J ~ 10-47 г·см2).

Существенная черта ротационной модели несферических ядер -- сочетание вращения всего ядра, как целого, с движением отдельных нуклонов в несферическом потенциальном поле. При этом предполагается, что вращение всего ядра (т. е. несферической потенциальной ямы) происходит достаточно медленно сравнительно со скоростью движения нуклонов (адиабатическое приближение).

Более точно последнее означает, что расстояние между соседними ротационными уровнями должно быть мало сравнительно с расстояниями между энергетическими уровнями нуклонов в потенциальной яме.

Адиабатическое приближение для описания энергетического спектра некоторых несферических ядер оказывается недостаточным. В этом случае вводятся неадиабатические поправки (например, на кориолисовы силы и др.), что приводит к увеличению числа параметров, определяемых из сравнения теории с опытом.

Современные данные о ротационных спектрах несферических ядер обильны. У некоторых ядер известно несколько ротационных полос (например, у ядра 235U наблюдается 9 полос, причём отдельные ротационные полосы «прослежены» вплоть до спинов I = 25/2 и более). Несферические ядра в основном сосредоточены в области больших А. Есть попытки интерпретировать и некоторые лёгкие ядра как несферические (так в несферичности «подозревается» ядро 24Mg). Моменты инерции таких лёгких ядер оказываются примерно в 10 раз меньше, чем у тяжёлых.

Ротационная модель несферических ядер позволяет описать ряд существенных свойств большой группы ядер. Вместе с тем эта модель не является последовательной теорией, выведенной из «первых принципов». Её исходные положения постулированы в соответствии с эмпирическими данными о ядрах. В рамках этой модели необъяснённым остаётся сам факт возникновения ротационного спектра (т. е. факт вращения всего ядра, как целого). Попытки получить ядерные ротационные спектры на основе общей квантовомеханической теории системы многих тел пока остаются незавершёнными.

4. Сверхтекучесть ядерного вещества и другие модели ядерных оболочек

Аналогично тому, как спаривание электронов в металлах порождает сверхпроводимость (см. Купера эффект), спаривание нуклонов должно приводить к сверхтекучести ядерного вещества. В безграничном ядре (ядерной материи) в единую «частицу» (куперовскую пару) объединялись бы нуклоны с равными по величине, но противоположными по знаку импульсами и проекциями спинов. В реальных ядрах предполагается спаривание нуклонов с одними и теми же значениями квантовых чисел (j, l) и с противоположными проекциями полного момента вращения нуклона, равными --j, --j + 1,... j--1, j. Физическая причина спаривания -- взаимодействие частиц, движущихся по индивидуальным орбитам, как это принимается оболочечной моделью.

Впервые на возможность сверхтекучести ядерной материи указал Н. Н. Боголюбов (1958). Одним из проявлений сверхтекучести должно быть наличие энергетической щели между сверхтекучим и нормальным состоянием ядерного вещества.

Величина этой щели определяется энергией связи пары (энергией спаривания), которая для ядерной материи (насколько можно судить по разности энергий связи чётных и нечётных ядер) должна составлять ~ 1--2 Мэв. В реальных ядрах наличие энергетической щели с определённостью установить трудно, поскольку спектр ядерных уровней дискретен и расстояние между оболочечными уровнями сравнимо с величиной щели.

Наиболее ярким указанием на сверхтекучесть ядерного вещества является отличие моментов инерции сильно несферических ядер от твердотельных значений: теория сверхтекучести ядерного вещества удовлетворительно объясняет как абсолютные значения моментов инерции, так и их зависимость от параметра деформации Р.

Теория предсказывает также резкое (скачкообразное) возрастание момента инерции в данной вращательной полосе при некотором критическом (достаточно большом) спине I.

Это явление, аналогичное разрушению сверхпроводимости достаточно сильным магнитным полем, пока отчётливо не наблюдалось (в теоретическом предсказании критических значений I имеются неопределённости). Менее выразительно, но всё же заметно сказывается сверхтекучесть ядерного вещества на других свойствах ядра: на вероятностях электромагнитных переходов, на положениях оболочечных уровней и т. п. Однако в целом сверхтекучесть ядерного вещества выражена в реальных ядрах не так ярко, как, например, явление сверхпроводимости металлов или сверхтекучесть гелия при низких температурах.

Причиной этого является ограниченность размера ядра, сравнимая с размером куперовской пары. Менее надёжны, чем в физике обычных конденсированных сред, и выводы теории сверхтекучести ядер. Главным препятствием теории и здесь является то обстоятельство, что взаимодействие между ядерными частицами не может считаться слабым (в отличие, например, от взаимодействия, приводящего к спариванию электронов в металле). Поэтому наряду с парными корреляциями следовало бы учитывать и корреляции большего числа частиц (например, четырёх)

Описанные ядерные модели являются основными, охватывающими свойства большинства ядер. Они, однако, не достаточны для описания всех наблюдаемых свойств основных и возбуждённых состояний ядер. Так, в частности, для объяснения спектра коллективных возбуждений сферических ядер привлекается модель поверхностных и квадрупольных колебаний жидкой капли, с которой отождествляется ядро (вибрационная модель).

Для объяснения свойств некоторых ядер используются представления о кластерной (блочной) структуре Я. а., например предполагается, что ядро 6Li значительную часть времени проводит в виде дейтрона и a-частицы, вращающихся относительно центра т

Последовательное же объяснение наиболее важных свойств ядер на прочной основе общих физических принципов и данных о взаимодействии нуклонов остаётся пока одной из нерешенных фундаментальных проблем современной физики.

5. Модель ядерных оболочек. Одночастичные состояния

В модели ядерных оболочек нуклоны рассматриваются как независимые частицы в самосогласованном потенциале, создаваемом всей совокупностью нуклонов в ядре. Уровни энергии нуклонов Ei определяются собственными значениями решений уравнения Шредингера

i = Eii; = + ,

где i - волновая функция нуклона с энергией Ei, - оператор гамильтона, и - операторы кинетической и потенциальной энергии. В простейших моделях сферических ядер потенциал V(r) выбирают в виде потенциала трехмерного гармонического осциллятора, либо прямоугольной потенциальной ямы (рис.1). Осцилляторный потенциал можно записать в виде

где - приведенная масса нуклона, - осцилляторная частота ( 41A-1/3), V0 50 МэВ. Для потенциала гармонического осциллятора спектр энергетических уровней эквидистантный и имеет следующий вид:

Ei = EN = (N + 3/2),

где N = 2n + l - осцилляторное главное квантовое число, n - радиальное квантовое число (число узлов функции, кроме нуля), l - орбитальное квантовое число. Потенциал прямоугольной потенциальной ямы

Vпя(r) = {

где R - радиус ядра. Малый радиус действия нуклон-нуклонных сил говорит о том, что в более реалистичном случае форма потенциала V(r) должна быть похожа на форму распределения плотности ядерного вещества (r). Это потенциал Вудса-Саксона

VВ-С(r) = V0/[1 + exp(r - R/a)],

где V0 - глубина потенциала, R = r0A1/3 - радиус ядра и a - параметр, характеризующий диффузность (размытие) края потенциала.

Потенциал Вудса-Саксона представляет нечто среднее между осцилляторным потенциалом и потенциалом прямоугольной ямы. В потенциале Вудса-Саксона снимаются вырождения, свойственные гармоническому осциллятору

Рис. 1. Осцилляторный потенциал, прямоугольная потенциальная яма и потенциал Вудса-Саксона.

Видно, что в легких ядрах реалистический потенциал лучше воспроизводится осцилляторным, а в тяжелых - прямоугольной потенциальной ямой

Однако реалистический потенциал (5), также как и осцилляторный потенциал, не в состоянии объяснить наблюдаемые в эксперименте магические числа нуклонов. Решение проблемы было найдено М. Гепперт-Майер и Дж. Иенсеном, которые добавили к центрально-симметричному потенциалу V(r) спин-орбитальное взаимодействие.

Vls(r) = f(r).

Спин-орбитальное взаимодействие приводит к расщеплению уровня с данным значением l на два состоянияl + 1/2 и l - 1/2.При этом состояние с l + 1/2 смещается вниз по энергии, а состояние с l - 1/2 - вверх. Величина спин-орбитального расщепления уровней пропорциональна величине орбитального момента l. Поэтому уровни с большими значениями орбитального момента l > 3 сильно смещаясь вниз по энергии оказываются среди уровней предыдущей оболочки, что позволяет правильно воспроизвести магические числа. Для протонов в самосогласованый потенциал должен быть включен также кулоновский потенциал.

Рис. 2. Одночастичные уровни в оболочечном потенциале

Приведено схематическое изображение уровней в потенциале Вудса-Саксона: слева без учета спин-орбитального взаимодействия, справа - с учетом.

Фигурные скобки объединяют уровни, входящие в одну осцилляторную оболочку.

Черным цветом дано число вакантных мест для нуклонов одного сорта, в синим приведено полное число частиц, красным указаны магические числа

Cостояния нуклонов характеризуются квантовыми числами, которые определяют физические величины, сохраняющиеся при движении в сферически-симметричном поле (см. рис. 2). Обозначения состояний - 1d5/2 означает, что радиальное квантовое число n = 1, орбитальный момент l = 2 (d-состояние), полный момент j = l + s = 5/2. В оболочечной модели спин ядра складывается из суммы спинов и орбитальных моментов отдельных нуклонов.

Принцип Паули и специфика ядерного взаимодействия приводят к тому, что все четно-четные ядра имеют полный момент (спин) равный 0. Четность ядерного состояния определяется произведением внутренних четностей нуклонов на четности волновых функций, описывающих движение нуклонов относительно общего центра инерции. Внутренняя четность нуклонов принята положительной.

Четности ядерного состояния определяется соотношением

где li - орбитальный момент i-го нуклона. Оболочечная модель во многих случаях хорошо воспроизводит экспериментальные значения спинов и четностей, электрических квадрупольных и магнитных моментов атомных ядер, средние времена жизни -радиоактивных ядер, объясняет распределение ядер изомеров.

На рис. 3 показаны результаты расчетов нейтронных

Рис. 3. Зависимость энергии нейтронных одночастичных состояний от массового числа одночастичных состояний с потенциалом Вудса-Саксона, с небольшой зависимостью его глубины от нейтронного избытка.

Радиус ядерного потенциала пропорционален A1/3. Это приводит к тому, что с ростом A уменьшается расстояние между одночастичными состояниями. Кроме увеличения плотности одночастичных состояний с ростом A, видно, что меняется последовательность состояний. Плотность одночастичных протонных состояний больше чем нейтронных, а их последовательность для оболочек выше четвертой иная, что обусловленно дополнительным вкладом кулоновского потенциала.

6. Основные положения одночастичной оболочечной модели:

Суммарный момент основного состояния четно-четного ядра (N и Z - четные числа) равен 0.

1. Суммарный момент основных состояний ядер с нечетным A равен полному моменту j неспаренного нуклона.Правило хорошо выполняется для ядер, у которых сверх заполненного состояния есть еще один нуклон, либо для заполнения последнего состояния недостает одного нуклона. Недостающий нуклон называется дыркой и момент ядра определяется спином и четностью этого недостающего нуклона.

2. Суммарный момент нечетно-нечетных ядер, неспаренные нуклоны которого находятся в одинаковых состояниях, равен удвоенному полному моменту неспаренного нуклона.

3. Энергия уровня с данным n растет с ростом l.

4. Спин орбитальное взаимодействие для параллельных и больше, чем для антипараллельных.

Наилучшие предсказания оболочечная модель дает для ядер вблизи заполненных оболочек, для которых самосогласованный потенциал сферически-симметричный. Простейший вариант оболочечной модели - одночастичная оболочечная модель.

Рис. 4. Возбужденные уровни 209Pb

На рис. 4 показаны возбужденные состояния дважды магического ядра с одним валентным нуклоном 209Pb.

Большинство состояний (кроме 1/2-) описываются одночастичной оболочечной моделью. Наряду со сферическими существуют деформированные ядра. Впервые расчеты одночастичных состояний с использованием деформированного аксиально-симметричного потенциала были выполнены в 1955 году Нильссоном.

Деформированный потенциал Нильссона:

где x1, x2 и x3 - координаты нуклона во внутренней системе координат. Первый член в выражении (8) является потенциалом деформированного трехмерного гармонического осциллятора, частоты колебаний которого в направлении оси симметрии (3) и в направлении перпендикулярном к ней () не совпадают между собой. К нему добавляется обычный спин-орбитальный член и член, который учитывает реальную радиальную зависимость оболочечного потенциала, опуская вниз одночастичные уровни энергии с большим орбитальным моментом l (D < 0). Деформация ядра частично снимает вырождение по j. Однако, сохраняется вырождение по знаку проекции j3 на ось симметрии ядра.

Положения одночастичных уровней в потенциале Нильссона в зависимости от деформации показаны на рис. 5.

Рис. 5. Одночастичные уровни энергии в потенциале Нильссона

Список литературы

1. Ландау Л. Д., Смородинский Я. А., Лекции по теории атомного ядра, М., 1999;

2. Бете Г., Моррисон Ф., Элементарная теория ядра, пер. с англ., М., 1998;

3. Давыдов А. С., Теория атомного ядра, М., 2003;

4. Айзенбуд Л., Вигнер Е., Структура ядра, пер. с англ., М., 2000;

5. Гепперт-Майер М., Йенсен И.Г.Д., Элементарная теория ядерных оболочек, пер. с англ., М., 2001;

6. Мигдал А.Б., Теория конечных ферми-систем и свойства атомных ядер, М., 2005;

7. Ситенко А.Г., Тартаковски и В.К., Лекции по теории ядра, М., 2001.


Подобные документы

  • Внутренняя структура и компоненты ядра, специфика взаимосвязи нуклонов. Энергия связи и масса ядра, квантовые характеристики, а также электрические и магнитные моменты. Оболочечная и ротационная модель, несферичность ядер. Текучесть ядерного вещества.

    контрольная работа [51,7 K], добавлен 31.01.2016

  • Модели атомных ядер, в которых понятие потенциала применяется и нет. Экспериментальные факты, подтверждающие зависимость ядерных сил от расстояния, спинов, относительного орбитального момента нуклонов. Различные классификации ядерных потенциалов.

    дипломная работа [133,1 K], добавлен 16.08.2011

  • Основные принципы распределения ядер по группам и квазиоболочкам. Особенности расположения нуклонов в ядрах. Радиоактивность и деление ядер. Синтез ядерных моделей. Сравнительная характеристика предложенной модели ядра с другими ядерными моделями.

    книга [3,7 M], добавлен 12.11.2011

  • Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.

    презентация [16,0 M], добавлен 14.03.2016

  • Свойства ядерных изомерных состояний. Характеристики гамма-излучения возбужденных ядер. Механизм обходных переходов. Оценка итоговых выходов ядер в метастабильном состоянии, образующихся в процессе обходного возбуждения с помощью синхротронного излучения.

    дипломная работа [934,0 K], добавлен 16.05.2017

  • Изучение строения атомов и их ядер. Исследование постулатов Борна и выявление преимуществ и недостатков планетарной модели атома Резерфорда. Процесс деления тяжелых ядер и раскрытие понятия радиоактивности. Неуправляемая и управляемая цепная реакция.

    контрольная работа [35,7 K], добавлен 26.09.2011

  • Изучение деления ядер, открытие цепных реакций на деление ядер урана. Создание ядерных реакторов, ядерной энергетики и оружия. Термоядерный синтез легких ядер в звездах. Что должен знать физик-ядерщик. Общие клинические проявления лучевой болезни.

    реферат [16,7 K], добавлен 14.05.2011

  • Изотопический спин, обменные силы, насыщение ядерных сил, мезоны и ядерные силы, класификация элементарных частиц. Приемлемые значения размеров зеркальных ядер. Опыты по рассеянию нейтронов протонами. Пространство изотопического спина.

    курсовая работа [251,2 K], добавлен 16.03.2004

  • Динамика и теплоемкость кристаллической решетки. Особенности объяснения зависимости теплоемкости от температуры с помощью закона Дюлонга–Пти, модели Эйнштейна, модели приближения Дебая. Основные положения квантовой теории гармонического кристалла.

    реферат [123,6 K], добавлен 06.09.2015

  • Взаимодействие между нуклонами. Особенности ядерных сил. Способы освобождения ядерной энергии: деление тяжёлых ядер и синтез лёгких ядер. Устройство, в котором поддерживается реакция их деления. Накопление радиоактивных элементов в организме человека.

    презентация [8,5 M], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.