Изучение температуры
Молекулярно-кинетическое и термодинамическое определение температуры. В системе СИ термодинамическая температура выражается в кельвинах, температура Цельсия — в градусах. Термодинамика и изучение свойств температуры. Шкалы измерения температуры.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.03.2010 |
Размер файла | 17,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
РЕФЕРАТ
Температура
Существует два определения температуры. Одно -- с молекулярно-кинетической точки зрения, другое -- с термодинамической.
Температура (от лат. temperatura -- надлежащее смешение, нормальное состояние) -- физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.
... мерилом температуры является не само движение, а хаотичность этого движения. Хаотичность состояния тела определяет его температурное состояние, и эта идея (которая впервые была разработана Больцманом), что определённое температурное состояние тела вовсе не определяется энергией движения, но хаотичностью этого движения, и является тем новым понятием в описании температурных явлений, которым мы должны пользоваться ...
(П. Л. Капица)
В Международной системе единиц (СИ) термодинамическая температура выражается в кельвинах, температура Цельсия -- в градусах [1]. На практике часто применяют градусы Цельсия из-за привязки к важным характеристикам воды -- температуре таяния льда (0° C) и температуре кипения (100° C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном.
Существуют также шкалы Фаренгейта и некоторые другие.
Молекулярно-кинетическое определение
Температура с молекулярно-кинетической точки зрения -- физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.
Связь между кинетической энергией, массой и скоростью выражается следующей формулой:
Таким образом, частицы одинаковой массы и значения скорости имеют одну и ту же температуру.
Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана:
Термодинамическая температура -- термодинамическая функция, показывающая скорость увеличения внутренней энергии с ростом энтропии. По математическому смыслу является производной от внутренней энергии по энтропии. Данное определение является универсальным, и справедливым для любых систем, описываемых термодинамикой, независимо от их состава, свойств и внутреннего строения.
Исходя из этого определения, температура есть величина положительная, если с увеличением энтропии в системе, её внутренняя энергия увеличивается. Или, наоборот -- если по мере подвода энергии в систему, её энтропия увеличивается, то термодинамическая температура положительна.
С этих позиций легко объяснимо (без парадоксов) понятие отрицательной температуры: системы, в которых увеличение внутренней энергии сопровождается уменьшением энтропии, имеют отрицательную термодинамическую температуру (лазеры, подсистема ядерных спинов в ионном кристалле)
История термодинамического подхода
Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества -- теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково -- градусами.
В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой, потому что суммарная энтропия при этом возрастает.
Температура связана также с субъективными ощущениями «тепла» и «холода», связанными с тем, отдает ли живая ткань тепло или получает его.
Некоторые квантовомеханические системы могут находиться в состоянии, при котором энтропия не возрастает, а убывает при добавлении энергии, что формально соответствует отрицательной абсолютной температуре. Однако такие состояния находятся не «ниже абсолютного нуля», а «выше бесконечности», поскольку при контакте такой системы с телом, обладающим положительной температурой, энергия передается от системы к телу, а не наоборот (подробнее см. Квантовая термодинамика).
Свойства температуры изучает раздел физики -- термодинамика. Температура также играет важную роль во многих областях науки, включая другие разделы физики, а также химию и биологию.
Измерение температуры
Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры. Большинство термометров измеряют собственную температуру. Средства измерения температуры обычно проградуированы по относительным шкалам -- Цельсия или Фаренгейта.
На практике для измерения температуры используют жидкостные и механические термометры, термопару, термосопротивление, термометр сопротивления, газовый термометр, пирометр.
Единицы и шкала измерения температуры
Из того, что температура -- это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах -- градусах.
Шкала температур Кельвина
Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры -- кельвин (К).
Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры -- абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.
Абсолютный ноль определён как 0 K, что равно ?273.15 °C (точно).
Шкала температур Кельвина, в которой начало отсчёта ведётся от абсолютного нуля.
Используемые в быту температурные шкалы -- как Цельсия, так и Фаренгейта (используемая, в основном, в США), -- не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.
Одна из них называется шкалой Ранкина, а другая -- абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина -- градусу Фаренгейта.
Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.
Шкала Цельсия
В технике, медицине, метеорологии и в быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при нормальном атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за ?273,15° C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия -- особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.
Шкала Фаренгейта
В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия -- это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.
В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F -- 32), 1 °F = 9/5 °С + 32. Предложена Г. Фаренгейтом в 1724.
Энергия теплового движения при абсолютном нуле
Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному.
… современное понятие абсолютного нуля не есть понятие абсолютного покоя, наоборот, при абсолютном нуле может быть движение -- и оно есть, но это есть состояние полного порядка …
П. Л. Капица (Свойства жидкого гелия)
Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1x106м/с.
Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, -- это температура абсолютного нуля (Т = 0К).
Температуры абсолютного нуля достичь невозможно. Наиболее низкая температура (450±80)x10?12К конденсата Бозе-Эйнштейна атомов натрия была получена в 2003 г. исследователями из МТИ. При этом пик теплового излучения находится в области длин волн порядка 6400 км, то есть примерно радиуса Земли
Температура с термодинамической точки зрения
Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртутным термометром и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.
Введем функцию f(T), которая не зависит от свойств вещества. Из термодинамики следует, что если какая-то тепловая машина, поглощая количество теплоты Q1 при T1 выделяет тепло Qs при температуре в один градус, а другая машина, поглотив тепло Q2 при T2, выделяет то же самое тепло Qs при температуре в один градус, то машина, поглощающая Q1 при T1 должна при температуре T2 выделять тепло Q2.
Конечно, между теплом Q и температурой T существует зависимость и тепло Q1 должно быть пропорционально Qs. Таким образом, каждому количеству тепла Qs, выделенному при температуре в один градус, соответствует количество тепла, поглощённого машиной при температуре T, равное Qs, умноженному на некоторую возрастающую функцию f температуры:
Q = Qsf(T)
Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:
Для системы, в которой энтропия S может быть функцией S(E) её энергии E, термодинамическая температура определяется как:
Температура и излучение
Излучаемая телом энергия пропорциональна четвертой степени его температуры. Так, при 300 К с квадратного метра поверхности излучается до 450 ватт. Этим объясняется, например, ночное охлаждение земной поверхности ниже температуры окружающего воздуха. Энергия излучения абсолютно чёрного тела описывается законом Стефана -- Больцмана
Шкала Реомюра
Предложена в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.
Единица -- градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками -- температурой таяния льда (0 °R) и кипения воды (80 °R)
R = 1,25° C.
В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.
Переходы из разных шкал
Пересчёт температуры между основными шкаламив\из Кельвин Цельсий Фаренгейт
Кельвин (K) = K = С + 273 = (F + 459) / 1,8
Цельсий (° C) = K ? 273 = C = (F ? 32) / 1,8
Фаренгейт (°F) = K · 1,8 ? 459 = C · 1,8 + 32 = F
Сравнение температурных шкал
Сравнение температурных шкалОписание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 ?273.15 ?459.67 0 559.725 ?90.14 ?218.52 ?135.90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255.37 ?17.78 0 459.67 176.67 ?5.87 ?14.22 ?1.83
Температура замерзания воды (Нормальные условия) 273.15 0 32 491.67 150 0 0 7.5
Средняя температура человеческого тела № 310.0 36.6 98.2 557.9 94.5 12.21 29.6 26.925
Температура кипения воды (Нормальные условия) 373.15 100 212 671.67 0 33 80 60
Плавление титана 1941 1668 3034 3494 ?2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 ?8140 1823 4421 2909.
Нормальная средняя температура человеческого тела -- 36.6 ° C ±0.7 ° C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F -- это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 ° C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная[2].
Подобные документы
Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.
доклад [1,0 M], добавлен 18.03.2014Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.
контрольная работа [397,9 K], добавлен 18.03.2013Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.
контрольная работа [124,1 K], добавлен 25.03.2012Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.
курсовая работа [476,6 K], добавлен 07.06.2014Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.
курсовая работа [224,1 K], добавлен 24.03.2008Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.
учебное пособие [1,3 M], добавлен 18.05.2014Определение цветовой температуры кинопроекционной лампы, напряжение на которой меняется с помощью переменного резистора. Снятие показаний фотоэлемента для синего и красного фильтров. Построение зависимости цветовой температуры лампы от напряжения.
лабораторная работа [241,0 K], добавлен 10.10.2013Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.
презентация [297,1 K], добавлен 14.01.2014Последствия уменьшения скорости молекул в веществе. Понятие абсолютного нуля температуры. Температуры некоторых жидких газов. История изобретения сосудов Дюара. Основные проблемы, решаемые Криогенной физикой. Недостижимость абсолютного нуля температуры.
презентация [1,2 M], добавлен 20.05.2011Анализ модели температуры в радиально бесконечном пласте. Моделирование давления и температуры сигнала, связанного с переменной скоростью. Определение сигнала температуры отдельного слоя связанного с постоянной скоростью добычи слабо сжимаемой жидкости.
курсовая работа [770,7 K], добавлен 20.02.2021