Использование метода аналогии в курсе физики

Методы, помогающие в изучении физики в средней школе. Электромеханические аналогии (электромагнитные и механические колебания, волновые процессы, изучение транзистора, электрические цепи, постулаты Бора). Изучение аналогий на факультативах и кружках.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 19.03.2010
Размер файла 3,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

71

СОДЕРЖАНИЕ

Введение

ГЛАВА 1. Электромеханические аналогии

1. Электромагнитные и механические колебания

2. Решение уравнений, описывающих свободные колебания

3. Решение физических задач

4. Изучение волновых процессов

ГЛАВА 2. Другие виды аналогий в школьном курсе физики

5.Использование аналогии при изучении транзистора

6. Изучение электрических цепей с использованием аналогии

7. Аналогии при изучении постулатов Бора

ГЛАВА 3. Изучение аналогий на факультативах, кружках и спецкурсах.

8. Волчок и магнит

9. Свет и глаз

Заключение

Список литературы

Введение

Аналогия - один из методов научного познания, который широко применяется при изучении физики.

В основе аналогии лежит сравнение. Если обнаруживается, что два или более объектов имеют сходные признаки, то делается вывод и о сходстве некоторых других признаков. Вывод по аналогии может быть как истинным, так и ложным, поэтому он требует экспериментальной проверки.

Значение аналогий при обучении связано с повышением научно-теоретического уровня изложения материала на уроках физики в средней школе, с формированием научного мировоззрения учащихся.

В практике обучение аналогии используется в основном для пояснения уже введенных трудных понятий и закономерностей.

Электромагнитные колебания и волны - темы школьного курса физики, усвоение которых традиционно вызывает большие затруднения у учащихся. Поэтому для облегчения изучения электромагнитных процессов используются электромеханические аналогии, поскольку колебания и волны различной природы подчиняются общим закономерностям.

Аналогии между механическими и электрическими колебательными процессами с успехом используются в современных исследованиях и расчетах. При расчете сложных математических систем часто прибегают к электромеханической аналогии, моделируя механическую систему соответствующей электрической.

Демонстрационный эксперимент при изучении переменного тока вскрывает лишь некоторые основные особенности процессов протекания тока по различным электрическим цепям. Здесь большое значение имеют аналогии, дающие возможность понять ряд явлений в цепях переменного тока, сущность которых трудно разъяснить в средней школе другими средствами. К таким вопросам в первую очередь относятся явления в цепях переменного тока с емкостью и индуктивностью, а также сдвиг фаз между током и напряжением.

Использование метода аналогии при решении задач может идти в двух направлениях:

непосредственное применение этого метода;

отыскание физической системы, которая аналогична данной в условии задачи.

В данной работе будут рассмотрены следующие аналогии, изучаемые в курсе физики средней школы: электромагнитные и механические колебания; решение уравнений, описывающих колебания в пружинном и математическом маятниках; решение физических задач; изучение волновых процессов; изучение электрических цепей с использованием аналогии; использование аналогии при изучении транзистора; аналогии при изучении постулатов Бора; волчок и магнит; свет и глаз.

Таким образом аналогии позволяют учащимся более глубоко понять известные физические явления, понятия и процессы.

ГЛАВА 1. ЭЛЕКТРОМЕХАНИЧЕСКИЕ АНАЛОГИИ

1. Электромагнитные и механические аналогии

В теме " Электромагнитные колебания " рассматривается электромагнитный процесс, возникающий при разрядке конденсатора через катушку индуктивности и делается вывод о колебательном характере этого процесса.

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине. Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

При механических колебаниях периодически изменяются координата тела x и проекции его скорости , а при электромагнитных колебаниях меняются заряд конденсатора q и сила тока в цепи i. Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых порождаются механические и электромагнитные колебания. Возвращение к положению равновесия тела на пружине вызывается силой упругости F , пропорциональной смещению тела от положения равновесия. Коэффициентом пропорциональности является жесткость пружины k. Разрядка конденсатора (появление тока) обусловлена напряжением U между пластинами конденсатора, которое пропорционально заряду q. Коэффициентом пропорциональности является величина , обратная емкости, так как =q.

Подобно тому как вследствии инертности тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю, электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу, когда это напряжение становится равным нулю. Индуктивность контура L играет туже роль, что и масса тела m в механике. Соответственно кинетической энергии тела отвечает энергия магнитного поля тока , а импульсу тела mv отвечает поток магнитной индукции Li .

Зарядке конденсатора от батареи соответствует сообщение телу, прикрепленному к пружине, потенциальной энергии при смещении тела на расстояние от положения равновесия (рис. 1,а).

Сравнивая это выражение с энергией конденсатора , замечаем, что жесткость k пружины играет при механическом колебательном процессе такую же роль, как величина , обратная емкости, при электромагнитных колебаниях, а начальная координата соответствует заряду .

Возникновение в электрической цепи тока i за счет разности потенциалов соответствующих появлению в механической колебательной системе скорости под действием силы упругости пружины (рис.1,б). Моменту, когда конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение тела через положение равновесия с максимальной скоростью (рис.1.в). Далее конденсатор начнет перезаряжаться, а тело смещаться влево от положения равновесия (рис.1,г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю. Этому состоянию соответствует отклонение тела в крайнее левое положение, когда его скорость равна нулю (рис.1,д). Рассмотренные выше колебания являются свободными. Здесь не учтено, что в любой реальной механической системе существуют силы трения.

Таким образом, соответствие между механическими и электрическими величинами при колебательных процессах можно представить в виде таблицы 1

Механические величины

Электрические величины

Координата х

Заряд q

Скорость vx=x'

Сила тока i=q'

Ускорение аx=vx

Скорость изменения силы тока i'

Масса m

Индуктивность L

Жесткость k

Величина, обратная электроемкости. 1/С

Сила F

Напряжение U

Вязкость

Сопротивление R

Потенциальная энергия деформированной пружины kx2/2

Энергия электрического поля конденсатора q2/(2C)

Кинетическая энергия mv2/2

Энергия магнитного поля катушки Li2/2

Импульс mv

Поток магнитной индукции Li

Выведем уравнение свободных незатухающих электромагнитных колебаний в контуре и колебаний горизонтального пружинного маятника. Применяя к пружинному маятнику закон сохранения энергии, получим равенство:

+ ,

где

, ,

тогда имеем

(1)

Так как

и

получаем

=const (2)

Следует заметить, что уравнение (2) так же следует из закона сохранения энергии. В уравнении (2) i=q' - мгновенное значение силы тока, qmax - максимальный заряд на конденсаторе (он не должен вызвать пробоя). Делаем вывод о зависимости силы тока от величины заряда и находим значение максимальной силы тока:

;

Откуда

при q=0.

Как видно формально с точки зрения математики уравнения (1) и (2) являются одинаковыми.

Решаем уравнение (2): производная полной энергии по времени равна нулю, так как энергия постоянна.

Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей.

или

(3)

Физический смысл уравнения (3) состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля; знак "минус" указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот). Поэтому полная энергия не меняется.

Вычисляя обе производные получаем:

так как , тогда

и

получаем

(4)

Уравнение (4) является основным уравнением, описывающем процессы в колебательном контуре.

Рассмотрим колебания вертикального пружинного и математического маятников.

Выведем груз из положения равновесия, растянув пружину на длину Хm (рис.2) и отпустим. (Амплитудное растяжение пружины Xm должно быть таково, чтобы был справедлив закон Гука и выводимая на его основе формула потенциальной энергии пружины.)

Рис.2

Мгновенные значения координаты груза х в процессе колебаний лежат в пределах -xm?x?xm . По закону сохранения энергии имеем:

(5)

где X0=mg/k - статическое растяжение пружины (потенциальную энергию груза в поле силы тяжести отсчитываем от уровня равновесия груза, обозначенного на рис. 2 пунктиром). Учитывая, что и , получим уравнение колебаний

=соnst (6)

Как видно уравнения колебаний горизонтального и вертикального пружинных маятников одинаковы. Ускорение свободного падения g, имеющееся в уравнении (5), отсутствует в полученном уравнении колебаний. Следовательно, колебания груза на пружине не зависят от g и одинаковы, например, на Земле и Луне. Хотя в дифференциальные уравнения (1) и (6) входят разные величины, математически они эквивалентны.

По аналогии с уравнением (4) описывающем процессы в колебательном контуре, запишем уравнение колебания пружинного маятника:

; ;

получим

, (7)

Отклоним теперь математический маятник длиной l (рис. 3) от положения равновесия на длину дуги sm<<l и отпустим. Мгновенная высота подъема маятника рис.3

так как при <<1 можно считать , а s=la. По закону сохранения энергии имеем:

, где

или

=const (8)

По аналогии с формулами (4) и (7) xqs; ; получаем:

S``= - (9)

Различие уравнений (1), (6) и (9) состоит только в обозначениях и физическом смысле входящих в них величин.

Если не предполагать sm<<l (соответственно m=<<1 рад.), то получится сложное уравнение, решить которое в рамках школьного курса невозможно. Оно будет описывать колебания, период которых зависит от амплитуды. Строго говоря, период колебаний маятника всегда зависит от m, однако при sm<<l рад. этой зависимостью можно пренебречь.

Процессы в колебательном контуре станут понятнее учащимся при рассмотрении преобразований энергий, которые происходят при колебаниях, используя таблицу 2.

Время

Колебательный контур

Пружинный маятник

На конденсаторе находится заряд q0; энергия электрического поля Wэ максимальна. Энергия магнитного поля Wм равна нулю

;

Смешение X0 тела от положения равновесия -- наибольшее; его потенциальная энергия Wп максимальна, кинетическая Wк равна нулю

;

При замыкании цепи конденсатор начинает разряжаться через катушку: возникает ток и связанное с ним магнитное поле. Вследствие самоиндукции сила тока нарастает постепенно; энергия электрического поля преобразуется в энергию магнитного поля

Тело приходит в движение, его скорость возрастает постепенно. Потенциальная энергия преобразуется в кинетическую

Конденсатор разрядился, сила тока I0 максимальна, энергия электрического поля равна нулю, энергия магнитного поля максимальна

Wэ=0;

При прохождении положения равновесия скорость v0, тела и его кинетическая энергия максимальны, потенциальная энергия равна нулю

Wп=0;

Вследствие самоиндукции сила тока уменьшается постепенно; на конденсаторе начинает накапливаться заряд и

Тело, достигнув положения равновесия, продолжает движение по инерции с постепенно уменьшающейся скоростью и

Конденсатор перезарядился; сила тока в цепи равна нулю

; Wм=0

Пружина максимально растянута: скорость тела равна нулю

; Wk=0

Разрядка конденсатора возобновляется; ток течет в противоположном направлении; сила тока постепенно возрастает

Тело начинает движение в противоположном направлении с постепенно увеличивающейся скоростью

Конденсатор полностью разрядился; сила тока I0 в цепи максимальна

Wэ=0;

Тело проходит положение равновесия, его скорость максимальна

Wп=0;

Вследствие самоиндукции ток продолжает течь в том же направлении, конденсатор начинает заряжаться

По инерции тело движется к крайнему положению

Конденсатор снова заряжен, ток в цепи отсутствует, состояние контура аналогично первоначальному

; Wм=0

Смещение тела максимально, его скорость равна нулю и состояние аналогично первоначальному

; Wk=0

2. Решение уравнений, описывающих колебания в пружинном и математическом маятниках

Найдем решение уравнения:

(1)

Нельзя считать, что

или

,

так как вместо

получилось бы равенство

Чтобы в выражении второй производной был множитель запишем уравнение (1) в виде:

(2)

Найдем первую и вторую производные:

Функция (2) есть решение исходного уравнения (1). Функция

есть также решение исходного уравнения.

Обозначим постоянную величину , зависящую от свойств системы, через :

Тогда решение уравнения (2) можно записать:

(3)

Тогда уравнение (1), описывающее свободные электромагнитные колебания примет вид:

(4)

Из курса математики известно, что наименьший период косинуса равен 2р. Следовательно, щ0=2р,

. Так как , тогда период колебаний равен

- формула Томсона.

Аналогично этим рассуждениям решим уравнение для колебаний вертикального пружинного маятника:

(5)

Запишем уравнение (5) в виде:

(6)

Найдем первую и вторую производные:

Функция (6) есть решение исходного уравнения. Функция есть также решение исходного уравнения. Обозначим постоянную величину

через 0 получим

(7)

Тогда уравнение (5) будет иметь вид:

(8)

Период колебаний для пружинного маятника по аналогии с формулой Томсона

где ; получим

(9)

Аналогично выше изложенным рассуждениям решим уравнение для колебаний математического маятника:

(10)

Запишем уравнение (10) в виде:

(11)

Найдем первую и вторую производные уравнения (11):

Функция (11) есть решение уравнения (10). Обозначим постоянную величину ,зависящую от свойств системы, через 0 получим:

(12)

Тогда уравнение (10) примет вид:

(13)

По аналогии с формулой(8) и формулой Томсона, для математического маятника период колебаний равен:

; ;

(14)

Уравнения (4), (8) и (13) являются решениями уравнений, описывающих колебания в пружинном и математическом маятникам.

3 Решение физических задач

Рассмотрим несколько задач, решение которых методом аналогии возможно на уроках и факультативных занятиях в 11 классах (после изучения раздела "Электрические колебания) и при повторении материала.

Задача1. Изобразите механические системы, аналогичные электрическим цепям, схематически изображенными на рис.1,а,б

Решение. Аналогичная механическая система соответствующая рис.1,а,б должна содержать тело массой m и две пружины с разными жестокостями и

а) Общая емкость системы конденсаторов (рис.1,а) равна

Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения

Это соответствует последовательному соединению двух пружин. Учитывая, что один конденсатор заряжен, искомую механическую систему можно представить в виде одной сжатой пружины жесткость и одной недеформированной пружины жесткостью (рис.2,а).

б) Аналогично рассмотрим вторую схему.

Общая емкость системы конденсаторов (рис.1,б) равна

Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения

Это соответствует параллельному соединению двух пружин(рис.2,б).

рис.2

Задача2На рис.3,а,б изображены колебательные контуры. Придумайте механические аналоги им.

рис.3,а

О т в е т. Аналогичная механическая система соответствующая рис.3,а,б должна содержать два тела массами и , и пружину жесткостью k.

а) Общая индуктивность системы при последовательном соединении катушек равна

Используя аналогию механических и электрических величин найдем, что общая масса

А это соответствует рис.4,а

Рис. 4.а

б) Аналогично рассматриваем вторую схему.

Общая индуктивность параллельно соединенных катушек находится из соотношения

Используя аналогию механических и электрических величин, найдем что общая масса катушек равна

Это соответствует рис.4,б

Задача3. Придумайте механическую систему, которая была бы аналогична электрической цепи, состоящей из конденсатора емкостью С и резистора сопротивлением R (рис. 5). Первоначальный заряд конденсатора равен qм. Ключ К замыкается в некоторый момент времени принимаемый за начальный.

Рис. 5.

О т в е т. Электрическую цепь, состоящую из емкости и сопротивления, можно представить как предельный случай электрического колебательного контура, в котором индуктивность настолько мала, что ею можно пренебречь.

Поэтому аналогичная механическая система будет представлять собой прикрепленное к пружине (жесткость К) тело с очень малой массой, но с значительным объемом, находящееся в поле действия силы вязкого трения с коэффициентом Я.

Задача4. Придумайте механическую динамическую аналогию электрической цепи, представленной на рис. 6. В начальный момент катушка индуктивностью L и резистор сопротивлением R отключены от источника постоянного тока с ЭДС.

Рис. 6.

О т в е т. Аналогичная механическая система состоит из тела, находящегося в поле тяжести Земли и расположенного внутри жидкости с коэффициентом вязкости Р. Если отпустить это тело, то оно падает в жидкости под действием силы тяжести FT= mg.

Задача5. Рассчитайте максимальное значение силы тока в цепи, изображенной на рис.7. До замыкания ключа заряд на конденсаторе равен q, второй конденсатор не заряжен. Воспользуйтесь электромеханической аналогией.

рис. 7.

Решение.

Здесь происходит превращение потенциальной энергии в кинетическую или в соответствии с аналогией энергия электрического поля конденсатора превращается в энергию магнитного поля катушки.

так как и

тогда

.

Отсюда значение максимальной силы тока равно

Задача 6. Найти максимальную скорость груза на пружине в вязкой среде при действии на него переменной силы F=10sin10t(H) (рис. 8). Масса - груза 0,1 кг, жесткость пружины 2 Н/м, вязкость среды 1 Н. м/с.

Рис.8

Р е ш е н и е. В связи с тем что такой более сложный процесс, какой представлен в условии этой задачи, в школьном курсе физики не изучается, снова обратимся к аналогии. Аналогичная электрическая система выглядит как колебательный контур, содержащий внешний источник переменного тока (рис. 9).

Рис.9

Из закона Ома для переменного тока (обозначения традиционные) максимальная сила тока

Установим соответствия характеристик механической и электрической систем: fU: ЯR :mL:K1/C.

Учитывая аналогичность систем, получаем:

=

При подстановке следующих данных:

F=10Н, =10с-1, Я=1 Н*м/с, w=0,1кг, K=2 Н/м окончательно получаем vm 1,28 м/с.

Задача 7. Источник с ЭДС и нулевым внутренним сопротивлением соединен последовательно с катушкой индуктивности L и конденсатором С (рис. 10). В начальный момент времени конденсатор не заряжен. Найти зависимость от времени напряжения на конденсаторе после замыкания ключа

.

рис.10

Решение. Искать нужную зависимость, используя законы электромагнетизма, довольно сложно и не наглядно, поэтому целесообразно использовать механическую аналогию. На рис.11 приведена аналогичная механическая колебательная система. Аналогом источника с ЭДС может служить поле силы тяжести. При выдергивании подставки из-под прикрепленного к пружине груза начинаются его колебания. Он совершает гармоническое колебание около точки Xm, график которого дан на рис. 12. а. Уравнение координаты имеет вид:

xm-x(t)=xm cos ?ot,

или

x(t)=xm (1 - cos ?ot).

Рис. 11

Рис. 12

Аналогичное электрическое колебание (график дан на рис. 12, б) описывается следующими уравнениями:

q (t)=qм (1 - cos ?ot);

qм =С, q (t)=C (1 -- cos ?ot) ,

U(t)= , U(f)= (1 -- cos ?ot).

Здесь ?o =.

В заключение отметим, что рассмотренные нами аналогии широко используются в научных исследованиях. Интересно, что принцип работы аналого-вычислительной машины основан на "поразительной аналогичности" механического и электрического процессов.

4. Изучение волновых процессов

Рассматривая вопроссы излучения и распространения любых волн, следует сформулировать условия, необходимые для образования и излучения волн:

наличие источника колебаний в некоторой точке;

возможность передачи колебаний от данной точки к соседним (роль среды);

наличие достаточной связи источника колебаний с передающей средой.

Рассмотрим следующие волновые процессы: излучения и распространения электромагнитных волн, интерференция света, дифракция света и поляризация света.

Излучение и распространение электромагнитных волн.

При изучении вопросов излучения и распространения электромагнитных волн целесообразным аналогом будут акустические волны, факт распространения которых в окружающем пространстве легко устанавливается. Если взять простейший источник акустических волн (камертон без резонансного ящика), то связь его со средой малая и излучение звуковых волн незначительно. Поставив камертон на резонирующий ящик, замечают, что излучение звука значительно усилилось, так как связь со средой стала большей. Если рядом со звучащим камертоном поставить другой камертон, имеющий ту же частоту, то такой камертон возбуждается. Здесь наблюдают явление резонанса. Камертон, имеющий другую частоту собственных колебаний, не возбудится. Излучение камертона возможно только в среде, обладающей определенными физическими свойствами.

Как известно, излучение энергии замкнутым колебательным контуром незначительно, так как электрическое поле в этом случае локализовано между обкладками конденсатора, а магнитное поле -- вокруг катушки. Чтобы подчеркнуть это свойство замкнутого колебательного контура, уместно воспользоваться аналогией с колеблющимся камертоном (без резонансного ящика), излучение которого незначительно. Открытый колебательный контур излучает энергию значительно лучше, так как в этом случае магнитное и электрическое поля совмещены и занимают окружающее контур пространство. Чтобы проиллюстрировать данный факт, уместна аналогия с камертоном на резонансном ящике, хорошо излучающем энергию благодаря связи со средой.

Явление резонанса при звуковых процессах является хорошей аналогией для объяснения приема электромагнитных волн. В антенне приемного устройства возникают колебания всевозможных частот, но приемник "выбирает" из всех колебаний только те, на частоту которых он настроен. Это аналогично возбуждению камертона, имеющего ту же частоту, что и излучающий. При излучении электромагнитных волн возникают возмущения в электромагнитном поле, так же как возникают возмущения в упругой среде вокруг камертона. Природа же распространяющихся при этом волн различна.

2.Интерференция света.

Интерференция света представляет собой сложное явление, объяснение которого требует рассмотрения вопроса о наложении волн, об условиях усиления и ослабления колебаний и т. д. Здесь применяют аналогию с поверхностными волнами на воде.

Вначале, возбудив в волновой ванне две волны, наблюдают результат их наложения и объясняют полученную картину(рис.1).

Рис.1.

В любой точке М на поверхности воды будут складываться колебания, вызванные двумя волнами (от источников O1 и О2). Амплитуды колебаний вызванных в т.М будут отличаться друг от друга, так как волны проходят различные пути D1 и D2 .

Но если расстояние l между источниками много меньше этих путей (l <<D1и l<<D2), то обе амплитуды можно считать одинаковыми. Результат сложения волн в точке М зависит от разности фаз между ними. Пройдя различные расстояния, волны имеют разность хода ДD=D2-D1

Если разность хода равна длине волны , то вторая волна запаздывает по сравнению с первой ровно на один период. Следовательно, в этом случае гребни (впадины) обеих волн совпадают.

Сложение волн в зависимости от разности их хода объясняют на специально вычерченных графиках, показывая, как складываются колебания при условии совпадения фаз и в случае когда колебания происходят в противофазе.

Зависимость от времени смещения х1 и х2 вызванных двумя волнами при D=. Разность фаз колебаний равна нулю, так как период синуса равен 2 (рис.2).

Рис. 2

В результате сложения этих колебаний возникает результирующее колебание с удвоенной амплитудой. Колебания результирующего смещения x показаны пунктиром. То же самое будет происходить, если на отрезке D укладывается не одна, а любое целое число длин волн:

D=k, k=0, 1, 2…. - условие максимума.

Пусть теперь на отрезке D укладывается половина длины волны (рис.3).

Рис.3.

Вторая половина отстает от первой на половину периода. Разность фаз оказывается равной , то есть колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, то есть в рассматриваемой точке колебаний нет. Тоже самое происходит если на отрезке укладывается любое нечетное число полуволн.

D=( 2k+1 )/2, k=0,1,2... - условие минимума.

Аналогично интерференции поверхностных водяных волн происходит и интерференция световых волн, но осуществить это явление значительно сложнее. Необходимо учитывать, что условия излучения и природа этих волн различны, а общее между ними только в периодичности процессов. Перед демонстрацией опытов по интерференции света следует рассмотреть вопрос о когерентных источниках волн. Когерентность поверхностных волн на воде легко осуществляют в волновой ванне с помощью двух связанных между собой вибраторов.

Два обычных источника света не являются когерентными. Учащимся необходимо пояснить, что для получения устойчивой картины интерференции света надо использовать специальные установки, в которых заставляют интерферировать два пучка одной и той же волны, излучаемые одним источником, но идущие к точке наблюдения различными путями.

После этого демонстрируют интерференцию света и по аналогии объясняют интерференционную картину. Проводя аналогию между световыми и поверхностными водяными волнами, показывают сходство и различие явлений различной природы.

3. Дифракция светаю

Явление дифракции света рассматривают по аналогии с дифракцией поверхностных волн на воде. Для этой цели в волновой ванне показывают явление дифракции волн (отклонение волн от прямолинейного распространения), ставя на пути волн препятствия, размеры которых соизмеримы с длиной волны. Получают дифракцию на препятствии и на щели.

Когда явление дифракции с помощью поверхностных водяных волн разъяснено, переходят к дифракции света. Но перед демонстрацией соответствующих опытов останавливаются на различии дифракции света и дифракции длинных поверхностных волн. Так как поверхностные водяные волны иллюстрируют огибание волнами препятствий, без последующего распределения максимумов и минимумов, то есть поверхностные волны подчиняются принципу Гюйгенса - Френеля. В случае световых волн имеет место не только огибание препятствий, но и сложение волн. Поэтому, наблюдая дифракцию света, видят проявление максимумов и минимумов освещенности, что является результатом интерференции (наложении) волн.

При рассмотрении дифракции света можно использовать таблицу 3, в которой сопоставляются дифракционные картины от освещенной щели и в волновой ванне при различной ширине щели.

Таблица 3.

Особенности дифракционной картины от освещенной щели

Дифракционная картина в волновой ванне

Объяснение дифракционной картины на основе принципа Гюйгенса--Френеля

Размеры дифракционной картины больше размеров изображения щели, которые получились бы при прямолинейном распространении света

Вторичные волны заходят за края щели

В центре картины -- светлая полоса, по краям -- светлые и темные полосы

В направлении, перпендикулярном щели, вторичные волны имеют одинаковую фазу, в результате интерференции происходит усиление колебаний.

В других направлениях вторичные волны интерферируют, имея некоторую разность фаз, которая определяет результат интерференции

При очень узкой щели на экране возникает светлое размытое пятно

В щели образуется один источник вторичных волн

4. Поляризация света.

Как известно, электромагнитные волны поперечны. Так как свет имеет электромагнитную природу, то световые волны также поперечны. Чтобы разобраться в опытах по поляризации света необходимо уяснить понятие плоско поляризованного света и действие поляризатора, и анализатора.

Плоскополяризованными волнами называют поперечные волны, колебания в которых происходят в одной плоскости вдоль прямой, перпендикулярной направлению распространения. Такими являются волны на шнуре, поэтому свойства плоскополяризованных волн можно наглядно объяснить. Для этой цели берут щель между двумя досками. Если эту щель расположить вертикально, то волны бегущие по шнуру, раскачиваемому в вертикальной плоскости, свободно пройдут через щель (рисю.4,а). Если же щель повернуть на 90 , то волны через щель не пройдут и будут полностью погашены (рис.4,б).

Рис.4 а) б)

Естественный свет не поляризован, но его поляризацию можно осуществить с помощью приборов - поляризаторов, действие которых аналогично действию щели в опыте со шнуром. В поляризатор пропускают лишь лучи с определенной плоскостью колебаний светового вектора Е. Обнаруживают поляризацию света с помощью анализаторов, действие которых аналогично действию указанной щели, плоскость которых параллельна щели.

Применение этой аналогии делает явление поляризации света понятным и доступным.

ГЛАВА 2 Другие виды аналогий в школьном курсе физики

5. Использование аналогии при изучении транзистора

В настоящее время транзистор как полупроводниковый прибор нашел широкое применение во всех сферах человеческой деятельности. Популярность прибора повышает интерес учащихся к нему и его техническому приложению. Модель транзистора, как и всякая аналогия, является приближением прибора и имеет свои границы применимости (например, с ее помощью невозможно показать собственную и примесную проводимость; перемещение дырок и электронов и т. д.). Однако в главном модель и оригинал схожи: это тождественность включения их схем и аналогичность работы основных частей и, кроме того, равенство нулю тока коллектора при отсутствии тока в базе.

рис.1

После ознакомления учащихся с основными элементами транзистора p-n-p-типа (эмиттером, базой и коллектором) и механизмами правого и левого p-n-переходов, учащимся предлагается пронаблюдать данные процессы на модели. Для этого собирается установка, показанная на рис. 1. (предложенная В.С. Данюшенковым и С.Е. Каменецким) Она состоит из аналога транзистора 1, двух центробежных водяных насосов с электродвигателями 2 и стеклянных переходников 3, соединенных между собой резиновыми трубками.

В качестве аналога берут модель водоструйного насоса, имеющаяся в арсенале кабинета физики.

Источником переменного "напряжения" для модели (см. рис- 1) служит вход 4, который подключают к водопроводному крану. Меняя с помощью крана скорость течения жидкости в установке, регулируют давление (напор) в ней. В этой установке давление жидкости служит аналогом напряжения в электрической цепи транзистора. Насосы выполняют роль источников постоянного тока, трубки с водой -- соединительных проводов, а стеклянная трубка 5 - постоянного резистора R, включенного в цепь, показанную на рис. 3.

Рис. 3.

Работу основных элементов модели необходимо показать учащимся.

Сначала объясняют роль токов в правом и левом p-n-переходах и их влияние на работу транзистора. Для этого открывают кран и создают постоянный напор воды в системе "эмиттер -- база". Жидкость через "эмиттерный" вход поступает в полость аналога транзистора и сливается в отверстие "базы". Источник постоянного напряжения (насос) левого перехода включают в таком направлении, чтобы поток воды из "базового" отверстия всасывался в "эмиттерную" цепь и создавал прямой ток, который зависит только от источника напряжения. Показывают соответствующую демонстрацию, изменяя напор воды в системе с помощью крана и насоса (меняют число оборотов двигателя). При этом часть воды поступает в "коллектор". Это иллюстрирует диффундирование нерекомбинированных в базе дырок в коллектор.

Затем показывают значение базы в транзисторе. Включают правый и левый насосы аналога так, чтобы потоки жидкости в них циркулировали по часовой стрелке. Тогда по "базе" будут протекать два встречных потока жидкости. На языке аналогии это означает, что значения силы тока в цепях базы Iб, эмиттера Iэ и коллектора Iк связаны соотношением: Iб=Iэ-Iк. О соотношении значений силы тока в транзисторе учащиеся судят путем наблюдения за показаниями расходомеров жидкости, включенных в "эмиттерную" и "коллекторную" цепи модели. Расходомер представляет собой устройство для измерения скорости течения воды и аналогичен амперметру. Поскольку скорость движения жидкости в "эмиттере" приближенно равна скорости движения жидкости в "коллекторе", можно сделать вывод об отсутствии ее движения в "базе", т. е. о том, что Iб=0. Действительно, так как концентрация инжектируемых дырок с эмиттера много больше их концентрации на границе с базой (ширина базы очень мала), то дырки интенсивно диффундируют к коллектору. В то же время обратный ток коллекторного перехода много меньше тока, создаваемого дырками эмиттера. Поэтому силу тока в цепи коллектора можно считать равной силе тока в цепи эмиттера (IкIэ). Это равенство лежит в основе усиливающего действия транзистора.

Затем рассматривается использование транзистора как усилителя мощности. При этом рассматривают два случая: включение транзистора по схеме с общей базой (рис. 3, а) и общим эмиттером (рис. 3, б). Схему с общим коллектором не рассматривают, поскольку она мало чем отличается по действию от схемы с общим эмиттером. Поясняют распределение силы тока между эмиттером, базой и коллектором.

Усиление мощности можно осуществлять двумя способами:

а) при постоянном напряжении увеличивать силу тока,

б) при постоянной силе тока увеличивать напряжение.

Сначала рассматривают усиление мощности транзистора по току в схеме с общей базой (рис.3,а). Механизм этого процесса обсуждался при изучении правого p-n-перехода и поэтому усилительное действие в данном случае основано на равенстве Iк=Iэ. Затем переходят к изучению усиления по току в схеме с общим эмиттером, рис3,б (Iк=Iэ+Iб). Сущность процесса состоит в усилении рекомбинации дырок в базе путем подачи напряжения на эмиттерный и базовый входы транзистора. Демонстрацию осуществляют следующим образом. Насос "эмиттерного перехода" переключают так, чтобы он перемещал жидкость против часовой стрелки. Тогда одна часть жидкости от крана поступит по каналу "эмиттера" в полость "транзистора", а другая часть начнет всасываться насосом и перемещаться к "базе". Далее включают насос "коллекторного перехода" (перемещают воду по часовой стрелке) так, чтобы токи в "базе" были направлены в сторону аналога транзистора. Таким образом, возникнет значительный поток воды на выходе из "базы", который будет воздействовать на струю жидкости, вытекающую из "эмиттера", направляя ее в "коллекторный переход".

Усиление мощности по напряжению основано на различии сопротивлений коллекторного и эмиттерного p-n-переходов, включенных в противоположных направлениях. Эмиттерный переход, на который подано прямое напряжение смещения, имеет малое сопротивление, и падение напряжения на нем Us мало. На коллекторный же переход подается обратное напряжение смещения, и сопротивление его значительно больше, поэтому в коллекторную цепь может быть включена высокоомная нагрузка, сопротивление которой Rн значительно больше сопротивления эмиттерного перехода. Поскольку Iк и Iэ одинаковы, то падение напряжения на высокоомной коллекторной нагрузке Uн=IкRIэRн окажется много больше падения напряжения на эмиттерном переходе.

Для демонстрации явления можно воспользоваться моделью, собранной так, чтобы насосы вращались в одну сторону. Поочередно беря трубки 5 разного диаметра, демонстрируют роль нагрузки в цепи коллектора для усиления мощности.

6. Изучение электрических цепей с использованием аналогии

Цепь постоянного тока.

При введении понятия об электрическом токе полезна аналогия с течением воды в турбине. Аналогия становится особенно образной, если к этому времени введено понятие об электроне, тогда электрический ток представляется как упорядоченное движение электронов в проводнике. Весьма полезна гидродинамическая аналогия и при знакомстве с источниками тока. На полюсах источника тока создается напряжение. Заряды (электроны, ионы), которые перемещаются в проводниках (металлах, электролитах), имеются в самих проводниках. Они движутся хаотически, но если проводник присоединить к полюсам источника тока, то заряды придут в упорядоченное движение, то есть появится ток.

Поэтому здесь целесообразна аналогия источника тока с насосом. В гидродинамической системе (рис.1) насос не создает воду, а лишь вызывает ее перемещение.

рис.1

Аналогично насосу и действие источника тока в электрической цепи. Насос создает разность давлений (напор), что может быть аналогом напряжения. Турбина аналогична потребителю, насос - источнику тока, трубки с водой - соединительным проводам, а кран - выключателю.

Приведем схему установки и ее работу, предложенную С. Е. Каненецким и Н.Н. Солодухиным.

Установка для демонстрации гидродинамической аналогии электрической цепи состоит из центробежного насоса с электродвигателем 1, водяной турбины 2, манометра 3, расходомера 4, соединительных резиновых трубок 5 и кранов 6 и 7 (рис.2).

рис.2.

В начале установку собирают без расходомера и манометра. Число оборотов двигателя регулируют реостатом, в результате центробежный насос создает разный напор воды.

Водяная турбина состоит из плексигласа (рис.3).

рис.3.

Вода в нее поступает через сопло 1 вверху турбины, приводит в движение ротор 2 и выходит через отверстие 3. Ось ротора установлена в подшипниках и вращается с малым трением. При увеличении числа оборотов двигателя увеличивается напор воды и ротор турбины вращается быстрее. К турбине присоединяют манометр через специальные трубки 4, имеется кран 5. Сбоку турбины укреплен металлический стержень 6, с помощью которого ее устанавливают на лабораторном штативе. Для герметичности турбины между корпусом и крышкой поставлена резиновая прокладка.

В расходомере (изготовленном из плексигласа) имеется канал, по которому протекает вода, приведенная в движение насосом. В канале перпендикулярно дв

ижущемуся потоку расположена площадка, соединенная со стрелкой расходомера. Укрепляют расходомер на специальном штативе с помощью вертикального стержня. С другими приборами он соединен резиновыми трубками. Вверху расходомера имеется отверстие, закрепленное винтом, необходимым для выпуска воздуха при заполнении системы водой.

Демонстрации с установкой сводятся к следующему. Когда установка состоит из насоса и трубки (рис.4) демонстрируют циркуляцию воды, аналогичную движению зарядов в электрической цепи.

рис.4.

Поочередно закрывая краны, показывают, что краны можно установить в любом месте. Аналогично этому в электрической цепи можно установить где угодно выключатель.

Когда установка собрана с расходомером (рис.5) изменяют число оборотов двигателя (меняют напор воды) и стрелка расходомера сильно отклоняется. Сжимая в любом месте резиновую трубку, показывают изменение потока воды при одном и том же напоре.

рис.5.

Когда установка собрана целиком (см. рис. 2), обращают внимание на показания манометра, который аналогичен вольтметру в электрической цепи. Одновременно демонстрируют величины, аналогичные электродвижущей силе и напряжению. Действительно, если открыть кран 6, а кран 7 закрыть, то циркуляции воды не будет, и манометр покажет максимальную разность давлений при таком числе оборотов. Это показание манометра аналогично электродвижущей силе. Если же кран 7 открыть, то вследствие движения воды турбина приходит в движение и показания манометра уменьшаются. (Показания манометра аналогичны напряжению, а показания расходомера -- току.)

Изменяя сопротивление трубок (набор трубок различного поперечного сечения и длины) движению воды, показывают зависимость между напором и сопротивлением движению воды, которая аналогична закону Ома для полной цепи.

Познакомив учащихся с отдельными элементами электрической цепи, надо собрать простейшую электрическую цепь (потребитель -- лампа накаливания, источник тока - батарея элементов, соединительные провода и выключатель),

а рядом с ней расположить соответствующую установку для демонстрации гидродинамической аналогии (рис.2). Видно, что при работе насоса создается разность давлений (напор), под действием которого вода перемещается по трубкам и приводит в движение турбину. Вода в системе циркулирует. Аналогично происходит направленное перемещение зарядов в электрической цепи. Разрыв цепи (в любом месте) нарушает это движение. Последнее дает возможность исключить часто встречающуюся ошибку: учащиеся полагают, что ключ в цепи ставят не в любом месте, а обязательно между положительным полюсом источника тока и потребителем. Одновременно с этим объясняют, что в системе происходят определенные превращения энергии и что основным потребителем энергии является турбина.

Затем рассматривают явления в цепях переменного тока с емкостью и индуктивностью, а также сдвиг фаз между током и напряжением.

Цепь переменного тока с емкостью.

В электростатике было изучено устройство конденсатора и его основные свойства. При этом отмечалось, что постоянный ток не проходит в цепи с емкостью, так как диэлектрик конденсатора разрывает цепь. Иначе обстоит дело в цепи переменного тока. Чтобы показать это, составляют цепь с батареей конденсаторов и последовательно включенной с ней лампой накаливания (рис.7).

Лампа горит-значит, в цепи есть ток. При изменении емкости батареи конденсаторов изменяется накал волоска лампы. Это говорит о том, что в данной электрической цепи есть особое (емкостное) сопротивление, которое зависит от емкости.

Для разъяснения этого факта полезны гидродинамические аналогии показанные на рис.8.

рис.8

На этих моделях рассматривают возвратно-поступательное движение насоса (или вращение насоса) то в одну, то в другую сторону; при этом упругая перепонка прогибается в соответствующие стороны. Происходит перемещение жидкости в трубах (ток), но жидкость не проходит через перепонку, так же как и заряды в электрической цепи не проходят через диэлектрик конденсатора.

3. Цепь переменного тока с индуктивностью.

Наличие индуктивного сопротивления в цепи переменного тока можно продемонстрировать на опыте. Составим цепь из катушки большой индуктивности и электрической лампы накаливания (рис.9).

С помощью переключателя можно подключить эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть равны между собой. Опыт показывает, что лампа светится ярче при постоянном напряжении. Действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока. Это объясняется явлением самоиндукции. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов и при прошествии некоторого времени сила тока достигает наибольшего значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех значений, которые она бы приобрела с течением времени при постоянном напряжении. Следовательно, максимальное значение силы переменного тока ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и частота приложенного напряжения.

Для индуктивного сопротивления полезна аналогия между индуктивностью в цепи переменного тока и массой материального тела. В случае переменного тока электродвижущая сила самоиндукции имеет место в цепи все время, а не возникает лишь в момент включения и выключения тока, как это было в случае постоянного тока. Наличие этой э.д.с. и объясняет появление индукционного сопротивления.

Обычно рассмотрение цепи переменного тока с индуктивностью проходит без больших затруднений, и аналогия между массой и индуктивностью носит лишь иллюстративный характер. С помощью аналогии объясняют между катушкой индуктивности и источником тока, появление индуктивного сопротивления, а также сдвиг фаз между током и напряжением в данной цепи.

К сожалению, более наглядно гидродинамическую аналогию для этого привести не удается.

Сдвиг фаз между колебаниями тока и напряжения в цепях переменного тока.

Рассмотрим колебания пружинного маятника ( рис.10 ).

Верхнее положение x=A, v=0, a=am

x=0, v=vm, a=0

Нижнее положение x= - A, v=0, a=am

Рис.10.

Легко установить, что между смещением, скоростью и действующей силой имеется сдвиг фаз (рис.11).

Аналогия между механическими и электрическими колебаниями дает возможность показать, что сдвиг фаз между током и напряжением естественен. Вполне допустимо при этом вычертить график и установить соответствие между величинами, характеризующими процессы в электрической цепи (I и U), и величинами, характеризующими процессы в пружинном маятнике (x и v).

Графики аналогичны графику представленным на рис.11, только вместо величин x, v, F ставятся аналогичные им величины q, i, U,то есть

. Для них

i=q';

Затем поясняют, что при максимальном значении напряжения сила тока в цепи равна нулю и наоборот. Для этого на механической аналогии показывается, что при максимальном значении действующей силы скорость равна нулю, а когда скорость максимальна, равна нулю действующая сила.

7. Аналогии при изучении постулатов Бора

Формирование и развитие у учащихся модельных представлений атома как структурной единицы вещества имеет важное научно - познавательное и мировоззренческое значение. В курсе физики 7 класса учащиеся узнают об атомах как о мельчайших частицах вещества, из которых состоят более крупные образования - молекулы. В курсе электричества 8 класса картина меняется: модель атома становится доминирующей. Здесь у учащихся формируется представление об атоме как о сложной динамической системе, состоящей из сконцентрированной в небольшом объеме положительной части - ядра и электронов, движущихся относительно ядра и несущих отрицательный заряд.

Планетарную модель атома доказывают опытом Резерфорда по рассеянию б - частиц металлическими пластинками. Известно несколько моделей этого опыта. Например, при описании опыта Резерфорда использована аналогия с зондированием кипы сена с помощью пуль. При этом по траектории пуль можно определить, где спрятаны куски металла.

При рассказе о ядерной модели атома применяют аналогию с солнечной системой. Здесь важны образные сравнения - аналогии: масса ядра атома в несколько тысяч раз больше массы электрона (например, масса ядра атома водорода больше массы электрона в 2000 раз), так же как и масса Солнца больше массы отдельной планеты в несколько сотен тысяч раз (например, больше массы Земли в 333000 раз). Другое сравнение : диаметр ядра примерно в 10000 раз меньше диаметра атома; аналогично, диаметр Солнца (13000 км) во много миллионов раз меньше размеров солнечной системы. Эти сравнения помогают учащимся создать представление о масштабах ядерной модели атома. Но движение электронов относительно ядра более сложнее, чем орбитальное движение планет и оно подчиняется другим законам. Ядерную модель атома затем используют для объяснения электризации тел, явления электропроводности, при изучении электрического тока в металлах и электролитах. О дальнейшем развитии планетарной модели атома рассказывают после изучения фотоэффекта.

Для объяснения закономерностей фотоэффекта вводят представление о дискретности светового излучения, а также понятие о фотоне как элементарной частице света с энергией Е=hн. Отсюда возникает вопрос: является ли дискретность энергетических состояний свойством, характерным лишь для излучающих твердых тел, или же эта дискретность присуща любым атомным системам?

Подобные рассуждения привели в 1913 году И. Бора к предположению о неприменимости максвелловской электродинамики к электронам, движущимся в атомах. В основу своей теории Н. Бор положил следующие постулаты:

в атоме происходят движения электронов по некоторым стационарным круговым орбитам без излучения;

стационарными будут те орбиты, для которых момент количества движения электрона mvR равен целому кратному величины h/2р, то есть

mvnRn=nh/2р , где n=1, 2, 3….

излучение и поглощение света атомами происходит при переходе электронов с одних стационарных орбит на другие.

Планетарная модель атома в теории Бора "модернизирована", то есть электроны могут перескакивать с орбиты на орбиту, когда атом переходит из одного стационарного состояния в другое.

Так, при изложении вопроса об излучении света атомом существует аналогия с реальным макропроцессом--вылетом стрелы из лука.

Оба процесса возможны только в том случае, если участвующие в них объекты (атом, лук) находятся в возбужденном состоянии (в последнем случае под "возбуждением" понимается натяжение тетивы). Тетива и атом в конечном счете возвращаются в невозбужденное состояние (ему соответствует наименьшее из возможных значение энергии); при этом соблюдается закон сохранения энергии (потенциальная энергия упруго деформированной тетивы переходит в кинетическую энергию стрелы, а энергия возбуждения атома "уносится" фотоном: Е21=hн.

Однако между этими явлениями есть различие:

1) при натяжении тетивы ей может быть сообщена любая энергия, т. е. ее энергия может изменяться непрерывно; для возбуждения атома ему нужно сообщить определенную порцию (квант) энергии, соответствующую разности уровней энергии, между которыми осуществляется "переход" электрона в рамках модели Резерфорда--Бора;


Подобные документы

  • Требования к уровню подготовки учащихся. Методика изучения раздела "Механические колебания и волны". Особенности превращения энергии при гармонических колебаниях. Природа возникновения механических волн и звука, составление компьютерных моделей.

    курсовая работа [3,9 M], добавлен 08.10.2013

  • Рассмотрение демонстрационных опытов как важной составляющей школьного физического эксперимента. Разработка карт опытов для усиления практической составляющей курса физики в школе. Необходимость проведения эксперимента при изучении раздела "Оптика".

    курсовая работа [1,3 M], добавлен 08.06.2015

  • Поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики. Изучение движения материальной точки по окружности. Понятие динамики вращательного движения твердого тела вокруг неподвижной оси.

    курсовая работа [1,7 M], добавлен 04.05.2011

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Принцип применения операторного метода для анализа переходных колебаний в электрических цепях, содержащих один реактивный элемент и резисторы. Переходные колебания в цепи с емкостью и с индуктивностью. Свободные переходные процессы в цепи с емкостью.

    лекция [174,2 K], добавлен 27.04.2009

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

  • Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.

    презентация [12,0 M], добавлен 28.06.2015

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Основные положения математической физики и теории дифференциальных уравнений. Поперечные колебания. Метод разделения переменных или метод Фурье. Однородные линейные уравнения второго порядка с постоянными коэффициентами.

    дипломная работа [365,5 K], добавлен 08.08.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.