Асинхронные и высоковольтные машины

Классификация и назначение вторичных источников питания, их принцип действия и сферы применения, разновидности, отличительные характеристики. Структурная схема типового выпрямления. Принципы действия и устройство асинхронной машины, высоковольтных машин.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 20.01.2010
Размер файла 285,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

35

1. Вторичные источники питания: Выпрямительные устройства. Классификация, основные параметры, область применения. Структурная схема типового выпрямления

Источники вторичного электропитания

Источники электропитания подразделяются на первичные и источники вторичного электропитания (ИВЭ). К первичным относятся непосредственные преобразователи различных видов энергии в электрическую, а к источникам вторичного электропитания - преобразователи электрической энергии одного вида в электрическую энергию другого вида.

В качестве первичных источников применяются: энергосистема с тем или иным номинальным напряжением (сеть переменного или постоянного тока), химические источники тока (гальванические элементы, батареи), термо- и фотоэлектрические, акустические, топливные, биологические, атомные, механические преобразователи энергии в электрическую.

Наибольшее применение из первичных источников электроэнергии имеет сеть переменного тока, а из источников вторичного электропитания - выпрямители, стабилизаторы и преобразователи.

С помощью выпрямителя энергия переменного тока преобразуется в энергию постоянного тока. Ввиду разнообразия радиоэлектронной аппаратуры схемные и конструктивные решения выпрямителей различны. Выпрямители могут быть выполнены в виде отдельного блока, стойки или могут входить в общую конструкцию изделия (усилителя, приемника и т.д.).

Основное назначение стабилизатора - поддерживать постоянным выходное напряжение или ток в нагрузке. Стабилизатор с выпрямителем образует стабилизированный источник вторичного питания. Преобразователи, применяемые в источниках питания, служат в основном для преобразования напряжения постоянного тока в напряжение переменного тока или напряжение постоянного тока другого номинала.

Выпрямители и фильтры

Электрический выпрямитель широко применяют как наиболее универсальный преобразователь переменного тока в постоянный.

Выпрямление в электрическом выпрямителе достигается вследствие включения в его состав электрического вентиля, который пропускает ток преимущественно в одном направлении, (рис. 1.2, а).

При рассмотрении процессов выпрямления характеристику вентиля идеализируют, представляя ее (рис. 1.2, б) линейной ломаной кривой 1 (идеальный вентиль), 2 (идеализированный вентиль с потерями) или 3 (идеализированный вентиль с потерями и порогом выпрямления).

В качестве вентилей в настоящее время применяют в основном полупроводниковые диоды. Порог выпрямления кремниевых диодов лежит в пределах 0,4-0,8 В, а германиевых 0,15-0,2 В. Для низковольтных выпрямителей (выпрямленное напряжение менее 10 В) порог выпрямления кремниевых вентилей составляет заметную часть выходного напряжения; его следует учитывать при расчетах, выбирая в качестве расчетной модель вентиля с порогом выпрямления. Для выпрямителей с выходным напряжением более 10 В можно проводить расчет и на основе модели вентиля без порога выпрямления.

Угол наклона спрямленной характеристики вентиля с потерями определяет внутреннее сопротивление вентиля rв.

Значения сопротивлений rв, применяемых в настоящее время вентилей, составляют от десятков (слаботочные диоды) до долей Ом (сильноточные диоды).

Прямой ток вентиля ограничен его разогревом из-за потерь электрической мощности, пропорциональных падению напряжения на вентиле. При обратном напряжении вентиль пропускает хотя и малый, но отличный от нуля обратный ток. Этим током, как правило, пренебрегают.

Следует отметить, что малый обратный ток соответствует обратному напряжению, не превосходящему некоторого значения. За этим пределом обратный ток резко возрастает и вентиль пробивается. Это обстоятельство ограничивает значение обратного напряжения, которое может быть приложено к вентилю.

Схема простейшего электрического выпрямителя (рис. 1.3) содержит трансформатор, вентили и нагрузку.

Трансформатор необходим для преобразования напряжения сети в напряжение, удобное для дальнейшего выпрямления и гальванической развязки нагрузки выпрямителя от сети.

В общем случае трансформатор имеет m1 обмоток (фаз) в первичной цепи и m фаз во вторичной цепи.

В приведенной схеме как первичные, так и вторичные обмотки соединены звездой. В подавляющем большинстве схем вторичные обмотки именно так и соединяют. Что же касается первичных обмоток, то они могут соединяться и в многоугольник.

Рис. 1.2. Вольт-амперная характеристика вентиля

Рис. 1.3. Вентиль

К концу каждой из вторичных обмоток подсоединен анод вентиля. Катоды всех вентилей подсоединены к сборной шине, которая и является одним (в данном случае положительным) выводом выпрямителя. Второй вывод выпрямителя (отрицательный) берут от средней точки звезды вторичных обмоток трансформатора. К этим выводам и подключают нагрузку выпрямителя.

Из-за нелинейности характеристик вентилей ток в каждой из вторичных обмоток может проходить только в одну сторону. Через нагрузку проходит суммарный ток всех фаз (вентилей) вторичной обмотки, имеющий значительную постоянную составляющую (выпрямленный ток).

Если изменить полярность включения всех вентилей на обратную, т.е. подсоединить их катодами к концам вторичных обмоток, а анодами к сборной шине, то выпрямленное напряжение изменит свою полярность.

Для уменьшения переменных составляющих в выходном напряжении между нагрузкой и выпрямителем включают фильтр, называемый сглаживающим. Необходимость в фильтре вызвана тем, что мгновенная мощность переменного тока пульсирует во времени, а мгновенная мощность постоянного тока неизменна. Следовательно, для получения на выходе постоянного тока в выпрямителе должен быть элемент, запасающий избыток (по отношению к среднему значению) мощности в те моменты, когда мощность переменного тока близка к максимуму, и отдающий этот запас в нагрузку в моменты, соответствующие минимуму мгновенной мощности переменного тока.

Накопление (запасание) мощности можно осуществить лишь в реактивных элементах (катушках индуктивности или конденсаторах), поэтому фильтр должен содержать в своем составе хотя бы один такой элемент.

Рис. 1.4 Схемы выпрямителей, содержащих один накопительный элемент

Из двух схем выпрямителей, содержащих один накопительный элемент (рис. 1.4, а, б), практическое применение находит лишь схема с конденсатором.

У схемы с дросселем нельзя получить малое выходное сопротивление для переменных составляющих тока нагрузки. Связано это с тем, что индуктивность дросселя L, по которому проходит весь ток нагрузки, для хорошего сглаживания пульсаций должна быть значительной. А при большой индуктивности дросселя на нем возникают большие падения напряжения при изменениях тока нагрузки.

С целью получения малого выходного сопротивления фильтра для переменных составляющих тока нагрузки его схему усложняют, включая второй реактивный элемент-конденсатор C (рис. 1.4, в).

Аналогичный фильтр для дополнительного сглаживания пульсаций (дроссель L и конденсатор С) можно подключать и к выпрямителю с емкостным накопителем (рис. 1.4, б).

Его схема для последнего случая показана на рис. 1.4, г.

Чем больше число фаз выпрямленного переменного напряжения, тем чаще и с меньшей амплитудой пульсирует мгновенная мощность переменного тока. Поэтому в многофазном выпрямителе снижается как запасаемая в реактивностях фильтра мощность, так и время, на которое она запасается, что. приводит к уменьшению габаритов и массы накопительных элементов.

При увеличении частоты переменного напряжения сокращается время, на которое запасается энергия в фильтре, что позволяет опять-таки уменьшить размеры и массу фильтра.

При большом числе фаз выпрямляемого напряжения можно добиться достаточно качественного выпрямления и без фильтра.

Включение того или иного фильтра на выход выпрямителя существенно сказывается на процессах, происходящих в самой выпрямительной схеме (вентилях и трансформаторе). Это объясняется тем, что цепи постоянного и переменного токов в электрическом выпрямителе связаны через вентили. Поэтому включение реактивного элемента в цепь постоянного тока выпрямителя сказывается на значении и форме тока в обмотках трансформатора, т.е. в цепи переменного тока.

Характер процессов в выпрямителе задается тем реактивным элементом, который создает основное сопротивление переменной составляющей выпрямленного тока. Прочие реактивные элементы фильтра не меняют картины процесса, а сказываются лишь на некоторых его количественных характеристиках.

Именно поэтому практически одинаковы форма и значения токов в обмотках трансформатора у схем, приведенных на рис. 1.4, б, г, так как на конденсаторе С в последней схеме получается уже практически выпрямленное напряжение (его емкость большая) и дроссель L создает лишь несколько большее постоянство тока разряда конденсатора С1. Поэтому конденсатор С1 относят к выпрямителю, а дроссель L, и конденсатор C2 рассматривают как отдельные фильтрующие звенья.

Все схемы выпрямителей можно разбить на две группы, отличающиеся друг от друга характером реактивности первого элемента фильтра и, следовательно, формой токов в обмотках трансформатора. Эти группы следующие:

а) выпрямитель, нагрузка которого начинается с индуктивного элемента (рис. 1.4, в);

Выпрямленное напряжение E0 - напряжение на выходных зажимах выпрямителя - содержит не только постоянную составляющую E0, но и ряд гармоник выпрямляемого переменного напряжения (рис. 1.5), т.е. пульсирует. Коэффициентом пульсаций называют отношение пикового напряжения переменной составляющей выпрямленного напряжения Em к его постоянной составляющей E0:

kп=Em/E0=(e0max-e0min)/(2E0) (1.1.)

Представив выпрямленное напряжение рядом Фурье, т.е. как сумму постоянной составляющей и ряда гармоник с амплитудами Еmk, можно оценить качество выпрямления по коэффициентам пульсаций для каждой из гармоник:

kпr=Emk/E0 (1.2.)

Такая оценка удобна в том случае, когда в результате последующей фильтрации выпрямленного напряжения большая часть гармоник сильно ослабляется и на нагрузке оказываются отличными от нуля лишь напряжения одной или двух гармоник.

К преимуществам электрического выпрямителя относятся: универсальность принципа преобразования, заключающегося в том, что он пригоден для получения как высоких, так и малых напряжений и токов; значительный КПД преобразования; относительно небольшие габариты и масса; возможность выпрямления переменных токов повышенной частоты; отсутствие подвижных частей и, следовательно, быстроизнашивающихся и вибрирующих деталей, а также переключаемых контактов и связанных с переключением искрения и истирания контактов; малый уровень радиопомех; значительный срок службы и высокая надежность; отсутствие при работе шума, выделения газов и дыма; не критичность к условиям эксплуатации; относительно низкая стоимость.

Вместе с тем электрическому выпрямителю свойственны и недостатки: чувствительность к изменению значения и формы выпрямляемого напряжения; необходимость фильтрации выходного напряжения; относительная сложность защитных устройств.

Рассмотрение процессов в выпрямительных схемах, проводимое далее, имеет своей целью не всестороннее описание этих процессов, а только получение расчетных соотношений. Поэтому сначала нужно определить цель электрического расчета, а затем, следуя этой цели, строить расчетные формулы.

Выпрямитель в основном собирают из готовых изделий. Только трансформатор и дроссель фильтра не являются покупными узлами, входящими в выпрямитель, но и их выполняют на типовых сердечниках с использованием нормализованных обмоточных проводов.

Рис. 1.5. Гармоники выпрямленного напряжения

При проектировании выпрямителя сначала выбирают готовые изделия (вентили, конденсаторы), а затем проверяют их режимы работы. Если электрический режим выбранных изделий удовлетворяет паспортным данным и запасы по предельным показателям приемлемы, то считают, что первый этап завершен успешно. После этого определяют исходные данные для расчета трансформаторов и дросселей и, проведя их расчет, уточняют показатели режима, полученные на первом этапе. В заключение рассчитывают показатели выпрямительного устройства.

Если же по каким-либо причинам электрические режимы, оцененные на первом этапе, оказываются неприемлемыми (перегрузка, большие запасы по предельным показателям), то подбирают другие изделия с более подходящими параметрами и снова проводят расчет выпрямителя.

Таким образом, расчетные формулы используются дважды: на первом этапе проектирования - выборе готовых изделий - как ориентировочные, а на втором этапе - расчете показателей - как поверочные. Ни в том, ни в другом случае не требуется высокой точности расчета. Сначала формулы используются для прикидки, а затем для оценки запасов по режимам. Поэтому в дальнейшем выводить будем только те формулы, которые определяют поверяемые показатели режимов. Они должны быть упрощенными, с точностью не ниже 10%, что удовлетворяет целям поверки.

Режим электрических вентилей характеризуют средним прямым выпрямленным током, максимальными значениями прямого тока и обратного напряжения. Помимо этих величин для последующего теплового расчета необходимо определить и мощность, выделяющуюся в виде теплоты в вентиле, которая пропорциональна действующему значению тока, проходящему через вентиль.

Режим работы электрических конденсаторов характеризуют максимальным рабочим постоянным напряжением, которое должно быть (с определенным запасом) ниже пробивного, и значением переменной составляющей напряжения, которая должна быть меньше допустимой для данного типа конденсатора.

Для расчета трансформатора и дросселя необходимо знать напряжения на их обмотках, действующие значения токов в обмотках и постоянный ток подмагничивания.

Выпрямители

Выпрямитель - устройство, предназначенное для преобразования переменного напряжения в постоянное. Основное свойство выпрямителя - сохранение направления протекания тока при изменении полярности входного напряжения. По количеству выпрямленных полуволн выпрямители делят на однополупериодные и двухполупериодные. По числу фаз силовой сети различают однофазные, двухфазные, трехфазные и шестифазные выпрямители.

· Однофазный однополупериодный выпрямитель пропускает на вход одну полуволну питающего напряжения. Находят ограниченное применение в связи с плохим использованием трансформатора и сглаживающего фильтра.

· Однофазный мостовой выпрямитель является двухполупериодным выпрямителем. В отличие от предыдущей схемы может использоваться и без трансформатора. Из-за удвоенного количества диодов ограничено его применение при низких напряжениях. Трансформатор в такой схеме используется наиболее полно.

· Основные характеристики схем выпрямителей при работе на резистивную нагрузку

2. Принципы действия и устройство асинхронной машины. Рабочие характеристики

Асинхронный двигатель имеет неподвижную часть, именуемую статором, и вращающуюся часть, называемую ротором. В статоре размещена обмотка, создающая вращающееся магнитное поле.

Различают асинхронные двигатели с короткозамкнутым и фазным ротором.

В пазах ротора с короткозамкнутой обмоткой размещены алюминиевые или медные стержни. По торцам стержни замкнуты алюминиевыми или медными кольцами. Статор и ротор набирают из листов электротехнической стали, чтобы уменьшить потери на вихревые токи.

Фазный ротор имеет трехфазную обмотку (для трехфазного двигателя). Концы фаз соединены в общий узел, а начала выведены к трем контактным кольцам, размещенным на валу. На кольца накладывают неподвижные контактные щетки. К щеткам подключают пусковой реостат. После пуска двигателя сопротивление пускового реостата плавно уменьшают до нуля.

Принцип действия асинхронного двигателя рассмотрим на модели, представленной на рисунке 12.4.

Рис. 12.4

Вращающееся магнитное поле статора представим в виде постоянного магнита, вращающегося с синхронной частотой вращения n1.

В проводниках замкнутой обмотки ротора индуктируются токи. Полюса магнита перемещаются по часовой стрелке.

Наблюдателю, разместившемуся на вращающемся магните, кажется, что магнит неподвижен, а проводники роторной обмотки перемещаются против часовой стрелки.

Направления роторных токов, определенные по правилу правой руки, указаны на рис. 12.4.

Пользуясь правилом левой руки, найдем направление электромагнитных сил, действующих на ротор и заставляющих его вращаться. Ротор двигателя будет вращаться с частотой вращения n2 в направлении вращения поля статора.

Ротор вращается асинхронно т.е. частота вращения его n2 меньше частоты вращения поля статора n1.

Относительная разность скоростей поля статора и ротора называется скольжением.

. (12.2)

Скольжение не может быть равным нулю, так как при одинаковых скоростях поля и ротора прекратилось бы наведение токов в роторе и, следовательно, отсутствовал бы электромагнитный вращающий момент.

Вращающий электромагнитный момент уравновешивается противодействующим тормозным моментом Мэм = М2.

С увеличением нагрузки на валу двигателя тормозной момент становится больше вращающего, и скольжение увеличивается. Вследствие этого, возрастают индуктированные в роторной обмотке ЭДС и токи. Вращающий момент увеличивается и становится равным тормозному моменту. Вращающий момент может возрастать с увеличением скольжения до определенного максимального значения, после чего при дальнейшем увеличении тормозного момента вращающий момент резко уменьшается, и двигатель останавливается.

Скольжение заторможенного двигателя равно единице. Говорят, что двигатель работает в режиме короткого замыкания.

Частота вращения ненагруженного асинхронного двигателя n2 приблизительно равна синхронной частоте n1. Скольжение ненагруженного двигателя S &asimp; 0. Говорят, что двигатель работает в режиме холостого хода.

Скольжение асинхронной машины, работающей в режиме двигателя, изменяется от нуля до единицы.

Асинхронная машина может работать в режиме генератора. Для этого ее ротор необходимо вращать сторонним двигателем в направлении вращения магнитного поля статора с частотой n2 > n1. Скольжение асинхронного генератора .

Асинхронная машина может работать в режиме электромашинного тормоза. Для этого необходимо ее ротор вращать в направлении, противоположном направлению вращения магнитного поля статора.

В этом режиме S > 1. Как правило, асинхронные машины используются в режиме двигателя. Асинхронный двигатель является наиболее распространенным в промышленности типом двигателя. Частота вращения поля в асинхронном двигателе жестко связана с частотой сети f1 и числом пар полюсов статора. При частоте f1 = 50 Гц существует следующий ряд частот вращения.

P

1

2

3

4

n1, об/мин

3 000

1500

1000

750

Из формулы (12.1) получим

(12.3)

Скорость поля статора относительно ротора называется скоростью скольжения

.

Частота тока и ЭДС в роторной обмотке

,

. (12.4)

Асинхронная машина с заторможенным ротором работает как трансформатор. Основной магнитный поток индуктирует в статорной и в неподвижной роторной обмотках ЭДС Е1 и Е.

; ,

где Фm - максимальное значение основного магнитного потока, сцепленного со статорной и роторной обмотками; W1 и W2 - числа витков статорной и роторной обмоток; f1 - частота напряжения в сети; K01 и K02 - обмоточные коэффициенты статорной и роторной обмоток.

Чтобы получить более благоприятное распределение магнитной индукции в воздушном зазоре между статором и ротором, статорные и роторные обмотки не сосредоточивают в пределах одного полюса, а распределяют по окружностям статора и ротора. ЭДС распределенной обмотки меньше ЭДС сосредоточенной обмотки. Этот факт учитывается введением в формулы, определяющие величины электродвижущих сил обмоток, обмоточных коэффициентов. Величины обмоточных коэффициентов несколько меньше единицы.

ЭДС в обмотке вращающегося ротора

(12.5)

Ток ротора работающей машины

где R2 - активное сопротивление роторной обмотки;

х2 - индуктивное сопротивление роторной обмотки.

где х- индуктивное сопротивление заторможенного ротора.

(12.6)

Вращающий момент асинхронного двигателя

На ротор и полюсы статора действуют электромагнитные вращающие моменты, одинаковые по величине и направленные в противоположные стороны.

Мощность, необходимая для вращения статорных полюсов с синхронной частотой,

,

где - угловая скорость.

Механическая мощность, развиваемая ротором,

где - угловая скорость ротора.

Разность мощностей

где РЭ2 - электрические потери в роторной обмотке;

m2 - число фаз обмотки ротора;

R2 - активное сопротивление обмотки ротора;

I2 - ток ротора.

откуда

(12.7).

Вращающий момент, с учетом (12.6),

.

где , КТ - коэффициент трансформации двигателя с заторможенным ротором.

,

где U1 - напряжение сети.

(12.8).

где - константа.

На рис. 12.5 изображена зависимость электромагнитного момента от скольжения в виде сплошной линии.

Рис. 12.5

Пусть исполнительный механизм, приводимый во вращение данным двигателем, создает противодействующий тормозной момент М2.

На рис. 12.5 имеются две точки, для которых справедливо равенство Мэм = М2;

это точки а и в.

В точке а двигатель работает устойчиво. Если двигатель под влиянием какой-либо причины уменьшит частоту вращения, то скольжение его возрастет, вместе с ним возрастет вращающий момент. Благодаря этому частота вращения двигателя повысится, и вновь восстановится равновесие Мэм = М2;

В точке в работа двигателя не может быть устойчива: случайное отклонение частоты вращения приведет либо к остановке двигателя, либо к переходу его в точку а.

Следовательно, вся восходящая ветвь характеристики является областью устойчивой работы двигателя, а вся нисходящая часть - областью неустойчивой работы. Точка б, соответствующая максимальному моменту, разделяет области устойчивой и неустойчивой работы.

Максимальному значению вращающего момента соответствует критическое скольжение Sk. Скольжению S = 1 соответствует пусковой момент. Если величина противодействующего тормозного момента М2 больше пускового МП, двигатель при включении не запустится, останется неподвижным.
Максимальный момент найдем следующим образом. Сначала определим значение критического скольжения, при котором функция Мэм будет максимальной. Для этого первую производную функции по скольжению S от выражения (12.8) приравняем нулю.

откуда

. (12.9)

Подставив значение критического скольжения в формулу (12.8), получим

. (12.10)

Из формул (12.8), (12.9), (12.10) видно:

1. величина максимального вращающего момента не зависит от активного сопротивления цепи ротора;

2. с увеличением активного сопротивления цепи ротора максимальный вращающий момент, не изменяясь по величине, смещается в область больших скольжений (см. кривая 1 рис. 12,5);

3. вращающий момент пропорционален квадрату напряжения сети.

Механической характеристикой асинхронного двигателя называется зависимость частоты вращения двигателя от момента на валу n2 = f (M2). Механическую характеристику получают при условии U1 - const, f1 - const. Механическая характеристика двигателя является зависимостью вращающего момента от скольжения, построенной в другом масштабе. На рис. 12.6 изображена типичная механическая характеристика асинхронного двигателя.



Рис. 12.6

С увеличением нагрузки величина момента на валу возрастает до некоторого максимального значения, а частота вращения уменьшается. Как правило, у асинхронного двигателя пусковой момент меньше максимального. Это объясняется тем, что в пусковом режиме, когда n2 = 0, а S = 1 асинхронный двигатель находится в режиме, аналогичном короткому замыканию в трансформаторе. Магнитное поле ротора направлено встречно магнитному полю статора.

Результирующий, или основной, магнитный поток в воздушном зазоре машины в пусковом режиме, а также ЭДС в статоре и роторе Е1 и Е2 значительно уменьшаются. Это приводит к уменьшению пускового момента двигателя и к резкому возрастанию пускового тока.

Регулирование частоты вращения асинхронных двигателей. Реверсирование асинхронного двигателя

Из формулы (12.2) получим

. (12.11)

Из формулы (12.11) видно, что частоту вращения асинхронного двигателя можно менять тремя способами:

1. изменением частоты питающего напряжения;

2. изменением числа полюсов двигателя. Для этого в пазы статора закладывают обмотку, которую можно переключать на различное число полюсов;

3. изменением скольжения. Этот способ можно применить в асинхронных двигателях с фазным ротором. Для этого в цепь ротора включают регулировочный реостат. Увеличение активного сопротивления цепи ротора приводит к увеличению скольжения от Sa к Sг (см. рис. 12.5), а, следовательно, и к уменьшению частоты вращения двигателя.

Асинхронные двигатели имеют простую конструкцию и надежны в эксплуатации. Недостатком асинхронных двигателей является трудность регулирования их частоты вращения.

Чтобы реверсировать трехфазный асинхронный двигатель (изменить направление вращения двигателя на противоположное), необходимо поменять местами две фазы, то есть поменять местами два любых линейных провода, подходящих к обмотке статора двигателя.

3. Высоковольтные выключатели. Типы и устройство. Вакуумные дугогасительные камеры

(ВДК) предназначены для комплектации коммутационных аппаратов переменного тока (силовых выключателей, выключателей нагрузки, контакторов и др.), рассчитанных на напряжение от 0,4 до 35 кВ при токах отключения от 5 до 31,5 кА и номинальной силе тока от 400 до 2000 А.

Применение ВДК обеспечивает вакуумным выключателям свойства, которые выгодно отличают их от других типов аппаратов, в частности, высокую надежность и коммутационный ресурс, экологическую чистоту и минимальные эксплуатационные затраты. Последние годы ознаменовались бурным развитием вакуумной коммутационной аппаратуры, что обусловило её повсеместное внедрение в таких областях как энергетика, транспорт, горнорудное дело, нефтегазодобыча. По своим характеристикам представленные ВДК не уступают, а превосходят лучшие мировые аналоги. ВДК производятся на уникальном высокотехнологичном оборудовании со строжайшим контролем качества, что обеспечивает камерам срок службы более 30 лет.

Разработчиками камер - ГУП «Всероссийский энергетический институт» и ООО НПО «Эковакуум» (г. Москва) - накоплены многолетний опыт и традиции по созданию ВДК и коммутационных аппаратов самых разнообразных конфигураций, в зависимости от заявленных заказчиком условий эксплуатации.

Условия эксплуатации

Эксплуатация ВДК должна осуществляться только при дополнительном усилении внешней изоляции, параметры которой определяются конструкцией выключателя.

1. Применение ВДК возможно на высотах до 1000 м над уровнем моря, при рабочей температуре окружающей среды от - 60° С до +40° С (предельное значение +55° С). Эксплуатация камер при повышенных температурах окружающего воздуха (до + 75° С) допускается только при условии соответствия норм нагрева контактов требованиям ГОСТ 8024-90. ВДК рассчитаны на вибрации (при частотах до 100 Гц и ускорении 1g), а также на многократные ударные нагрузки с ускорением 15g.

2. Допускается любое положение камеры в выключателе, однако, наиболее предпочтительным считается вертикальное расположение подвижным выводом вверх.

3. Работающая камера не является источником рентгеновского излучения, поэтому не требует дополнительного экранирования. При испытании изоляции камеры напряжением более 35 Кв она становится источником мягкого рентгеновского излучения, поэтому в этом случае необходимо обеспечить защиту персонала.

4. Монтаж и эксплуатация камер и установок, на которых производятся испытания камер на соответствие электрическим параметрам, должны выполняться в соответствии с «Правилами техники безопасности при эксплуатации электроустановок потребителей» и «Правилами технической эксплуатации электроустановок потребителей». Гарантийный срок эксплуатации ВДК составляет 3 года и исчисляется со дня ввода камеры в эксплуатацию.

Принцип действия и конструкция

Принцип действия камеры основан на гашении электрической дуги переменного тока контактами, размыкаемыми в вакууме (давление окружающего контакты газа не превышает 1,2*10-3 Па). Дуга горит в парах материала и гаснет, как правило, при первом переходе тока через нулевое значение. Размыкание контактов в вакууме исключает их электрохимическое разрушение, в результате чего достигается наивысшая эрозионная стойкость контактной пары и, соответственно, максимальный коммутационный ресурс ВДК и выключателей на их основе по сравнению с выключателями других типов. Благодаря подобной конструкции отпадает необходимость в уходе за контактами в течение всего периода эксплуатации камеры.

Работа контактов в вакууме делает невозможным какое-либо загрязнение окружающей среды, процесс становится бесшумным и пожаробезопасным. Высокие изоляционные свойства вакуумного межконтактного промежутка дают возможность уменьшить ход подвижного контакта и его скорость при размыкании, что облегчает работу привода.

Камера (см. рисунок) состоит из четырехсекционного керамического корпуса, вакуумно-плотно закрытого с обоих торцов металлическими фланцами. Внутри камеры расположены контакты, припаянные к токоподводам. Один из них подвижный. При перемещении последнего герметичность камеры сохраняется благодаря наличию сильфона, вакуумно-плотно соединенного с корпусом камеры и подвижным токоподводом.

Система экранов предохраняет внутренние изоляционные поверхности от металлизации продуктами эрозии контактов. Для обеспечения соосности при перемещении подвижного контакта служит направляющая втулка. Присоединение камеры к электрической цепи осуществляется через фланец неподвижного контакта и с помощью гибкого токосъема, присоединяемого к подвижному токоподводу.

4. Эл. схемы и способы их изображения

ГОСТ 2.701-84 дает следующее определения схем.

СХЕМА СТРУКТУРНАЯ - схема, определяющая основные функциональные части изделия, их назначения и взаимосвязи;

СХЕМА ФУНКЦИОНАЛЬНАЯ - схема, разъясняющая определенные процессы, протекающие в отдельных функциональных цепях изделия или в изделии в целом;

СХЕМА ПРИНЦИПИАЛЬНАЯ (ПОЛНАЯ) - схема, определяющая полный состав элементов и связей между ними и, как правило, дающая представление о принципах работы изделия;

СХЕМА СОЕДИНЕНИЙ - схема, показывающая соединения составных частей изделия и определяющая проводы, жгуты, кабели, которыми осуществляются эти соединения, а также места их присоединения и ввода.

Схемы выполняют без соблюдения масштаба и реального пространственного расположения элементов. Но, для изображения отдельных элементов существуют УГО, размеры которых рекомендуется соблюдать. На структурных и функциональных схемах отдельные блоки и узлы изображают в виде прямоугольников. Наименование блоков вписывают в эти прямоугольники.

1. ВИДЫ И ТИПЫ

1.1. Схемы в зависимости от видов элементов и связей, входящих в состав изделия, подразделяют на следующие виды:

? электрические;

? гидравлические;

? пневматические;

? кинематические;

? оптические;

? комбинированные.

(Измененная редакция - «Информ. указатель стандартов» №12 1972 г.).

1.2. Схемы в зависимости от основного назначения подразделяют на следующие типы:

? структурные;

? функциональные;

? принципиальные (полные);

? соединений (монтажные);

? подключения;

? общие;

? расположения;

? совмещенные.

Примечания:

1. Наименования типов схем, указанные в скобках, устанавливаются для электрических схем энергетических сооружений.

2. Если в связи с особенностями изделия (установки) объем сведений, необходимых для его регулировки, контроля, ремонта и эксплуатации, не может быть передан в комплекте документации при помощи установленных типов схем, то допускается разрабатывать и другие схемы.

(Измененная редакция - «Информ. указатель стандартов №12 1972 г.).

1.3. Структурная схема-схема, определяющая основные функциональные части изделия, их назначения и взаимосвязи.

Структурные схемы разрабатываются при проектировании изделий (установок) на стадиях, предшествующих разработке схем других типов, и пользуются ими при эксплуатации для общего ознакомления с изделием (установкой).

1.4. Функциональная схема-схема, разъясняющая определенные процессы, протекающие в отдельных функциональных цепях изделия (установки) или в изделии (установке) в целом.

Функциональными схемами пользуются для изучения принципов работы изделий (установок), а также при их наладке. Регулировке, контроле и ремонте.

1.5. Принципиальная (полная) схема - схема, определяющая полный состав элементов и связей между ними, и как правило, дающая детальное представление о принципах работы изделия (установки).

Принципиальные (полные) схемы служат основанием для разработки других конструкторских документов, например. Схем соединений (монтажных) и чертежей; пользуются ими для изучения принципов работы изделий (установок), а также при их наладке, регулировке, контроле и ремонте.

Примечание. Если в состав изделия (установки) входят устройства, имеющие собственные принципиальные (полные) схемы, то такие устройства в схеме изделия (установки) следует рассматривать как элементы. В этом случае детальный принцип работы изделия (установки) определяется совокупностью его принципиальной (полной) схемы и принципиальных (полных) схем этих устройств.

1.6. Схема соединений (монтажная) - схема, показывающая соединения составных частей изделия (установки) и определяющая провода, жгуты, кабели и трубопроводы, которые осуществляются эти соединения, а также места их присоединения и ввода (зажимы, разъемы, сальники, проходные изоляторы, фланцы и т.п.)

Схема соединений (монтажными) пользуются при разработке других конструкторских документов, в первую очередь, чертежей, определяющих прокладку и способы крепления проводов, жгутов, кабелей или трубопроводов в изделии (установке), а также для осуществления присоединений и при накладке, контроле, ремонте и эксплуатации изделий (установок).

1.7. Схема подключения - схема, показывающая внешние подключения изделия.

Схемами подключения пользуются для осуществления подключений изделий и при их эксплуатации.

1.8. Общая схема - схема, определяющая составные части комплекса и соединения их между собой на месте эксплуатации.

1.9. Схема расположения - схема, определяющая относительное расположение составных частей изделия (установки), а при необходимости также проводов, жгутов, кабелей, трубопроводов и т.п. схемами расположения пользуются при разработке других конструкторских документов, а также при изготовлении и эксплуатации изделий (установок).

1.10. Наименование схемы определяется ее видом и типом (например, схема электрическая принципиальная, гидравлическая принципиальная).

Примечание. В наименованиях гидравлических и пневматических схем допускается использовать названия конкретных разновидностей таких схем (например, схема принципиальная противопожарной водяной системы, схема соединений топливная).

1.11. Для изделия, в состав которого входят элементы разных видов, разрабатывают либо несколько схем соответствующих видов одного типа (например, схема электрическая принципиальная и схема гидравлическая принципиальная), либо одну комбинированную схему, содержащую элементы и связи разных видов.

1.12. Наименование комбинированной схемы определяется ее комбинированными видами и типом (например, схема электрогидравлическая принципиальная).

1.13. На изделие (установку) допускается выполнять схему определенного вида и типа на нескольких листах или вместо выпуска одной схемы определенного вида и типа выполнять совокупность схем того же вида и типа, выпуская каждую схему самостоятельным документом.

При выпуске на изделие (установку) несколько схем определенного вида и типа в виде самостоятельных документов допускается в наименовании схемы указывать название функциональной цепи (например, схема электрическая принципиальная цепей питания).

(Измененная редакция - «Информ. указатель стандартов» №12 1972 г.).

1.14. Шифры схем, входящих в состав конструкторской документации изделий, должны состоять из букв, определяющей вид схемы, и цифры, обозначающий тип схемы.

Виды схем обозначают следующими буквами:

? электрическая - Э;

? гидравлическая - Г;

? пневматическая - П;

? кинематическая - К;

? оптическая - Л;

? комбинированная - С.

Типы схем обозначают следующими цифрами:

? структурная -1;

? функциональная - 2;

? принципиальная - 3;

? соединений - 4;

? подключений - 5;

? общая - 6;

? расположения - 7;

? прочие - 8;

? совмещенная - 0.

Например: схема гидравлическая принципиальная - Г3, схема электрическая соединений - Э4.

При выпуске на изделие несколько схем определенного вида и типа в виде самостоятельного документа каждой схеме присваивают обозначение изделия и шифр схемы. Начиная со второй схемы, к шифру схемы добавляют порядковый номер (арабскими цифрами: АБВГ.ХХХХХХ.251Э3, АБВГ.ХХХХХХ.251Э3.1, АБВГ.ХХХХХХ.Э3.2 и т.д.)

(Измененная редакция - «Информ. указатель стандартов» №12 1972 г.).

1.15. Шифр перечня элементов при выпуске его в виде самостоятельного документа должен состоять из букв П и шифра схемы. К которой выпускается перечень. Например: перечень элементов к гидравлической принципиальной схеме - ПГ3. Перечень элементов записывают в спецификацию после схемы, к которой он выпущен.

(Введен дополнительно - «Информ. указатель стандартов» №12 1972 г.).

1.16. В отдельных случаях допускается выполнять на одном графическом элементе два типа схем, выпущенных на одно изделие (установку). Наименование такого совмещенного документа должно определятся видом и совмещаемыми типами схем (например, схема электрическая принципиальная и соединений).

(Введен дополнительно - «Информ. указатель стандартов» №12 1972 г.).

2. ОБЩИЕ ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ

2.1. Схемы выполняют без соблюдения масштаба, действительное пространственное расположение составных частей изделий (установок) либо не учитывается вообще, либо учитывается приближенно.

2.2. Комплект разрабатываемых схем определяется особенностями изделия (установки). Количество схем на изделие (установку) должно быть минимальным, но в совокупности они должны содержать сведения в объеме, достаточном доя проектирования, настройки, регулировки, эксплуатации и ремонта изделия (установки).

На этапах технического предложения, эскизного и технического проектирования номенклатура схем определяется необходимостью обеспечить последующий этап проектирования достаточными исходными данными.

2.3. Схемы должны быть выполнены компактно, но без ущерба для ясности и удобства их чтения. Форматы, на которых выполняются схемы, должны быть для пользования при производстве и эксплуатации изделий (установок).

2.4. На схемах должно быть наименьшее количество изломов и пересечений линий связи. Расстояние между соседними параллельными линиями связи должно быть не менее 3 мм.

2.5. При выполнении схем выполняют следующие графические обозначения:

? условные графические обозначения, установленные стандартами Единой системы конструкторской документации;

? схематические разрезы;

? внешние очертания в том числе (аксонометрические).

Применение на схеме тех или иных видов графических обозначений определяется правилами выполнения схем.

2.6. Условные графические обозначения, стандартизированные или строящиеся на основе стандартизированных обозначений, на схемах не поясняют.

Не стандартизованные условные графические обозначения и не строящиеся на основе стандартизированных на схеме должны быть пояснены.

Схематические разрезы и внешние очертания выполняют в соответствии с конструкцией каждого элемента или устройства. Изображения должны быть упрошенными и пояснены на схемах.

2.7. Элементы, составляющие функциональные группы или устройства, допускается на схеме выделять штрих-пунктирными, тонкими линиями, указывая при этом наименование функциональной группы, а для устройства - наименование или обозначение (номер), или тип (шифр)

2.8. Элементы, составляющие устройство, имеющие самостоятельную принципиальную схему, выделяют на принципиальной схеме сплошной линией, вдвое толще линии связи.

2.9. элементы и устройства, входящие в состав изделия (установки), допускается на схеме разграничивать штрихпунктирными, тонкими линиями по постам и помещениям, указывая при этом наименование или номер постов и помещений.

2.10. Схемы всех типов допускается выполнять на планах транспортных средств, сооружений, помещений и т.п.

Схемы на планах выполняют по правилам, установленным для соответствующего типа схем.

Допускается выполнять схемы в пределах упрощенного контура конструкции изделия. В этих случаях условные контура выполняются сплошными тонкими линиями.

2.11. На схемах допускается указывать местонахождение элементов и устройств в изделии (установке).

2.12. На схеме одного вида допускается изображать отдельные элементы схем другого вида, непосредственно влияющие на работу схемы этого вида (например, на электрической схеме изображают кинематические и гидравлические элементы).

2.13. На схеме допускается изображать отдельные элементы и устройства, не входящие в изделие (установку), на которое составляется схема, но необходимые для разъяснения принципов его работы.

Графические обозначения таких элементов и устройств отделяются на схеме штрихпунктирными, тонкими линиями и указывают надписями местонахождение этих элементов, а также необходимые данные.

Если такие элементы и устройства невозможно графически выделить, то эти элементы и их связи изображают штриховыми линиями.

2.14. На схемах допускается помещать различные технические данные, характер которых определяется назначением схемы. Такие сведения указываются либо около графических обозначений (по возможности, справа или сверху), либо на свободном поле схемы (по возможности, над основной надписью). Около графических обозначений элементов и устройств, например, номинальные значения их параметров, а на свободном поле схемы - диаграммы, таблицы, текстовые указания (например, диаграммы последовательности временных процессов, таблицы замыкания контактов коммутирующих устройств, указания о специфических требованиях к монтажу и т.п.).

2.15. При выполнении схемы на нескольких листах или в виде совокупности схем одного типа рекомендуется:

для схем, используемых для пояснения принципов работы изделия (функциональная, принципиальная), - изображать на каждом листе или на каждой схеме определенную функциональную цепь (линию, тракт и т.п.).

для схем, предназначенных для показа и определение соединений (схема соединений), - изображать на каждом листе или на каждой схеме часть изделия, расположенную в определенном месте пространства (конструкция, пост, помещение и т.п.).

(Измененная редакция - «Информ. указатель стандартов» №12 1972 г.).

2.16. Линии, изображающие связи между отдельными функциональными частями изделия (установки), провода, кабели, жгуты, трубопроводы и т.п., которые должны переходить с одного листа на другой, обрывают за пределами изображения схемы.

Около места обрыва указывают обозначение, присвоенное этой линии (номер цепи, провода, трубопровода), и в скобках номер листа (при выполнении схемы на нескольких листах) или обозначение документа (при выполнении схем самостоятельными документами) на котором показывают продолжение линии.

Если на схеме таких обозначений нет, то места обрыва должны быть условно обозначены буквами или цифрами.

2.17. Между схемами одного комплекта документации должна быть установлена однозначная связь, которая обеспечила бы возможность отыскания одних и тех же элементов, устройств, связей или соединений на всех схемах данного комплекта. Например надписи, относящиеся к элементам (позиционное обеспечения, цифры), или номер цепей, проводов, трубопроводов, валов и т.п., присвоенные на одной схеме, при необходимости указания и на другой схеме данного комплекта, должны быть в точности повторены.

Условные графические обозначения радиоэлектронных элементов принципиальных схем

Полный перечень всех УГО электрических, радиоэлектронных, вычислительных, принципиальных схем составляет большой объем. Они установлены государственными стандартами от 2.701-74 до 2.766-88.

Общие требования к организации рабочих мест пользователей ПЭВМ

9.1. При размещении рабочих мест с ПЭВМ расстояние между рабочими столами с видеомониторами (в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора) должно быть не менее 2,0 м, а расстояние между боковыми поверхностями видеомониторов - не менее 1,2 м.

9.2. Рабочие места с ПЭВМ в помещениях с источниками вредных производственных факторов должны размещаться в изолированных кабинах с организованным воздухообменом.

9.3. Рабочие места с ПЭВМ при выполнении творческой работы, требующей значительного умственного напряжения или высокой концентрации внимания, рекомендуется изолировать друг от друга перегородками высотой 1,5 - 2,0 м.

9.4. Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600 - 700 мм, но не ближе 500 мм с учетом размеров алфавитно-цифровых знаков и символов.

9.5. Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности используемого оборудования с учетом его количества и конструктивных особенностей, характера выполняемой работы. При этом допускается использование рабочих столов различных конструкций, отвечающих современным требованиям эргономики. Поверхность рабочего стола должна иметь коэффициент отражения 0,5 - 0,7.

9.6. Конструкция рабочего стула (кресла) должна обеспечивать поддержание рациональной рабочей позы при работе на ПЭВМ, позволять изменять позу с целью снижения статического напряжения мышц шейно-плечевой области и спины для предупреждения развития утомления. Тип рабочего стула (кресла) следует выбирать с учетом роста пользователя, характера и продолжительности работы с ПЭВМ.

Рабочий стул (кресло) должен быть подъемно-поворотным, регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья, при этом регулировка каждого параметра должна быть независимой, легко осуществляемой и иметь надежную фиксацию. i

9.7. Поверхность сиденья, спинки и других элементов стула (кресла) должна быть полумягкой, с нескользящим, слабо электризующимся и воздухопроницаемым покрытием, обеспечивающим легкую очистку от загрязнений.

X. Требования к организации и оборудованию рабочих мест с ПЭВМ для взрослых пользователей

10.1. Высота рабочей поверхности стола для взрослых пользователей должна регулироваться в пределах 680 - 800 мм; при отсутствии такой возможности высота рабочей поверхности стола должна составлять 725 мм.

10.2. Модульными размерами рабочей поверхности стола для ПЭВМ, на основании которых должны рассчитываться конструктивные размеры, следует считать: ширину 800, 1000, 1200 и 1400 мм, глубину 800 и 1000 мм при нерегулируемой его высоте, равной 725 мм.

10.3. Рабочий стол должен иметь пространство для ног высотой не менее 600 мм, шириной - не менее 500 мм, глубиной на уровне колен - не менее 450 мм и на уровне вытянутых ног - не менее 650 мм.

10.4. Конструкция рабочего стула должна обеспечивать:

- ширину и глубину поверхности сиденья не менее 400 мм;

- поверхность сиденья с закругленным передним краем;

- регулировку высоты поверхности сиденья в пределах 400 - 550 мм и углам наклона вперед < до 15 град, и назад до 5 град.;

- высоту опорной поверхности спинки 300 +/ - 20 мм, ширину - не менее 380 мм и радиус кривизны горизонтальной плоскости - 400 мм;

- угол наклона спинки в вертикальной плоскости в пределах +/ - 30 градусов;

- регулировку расстояния спинки от переднего края сиденья в пределах 260 - 400 мм;

- стационарные или съемные подлокотники длиной не менее 250 мм и шириной - 50 - 70 мм;

- регулировку подлокотников по высоте над сиденьем в пределах 230 +/ - 30 мм и внутреннего расстояния между подлокотниками в пределах 350 - 500 мм.

10.5. Рабочее место пользователя ПЭВМ следует оборудовать подставкой для ног, имеющей ширину не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в пределах до 150 мм и по углу наклона опорной поверхности подставки до 20 град. Поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10 мм.

10.6. Клавиатуру следует располагать на поверхности стола на расстоянии 100 - 300 мм от края, обращенного к пользователю, или на специальной, регулируемой по высоте рабочей поверхности, отделенной от основной столешницы.

III. Требования к помещениям для работы с ПЭВМ

3.1. Помещения для эксплуатации ПЭВМ должны иметь естественное и искусственное освещение. Эксплуатация ПЭВМ в помещениях без естественного освещения допускается только при соответствующем обосновании и наличии положительного санитарно-эпидемиологического заключения, выданного в установленном порядке.


Подобные документы

  • Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

    учебное пособие [7,3 M], добавлен 23.12.2009

  • Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

    презентация [443,8 K], добавлен 12.01.2010

  • Понятие, назначение и классификация вторичных источников питания. Структурная и принципиальная схемы вторичного источника питания, работающего от сети постоянного тока и выдающего переменное напряжение на выходе. Расчет параметров источника питания.

    курсовая работа [7,0 M], добавлен 28.01.2014

  • Устройство асинхронной машины: статор и вращающийся ротор. Механическая характеристика асинхронного двигателя, его постоянные и переменные потери. Методы регулирования частоты вращения двигателя. Работа синхронного генератора в автономном режиме.

    презентация [9,7 M], добавлен 06.03.2015

  • Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

    презентация [4,1 M], добавлен 03.12.2015

  • Назначение, устройство и принцип действия однофазного и трёхфазного трансформаторов, коэффициент трансформации, обозначение зажимов обмоток. Устройство и принцип работы асинхронного двигателя, соединение обмоток статора. Устройство магнитных пускателей.

    шпаргалка [8,7 K], добавлен 23.10.2009

  • Понятие электрических машин, их виды и применение. Бытовая электрическая техника и оборудование предприятий. Устройство и принцип действия трёхфазного электрического двигателя, схемы соединения его обмоток. Формулы 3-х фазных ЭДС. Виды асинхронных машин.

    презентация [2,8 M], добавлен 02.02.2014

  • Принцип работы машины постоянного тока. Статистические характеристики и режимы работы двигателя независимого возбуждения. Способы регулирования скорости двигателя. Расчет параметров электрической машины. Структурная схема замещения силовой цепи.

    курсовая работа [438,8 K], добавлен 13.01.2011

  • Конструкция асинхронного электродвигателя. Асинхронные и синхронные машины. Простые модели асинхронного электропривода. Принцип получения движущегося магнитного поля. Схемы включения, характеристики и режимы работы трехфазного асинхронного двигателя.

    презентация [3,0 M], добавлен 02.07.2019

  • Понятие и назначение, сферы применения и функциональные особенности контакторов, разновидности и отличительные признаки. Конструкция контактора постоянного и переменного тока. Принцип действия данных устройств. Магнитные пускатели, неисправности, ремонт.

    презентация [475,8 K], добавлен 22.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.