Селективный фотоэффект

Фотоэффект как испускание электронов телами под действием света, физическое обоснование, принцип действия, формулировка основных законов. Зависимость фотоэффекта от длины электрического вектора. Практическое применение внешнего и внутреннего фотоэффекта.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 20.01.2010
Размер файла 46,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Среди разнообразных явлений в которых проявляется воздействие света на вещество важное место занимает фотоэлектрический эффект т.е.испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важнейшую роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы. Открытие фотоэффекта следует отнести к 1887 г.когда Герц обнаружил что освещение ультрафиолетовым светом электродов искрового промежутка находящегося под напряжением облегчает проскакивание искры между ними. Явление обнаруженное Герцем можно наблюдать на следующем легко осуществимом опыте (рис. 1.). Величина искрового промежутка подбирается таким образом, что в схеме состоящей из трансформатора Т и конденсатора С искра проскакивает с трудом (Один-два раза в минуту) Если осветить электроды сделанные из чистого цинка светом ртутной лампы , то разряд конденсатора значительно облегчается: искра начинает проскакивать довольно часто, конечно мощность трансформатора достаточно для быстрой зарядки конденсатора С. Поместив между лампой и электродами стекло мы преграждаем доступ ультрафиолетовым лучам и явление прекращается. Систематическое исследование Гальвакса, А.Г. Столетова и др. (1885 г.) выяснили что в опыте Герца дело сводится к освобождению зарядов под действием света попадая в электрическое поле между электродами, заряды эти ускоряются, ионизируют окружающий газ и вызывают разряд. А.Г. Столетов осуществил опыты по фотоэффекту применяв впервые небольшие разности потенциалов между электродами. Основными результатами исследований Столетова имеющие значение и в наше время, были следующие заключения:

1) Наиболее эффективно действует ультрафиолетовые лучи, поглощаемые телом.

2) Сила фототока пропорциональна создаваемой освещенности тела (разряжающее действие при прочих равных условиях пропорционально энергии активных лучей, падающих на разряжаемую поверхность.)

3) Под действием света освобождается отрицательные заряды.

Цинковая пластинка, соединенная с электродами и заряженная отрицательно, освещенная ультрафиолетовым светом, быстро разряжает электроскоп, таже пластинка, заряженная положительно сохраняет свой заряд, не смотря на освещение. При тщательном наблюдение электронов большой чувствительности можно заметить, что незаряженная пластинка под действием освещения заряжается положительно, т.е. теряет часть своих отрицательных зарядов, первоначально нейтрализовавших ее положительный заряд. Несколько лет спустя (1898 г.). Леонардом и Томсоном были произведены определения для освобождаемых электронов по отклонению их в электрическом и в магнитном полях. Эти измерения дали для значения 1,76СГСМ, доказав что освобожденные светом отрицательные заряды суть электронами.

Фотоэффект

Фотоэффект - испускание электронов телами под действием света, который был открыт в 1887 г. Герценом. В 1888 Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластинки последняя приобретает положительный заряд. В этом же году Столетев создал первый фотоэлемент и применил его на практике, потом он установил прямую пропорциональность силы фототока интенсивности падающего света. В 1899 Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света v0 (или максимальная длина волны y0), при которой ещё возможен фотоэффект, и если v<v0, то фотоэффект уже не происходит.

Первый закон объяснён с позиции электромагнитной теории света: чем больше интенсивность световой волны, тем большему количеству электронов будет передана достаточная для вылета из металла энергия. Другие законы фотоэффекта противоречат этой теории.

Теоретическое объяснение этих законов было дано в 1905 Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов(фотонов) с энергией hv каждый (h-постоянная Планка). При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:

Hv=A+mv2 / 2, где

mv2 -максимальная кинетическая энергия, которую может иметь электрон при вылете из металла. Она может быть определена:

mv2/2=eU 3.

U 3 - задерживающее напряжение.

В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.

Второй закон следует из уравнения: mv 2 /2=hv-A.

Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

vo=A/h yo=c/vo=ch/A.

При меньшей частоте света энергии фотона не хватает для совершения электроном работы выхода, и поэтому фотоэффект отсутствует.

Квантовая теория Эйнштейна позволила объяснить и ещё одну закономерность, установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.

С изобретением лазеров появилась возможность экспериментировать с очень интенсивными пучками света. Применяя сверхкороткие импульсы лазерного излучения, удалось наблюдать многофотонные процессы, когда электрон, прежде чем покинуть катод, претерпевал столкновение не с одним, а с несколькими фотонами. В этом случае уравнение фотоэффекта записывается: Nhv=A+mv 2 /2, чему соответствует красная граница.

Селективный фотоэффект

Для большинства чистых металлических фотокатодов сила фототока почти не зависит от характера поляризации света; лишь распределения фотоэлектронов по направлениям вылета несколько отличны при фотоэффекте, вызываемом светом, поляризованным параллельно и перпендикулярно к плоскости падения. Спектральная характеристика в видимой и ближней ультрафиолетовой областях спектра плавно поднимается с ростом частоты падающего света. В 1894 Эльстер и Гейтель, исследуя фотоэффект с поверхности сплава калия и натрия, жидкого при комнатной температуре, обнаружили две новые особенности в этом явлении. Во-первых, спектральная характеристика после подъема с уменьшением длины световой волны достигла максимума и затем спадала. Наличие наибольшей чувствительности фотокатода при некоторой длине волны получило название спектральной селективности. Во-вторых, фототок оказался существенно зависящим от поляризации падающего света. Введем следующие обозначения. Разложим электрический вектор световой волны, падающего на поверхность фотокатода под некоторым углом к ней, на две компоненты: во-первых, на электрический вектор, который колеблется в плоскости, перпендикулярной к плоскости падения; будем обозначать такой свет через ; во-вторых, на электрический вектор, который колеблется в плоскости падения и, следовательно, имеет составляющую, перпендикулярную к поверхности фотокатода; будем обозначать такой свет через .

Было показано, что при наклоном падение световой волны фототок, вызываемый светом , значительно меньше фототока, вызванного светом той же интенсивности, что и свет .Эта зависимость фотоэффекта называется поляризационной селективностью или векториальным эффектом.

На рис. 9 (а, б) показаны

Рис. 9 (а)

Зависимость фотоэффекта от длины волны электрического вектора колеблющегося в плоскости падения

Рис. 9 (б)

Зависимость фотоэффекта от длины электрического вектора колеблющегося в плоскости параллельной плоскости падения спектральные характеристики фотоэффекта для и с жидкого сплава натрия и калия. Можно видеть, что спектральная селективность обусловлена светом. Векториальный эффект существенно зависит от угла падения света. На рис. показана зависимость фототока от угла падения для света си.Следует заметить, что исследование векториального эффекта требует достаточно гладкой поверхности фотокатода, так как при наличии шероховатости поляризованный свет будет иметь различную поляризацию по отношению к плоскости падения на различно ориентированных элементах поверхности шероховатого фотокатода. Наилучшими объектами для подобных исследований являются поверхности жидких фотокатодов. Первоначальное объяснение селективного фотоэффекта связывалось с особой ориентацией атомов в фоточувствительном слое, с ионизационными потенциалами атомов этого слоя, со специальными условиями прохождения электронов сквозь потенциальный барьер на границе и др. Существенными для понимания селективного фотоэффекта оказались работы Айвса и его сотрудников. В них было учтено то очевидное теперь положение, что фототок должен быть пропорционален не количеству световой энергии, падающей на фотокатод, и не количеству ее, поглощенному во всей толще этого катода, а количеству, поглощенному в том слое его, из которого выходят фотоэлектроны. Количество поглощенной в этом слое энергии пропорционально поглощательной способности слоя для света частоты , используемой в опыте, и плотности световой энергии в этом слое (а не потоку, падающему на поверхность). Естественно поэтому, что лишь световое поле в этом тонком поверхностном слое и определяет силу фототока.

Применение

В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием - фотоэлементы. Они находят весьма широкое применение в технике и научных исследованиях. Самые разные объективные и оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотомерия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии, и т.д. трудно представить себе без применения фотоэлементов; регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используется фотоэлементы в технике: контроль и управления производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов при решении разнообразнейших вопросов в современной промышленности и связи. Огромное разнообразие задач, решаемых с помощью фотоэлементов, вызывало к жизни чрезвычайно большое разнообразие типов фотоэлементов с различными техническими характеристиками. Выбор оптимального типа фотоэлементов для решения каждой конкретной задачи основывается на знании этих характеристик. Очень важным достоинством вакуумных фотоэлементов является их высокая постоянство и линейность связи светлого потока с фототоком. Поэтому они длительное время преимущественно использовались в объективной фотометрии, спектрометрии, и спектрофотомерии и спектральным анализе в видимой и ультрафиолетовой областях спектра. Главным недостатком вакуумных фотоэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света. Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ), представляющих как бы развитие фотоэлементов. ФЭУ были впервые построены в 1934 г. Принцип действия ФЭУ можно проследить на рис. 10

Фотоэлектроны, эмитируемые с фотокатода ФК под действием электрического поля, ускоряются и попадают на первый промежуточный электрод Э1. Падая на него, фотоэлектроны вызывают эмиссию вторичных электронов, причем в определенных условиях эта вторичная эмиссия может в несколько раз превышать первоначальный поток фотоэлектронов. Конфигурация электродов такова, что большинство фотоэлектронов попадает на электрод Э1, а большинство вторичных электронов попадает на следующий электрод Э2, где процесс умножения повторяется, и т.д. Вторичные электроны с последнего из электродов(динодов), а их бывает до 10-15, собираются на анод. Общий коэффициент усиления таких систем достигает 107 108, а интегральная чувствительность ФЭУ достигает тысяч ампер на люмен. Это, конечно, не означает возможности получения больших токов, а свидетельствует лишь о возможности измерения малых световых потоков. Очевидно, те же технические характеристики, что и у вакуумных фотоэлементов, а также коэффициент усиления и его зависимость от питающего напряжения полностью характеризуют ФЭУ.

В настоящее время последние повсеместно вытесняют вакуумные фотоэлементы. К недостаткам ФЭУ следует отнести необходимость применения источника высоковольтного и стабилизированного питания, несколько худшую стабильность чувствительности и большие шумы. Однако путем применения охлаждения фотокатодов и измерения не выходного тока, а числа импульсов, из которых каждый соответствует одному фотоэлектрону, эти недостатки могут быть в значительной степени подавлены. Большим преимуществом всех приемников света, использующих внешний фотоэффект, является то обстоятельство, что их фототок не изменяется при изменении нагрузки. Это означает, что при малых значениях фототока можно применить практически сколь угодно большое сопротивление нагрузки и тем самым достичь значения падения напряжения на нем, достаточно удобного для регистрации и усиления. С другой стороны, заменяя сопротивление на емкость, можно измеряя напряжение на этой емкости, получать величину, пропорциональную усредненной величине светового потока за заданный интервал времени. Последние чрезвычайно важно в тех случаях, когда необходимо и измерить световой поток от нестабильного источника света - ситуация, типичная для спектроаналитических измерений.

Список литературы

1. Г.Я. Мякишев Б.Б. Буховцев физика-10

2. Н.М. Шахмаев С.Н. Шахмаев Д.Ш. Шодиев физика-11

3. Краткий справочник школьника 5-11

4. Э.В. Шпольский атомная физика


Подобные документы

  • Фотоэффект - испускание электронов телами под действием света. Первый, второй и третий закононы фотоэффекта. Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов.

    реферат [4,7 K], добавлен 10.05.2004

  • Три основных вида фотоэффектов. Фотоэффект - испускание электронов телами под действием света, который был открыт в 1887 году Герценом. Промышленное производство солнечных батарей на гетероструктурах. Практическое применение явления фотоэффекта.

    практическая работа [267,0 K], добавлен 15.05.2009

  • Открытие внешнего фотоэффекта немецким физиком Генрихом Герцем. Вывод уравнения фотоэффекта Эйнштейном. Корпускулярные свойства света. Внутренний, внешний и вентильный фотоэффект. Применение фотоэффекта в медицине. Внутренний фотоэффект в полупроводниках.

    реферат [34,4 K], добавлен 29.10.2011

  • Теория фотоэффекта. Спектральные характеристики фотокатода. Работа выхода. Распределение электронов в металле. Селективный фотоэффект. Квантомеханическая теория фотоэффекта. Применение. Основные закономерности фотоэффекта.

    реферат [217,0 K], добавлен 17.02.2003

  • Виды фотоэлектрического эффекта. Внутренний и вентильный фотоэффект. Вольт-амперная его характеристика. Закон Столетова. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света. Масса и импульс фотона.

    реферат [53,2 K], добавлен 24.06.2015

  • Виды фотоэффектов: внешний, внутренний, фотогальванический и в газообразной среде. Зависимость вольт-амперных характеристик внешнего фотоэффекта от интенсивности и частоты света. Гипотеза М. Планка о квантах и кватновая теория фотоэффекта Эйнштейна.

    презентация [1,4 M], добавлен 25.07.2015

  • Понятие фотоэффекта, его сущность и особенности, история открытия и изучения, современные знания. Законы Столетова, их значение в раскрытии свойств данного явления. Объяснение законов фотоэффекта с помощью квантовой теории света, уравнения Эйнштейна.

    реферат [227,6 K], добавлен 01.05.2009

  • Макс Планк как основоположник квантовой физики. Исследование фотоэффекта Столетовым. Максимальная кинетическая энергия фотоэлектронов. Определение массы фотона. Применение явления фотоэффекта в автоматизации станков на заводах, солнечных батареях.

    презентация [159,8 K], добавлен 02.04.2012

  • История открытия фотоэффекта. Схема установки, задачи и выводы Столетова. Основные законы, красная граница, применение фотоэффекта. Вакуумный фотоэлемент, фоторезисторы, вентильные фотоэлементы. Источники для бытовых и производственных нужд.

    презентация [1,4 M], добавлен 10.05.2011

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.