Розрахунок джерела живлення

Аналіз рівня якості і конкурентоспроможності радіопередавача декаметрового діапазону хвиль. Особливості розрахунків собівартості виробництва, доцільності виробництва, ціни виробу. Розробка джерела неперервного живлення, визначення оцінки рівня якості.

Рубрика Физика и энергетика
Вид курсовая работа
Язык украинский
Дата добавления 18.01.2010
Размер файла 397,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вступ

В даний час спостерігається збільшення потреби у високошвидкісних центрах обробки даних, системах телекомунікаційного зв'язку в реальному масштабі часу і застосуванні систем з безперервним автоматичним технологічним процесом. Зростання потреби в такому устаткуванні поряд із забезпеченням великою кількістю різноманітних можливостей висуває вимоги до їхніх джерел електроживлення.

Незважаючи на те, що при генерації електроенергії сигнал має чудову форму, у той момент, коли електроживлення досягає споживача, його якість далека від ідеального. Більшість типів перекручувань неприпустимі, наприклад, значні провали напруги і коливання частоти, що можуть призвести до непоправних втрат, викликаних ушкодженням устаткування в сполученні c неможливістю його подальшого використання по призначенню. Звичайно ж фінансові наслідки цього можуть бути просто страшними, впливаючи не тільки на поточну роботу, але, що є серйознішим, і на розвиток бізнесу в майбутньому.

При проектуванні радіоелектронної апаратури, одним з основних критеріїв економічності є зниження споживаної пристроєм потужності (зокрема, застосування нових технологій дозволило скоротити на кілька порядків споживання енергії побутовою апаратурою в порівнянні навіть з десятком років тому).

За минулі більш ніж 100 років від моменту появи першого електронного пристрою (радіо А.С.Попова) до наших днів змінилось кілька поколінь електронних пристроїв, що мають принципові відмінності по функціональних можливостях, типу застосовуваної елементної бази, конструктивно-технічному рішенню і т.д. Це рівною мірою відноситься до радіоелектронної апаратури побутового призначення, так і системам керування складними технічними об'єктами, такими як повітряні лайнери, космічні апарати та ін. Однак кожен вид електронних засобів, будь це комп'ютер, схема керування роботою системи життєзабезпечення, програвач компакт дисків чи радіолокаційна станція, всі вони мають пристрій, який забезпечує електроживленням всіх елементів (електронних ламп, транзисторів, мікросхем) пристроїв, які входять до тієї чи іншої системи. Отже, наявність джерела живлення в будь-якому пристрої - річ цілком очевидна і вимоги до нього досить великі, адже від його якісної роботи залежить робота пристрою в цілому. Особливу увагу на живлення стали звертати при побудові складних цифрових пристроїв (персональний комп'ютер чи будь-яка інша мікропроцесорна техніки), де виникла потреба забезпечення цих пристроїв безперервним і найголовніше - якісним живленням. Зникнення напруги для пристроїв цього класу може бути фатальним: медичні системи життєзабезпечення потребують постійної роботи комплексу пристроїв, отже вимоги до їх живлення дуже суворі; системи банківського захисту і охоронні системи; системи зв'язку і передачі інформації.

При створенні електронного пристрою окремого класу і призначення (електронно-обчислювальні машини, медична і побутова електронна техніка, засоби автоматизації) джерела системи забезпечення гарантованого живлення можуть бути підібрані з тих, які серійно випускаються промисловістю. У деяких країнах існують фірми, що спеціалізуються на промисловому випуску джерел неперервного живлення, і споживач має можливість вибрати той, котрий йому найбільше задовольняє його потребам. Однак, якщо в експлуатаційному, конструкторському чи іншому розуміннях джерела неперервного живлення, що випускаються серійно, не задовольняють потреб споживача, необхідно розробити новий, з урахуванням усіх правил і обмежень, специфічних для цього виду.

Темою даного проекту є розробка джерела неперервного живлення, яке було б універсальним. Універсальність його полягає в тому, що воно могло би використовуватись в будь-якій апаратурі потужністю до 600 Вт, починаючи з персонального комп'ютера і закінчуючи медичною апаратурою. Причина побудови джерела - це можливість його використання в будь-якій апаратурі, для якої є важливим фактором мати саме синусоїдальну напругу - напругу, яка б при роботі джерела від мережі чи від внутрішніх батарей немала провалів напруги при переході з одного виду роботи на інший.

1. Загальнотехнічний розділ

1.1 Аналіз ТЗ

Виходячи з призначення проектованого пристрою і специфіки області його застосування розглянемо основні критерії, згідно яким буде вестися подальша розробка.

Отже, до основних критеріїв розробки джерела неперервного живлення варто віднести надійність і стійкість до зовнішніх впливів (зокрема до вібраційних і ударних навантажень).

Для підвищення надійності блоку, при його проектуванні, пропонується: - забезпечити легкі електричні, теплові робочі режими детелей та матеріалів конструкції, їх правильний вибір;

- забезпечити надійний захист від зовнішніх та внутрішніх дестабілізуючих факторів;

- широко використовувати ІМС, а також стандартні компоненти;

- забезпечити ремонтоздатність виробу, використавши функціонально-вузловий метод конструювання.

На ранній стадії процес проектування заключатися в постійній реорганізації системи з підбором технології електроживлення. Перерахуємо фактори, що впливають на цей етап:

- вартість;

- маса та розміри;

- коефіцієнт корисної дії блока живлення;

- вхідна напруга;

- термін дії акумуляторної батареї;

- необхідна якість вихідної напруги;

- час, необхідний для виходу продукції на ринок.

З метою забезпечення естетичних та ергономічних показників пропонується використовувати сучасний дизайн.

Для забезпечення заданих кліматичних та механічних вимог пропонується використати елементну базку та матеріали, враховуючи граничні зовнішні впливи, забезпечити при конструюванні та проектуванні їх захист від зовнішніх впливів, які негативно впливають на працездатність виробу.

1.2 Огляд аналогів виробу

Одним із аналогів нашого виробу є ДНЖ PW5125RM та PW5115RM виробництва фірми Powerware. Віни також призначені для кріплення в серверну стійку та мають вихідну потужність 1000ВА.

Дані ДНЖ мають хороші параметри та високу ціну. Тому виникає необхідність у дешевих і надійних ДНЖ. В дипломному проекті проведено розробку саму такого пристрою.

1.3 Опис структурної схеми ДНЖ

1.3.1 Огляд і аналіз структурних схем джерел

неперервного живлення

Джерело неперервного живлення - автоматичний пристрій, що забезпечує нормальне живлення навантаження при повному зникненні струму з зовнішньої електромережі в результаті аварії або неприпустимо високому відхиленні параметрів напруги в мережі від номінальних значень і використовує для аварійного живлення навантаження енергію акумуляторних батарей.

Розглянемо основні типів побудови структурних схем ДНЖ:

1. ДНЖ резервного типу.

2. Лінійно-інтерактивне ДНЖ.

3. ДНЖ з подвійним перетворенням енергії.

1.3.1.1 ДНЖ резервного типу (Off-Line або standby)

Джерело неперервного живлення, виконане за схемою з комутуючим пристроєм, що у нормальному режимі роботи забезпечує підключення навантаження безпосередньо до зовнішньої електромережі, а в аварійному переводить її на живлення від акумуляторних батарей. Перевагою ДНЖ резервного типу є його простота і невисока вартість, а недоліком - ненульовий час перемикання (~4 мс) на живлення від акумуляторів та більш інтенсивна їхня експлуатація, тому що джерело переводиться в аварійний режим при будь-яких несправностях в електромережі.

ДНЖ резервного типу, як правило, мають невелику потужність і застосовуються для забезпечення гарантованого електроживлення окремих пристроїв (персональних комп'ютерів, робочих станцій, офісного устаткування) у регіонах з гарною якістю електричної мережі.

1.3.1.2 Лінійно-інтерактивне ДНЖ (Line-Interactive)

Джерело неперервного живлення виконано за схемою з комутуючим пристроєм (Off-Line), яка доповнена стабілізатором вхідної напруги на основі автотрансформатора з перемикаючими обмотками.

Основна перевага лінійно-інтерактивного ДНЖ у порівнянні із джерелом резервного типу полягає в тому, що воно здатне забезпечити нормальне живлення навантаження при підвищеній або зниженій напрузі електромережі (найпоширеніший вид несправностей у вітчизняних лініях електропостачання) без переходу в аварійний режим. У підсумку продовжується термін служби акумуляторних батарей. Недоліком лінійно-інтерактивної схеми є ненульовий час перемикання (~4 мс) навантаження на живлення від батарей.

По ефективності лінійно-інтерактивні ДНЖ займають проміжне положення між простими й відносно дешевими резервними джерелами (Off-Line) і високоефективними, але і дорожчими джерелами із подвійним перетворенням енергії (On-Line). Як правило, лінійно-інтерактивні ДНЖ застосовують для забезпечення гарантованого живлення персональних комп'ютерів, робочих станцій, файлових серверів, вузлів локальних обчислювальних мереж й офісного встаткування. Автоматичний регулятор напруги, побудований на основі автотрансформатора з перемикаючими обмотками. Застосовується в ДНЖ, зібраних за лінійно-інтерактивною схемою, для ступінчатого коректування вхідної напруги убік його підвищення. Число обмоток регулятора визначає діапазон вхідних напруг, при яких ДНЖ забезпечує нормальне живлення навантаження без переходу в аварійний режим роботи. В ДНЖ такої структури всередньому такий діапазон припустимої зміни вхідної напруги становить від -20% до +20% від номінального значення 220.

1.3.1.3 ДНЖ з подвійним перетворенням енергії (On-Line)

Джерело неперервного живлення, в якому вхідна змінна напруга спочатку перетворюється випрямлячем у постійну, а потім за допомогою інвертора знову в змінну, - є джерелом з подвійним перетворенням енергії (On-Line). Акумуляторна батарея постійно підключена до виходу випрямляча і входу інвертора і живить останній в аварійному режимі.

Така схема побудови ДНЖ дозволяє забезпечити практично ідеальне живлення навантаження при будь-яких неcправностях у мережі (включаючи фільтрацію високовольтних імпульсів та електромагнітних завад) і характеризується нульовим часом перемикання в аварійний режим без виникнення перехідних процесів на виході пристрою.

До недоліків схеми з подвійним перетворенням енергії варто віднести її порівняльно велику складність, більш високу вартість.

ДНЖ типу On-Line застосовують у тих випадках, коли за тих або інших обставин потрібні підвищені вимоги до якості електроживлення навантаження, якими можуть бути вузли локальних обчислювальних мереж (мережне устаткування, файлові сервери, робочі станції, персональні комп'ютери), устаткування обчислювальних залів, системи керування технологічним процесом.

За схемою з подвійним перетворенням (On-Line) побудовані, наприклад, моделі PW5125RM компанії Powerware. Вони оснащені плавним стабілізатором вхідної напруги, завдяки якому діапазон припустимих значень вхідної напруги, при яких джерело не переходить на живлення від батарей, становить 166 ... 276В.

В таких схемах присутній режим Bypass, живлення навантаження відфільтрованою напругою електромережі в обхід основної схеми ДНЖ. Перемикання в режим Bypass, який підтримується внутрішньою схемою ДНЖ або спеціальним зовнішнім модулем, може виконуватися автоматично або вручну. ДНЖ, що має відповідну вбудовану схему, автоматично переходить у режим Bypass по команді пристрою керування при перевантаженні вихідних ланцюгів або при виявленні несправності в важливих вузлах. У такий спосіб навантаження захищається не тільки від збоїв у живильній електромережі, але й від неполадок у самому ДНЖ. Можливість ручного включення режиму Bypass передбачається на випадок проведення профілактичного обслуговування ДНЖ або заміни його вузлів без відключення навантаження.

Оскільки, як видно з вище сказаного, схема типу Off-Line є найбільш простою та дешевою, тому і розроблюваний у даному дипломному проекті пристрій забезпечення неперервного живлення теж побудований за цим принципом. Проте, вдосконалення функціональної схеми та характеристик дозволить мати більш затребуваний та конкурентно-спроможний виріб з кращими параметрами експлуатації і меншою ціною, ніж аналоги.

1.3.2 Опис схеми електричної структурної проектованого ДНЖ

Структурна схема джерела неперервного живлення представлена в графічній частині на аркуші ЗРК22.430127.001 Э1.

Побудова систем неперервного живлення залежить від задач, які вона вирішує. В деяких випадках необхідний якнайменший час переключення навантаження на живлення від АБ чи навпаки. В інших потрібно забезпечити довготривалу роботу від АБ, при цьому час переключення не являється критичною величиною. Тобто, можна сказати, що для кожного конкретного випадку потрібно вирішувати іншу технічну задачу.

Розроблюваний блок для забезпечення безперервного живлення різноманітних пристроїв (серверів, персональних комп'ютерів, модемів та ін.) стабілізованою напругою 220В, 50Гц.

Система призначена для живлення пристроїв, що мають імпульсні джерела живлення. Це дозволяє зменшити вимоги щодо розробки нашого приладу, так як імпульсні джерела живлення здатні працювати в мережі ± 20% від нормального значення. Ще однією перевагою є здатність їх працювати від мережі, що мають не синусоїдальну характеристику напруги (апроксимована синусоїда, квазі синусоїда).

Розглянемо основні блоки, що входять до складу пристрою:

1. Пристрій комутацій.

2. Мережевий фільтр.

3. Зарядний пристрій.

4. Акумуляторна батарея.

5. Перетворювач постійної напруги в постійну.

6. Стабілізатор постійної напруги.

7. Перетворювач постійної напруги в змінну.

8. Пристрій комутацій байпас.

9. Датчик струму.

10. Вихідний фільтр.

11. Датчик температури.

12. Інтерфейс.

13. Пристрій індикації.

14. Пристрій керування роботою ДНЖ.

Для забезпечення роботи та функціонування всіх частин ДНЖ, необхідна ланка, котра здійснювала б зв'язок між всіма цими частинами. Можна розглянути декілька видів таких схем :

1. Аналогові системи, операції регулювання в яких здійснюються шляхом порівняння, підсилення, перетворення аналогових сигналів. Похибка установки параметрів в такій системі сильно залежить від параметрів активних і пасивних елементів схеми. Такі системи використовуються, в основному в недорогих пристроях.

2. Цифрові системи, операції керування проводяться над цифровими величинами, отриманими із аналогових сигналів шляхом оцифровування аналого-цифровими перетворювачами (АЦП). Точність таких систем набагато вища за рахунок використання математичного апарату числення.

3. Комбіновані, операції керування та регулювання в яких виконуються або аналоговими, або цифровими пристроями.

В нашому випадку система керування роботою ДНЖ побудована на мікроконтролері ATTiny26. Він представляє собою високопродуктивний контролер з функціями багатоканального аналого-цифрового перетворювача. Ввід та вивід інформації в МК може здійснюватись як в аналоговому так і в цифровому вигляді. Використовування новітніх розробок, що містять в своєму складі МК, дозволяє набагато спростити схему. Мікроконтролер управляє роботою як схеми управління так і роботою всього пристрою.

Схема управління здійснює підключення ДНЖ до мережі, подаючи відповідну команду включення на пристрій комутацій, здійснює управління переключенням навантаження на живлення від мережі чи від АБ, слідкує за напругою на АБ. Якщо напруга на АБ стає меншою за 10,5В, то здійснюється аварійне відключення ДНЖ. Аварійне відключення здійснюється також, коли температура навколишнього середовища виходить за межі допустимої. Для вимірювання температури використовується датчик температури. На пристрій управління роботою ДНЖ поступає інформацію величини напруги в мережі. Обробляючи цю інформацію МК виробляє відповідні сигнали управління для інших вузлів, складових блоку.

Для вимірювання вихідної потужності використовується датчик струму. Якщо через датчик протікає струм більший допустимого, то схема управління відключає навантаження. Це забезпечує захист від виходу з ладу пристрою перетворення постійної напруги в змінну.

Особливо велике значення в ДНЖ має наявність зв'язку з ПК. Це дозволяє оператору (адміністратору) слідкувати за станом мережі, АБ та всієї роботи ДНЖ. В даному випадку використовується стандартний інтерфейс зв'язку МК та ПК - RS-232. Це дозволяє здійснювати дистанційний моніторинг ДНЖ та безпечне завершення роботи ПК при аварії чи довготривалій відсутності напруги в мережі.

Вхідна напруга 220В, 50Гц поступає через пристрій комутацій та мережевий фільтр на зарядний пристрій та пристрій комутації байпас.

Мережевий фільтр призначений для запобіганню попаданню завад, що виникають при роботі ДНЖ в мережу, тобто захисту споживачів від електромагнітних завад.

Зарядний пристрій забезпечує зарядку АБ при наявності напруги мережі, тобто при нормальній роботі ДНЖ, забезпечуючи тим самим постійну готовність до роботи ДНЖ в автономному режимі. Пристрій перетворює напругу мережі у стабілізовану постійну напругу. Величина напруги заряду постійно контролюється МК. Це тим самим дозволяє правильно експлуатувати батареї. Досить велика вихідна потужність зарядного пристрою дає плюс при роботі ДНЖ з значно заниженою вхідною напругою пристрою, що знаходиться в діапазоні від 90В до 185В. При такій вхідній напрузі частина вихідної потужності джерела забезпечується роботою зарядного пристрою, що набагато подовжує роботу навантаження під час несправностей в мережі.

Перетворювач постійної напруги в постійну виконує роль перетворювача постійної напруги 120В в постійну 200В. Даний пристрій побудований по схемі імпульсного перетворювача з ШІМ. Напруга на його виході постійна, але не стабілізована, тобто залежить від зміни вхідної напруги. Для стабілізації використовується стабілізатор постійної напруги. Стабілізатор побудований по схемі однотактного імпульсного підвищуючого стабілізатора. Напруга на акумуляторі змінюється в межах 10,5...13,8В, а вихідна ДНЖ повинна залишатись стабільною.

Перетворювач постійної напруги в змінну здійснює формування вихідної стабілізованої напруги 220В, 50Гц. Управління та синхронізацію даного пристрою з мережею здійснює пристрій керування ДНЖ.

Вихідний фільтр служить фільтрації електромагнітних завад та запобіганню їх попаданню навантаження.

Алгоритм роботи ДНЖ приведений в графічній частині проекту.

1.4 Опис схеми електричної принципової

Схема електрична принципова представлена в графічній частині дипломного проекту на аркуші ЗРК22.430127.001Э3.

Відповідно до структурної схеми, джерело неперервного живлення складається з кількох функціональних вузлів. Розглянемо кожен з них окремо.

1.4.1 Зарядний пристрій

Зарядний пристрій побудований по однотактній зворотньоходовій схемі перетворення енергії.

Принцип роботи ЗП полягає в наступному: на діодний міст VD1 подається змінна напруга мережі 220В. Після VD1 на згладжуючому конденсаторі С4 маємо постійну напругу 306В. Початковий запуск роботи IMS DA2 відбувається через резистор R24. Далі при нормальному режимі роботи DA2 живиться від додаткової обмотки w3 трансформатора Т2. Напруга, знята з W3, випрямляється діодом VD8 та згладжується ємнісним фільтром, який побудований на конденсаторах С21, С22. Величина напруги живлення IMS складає 12В.

Після подачі живлення на 8 виводі DA2 встановлюється опорна напруга 5В. На вхід тактового генератора через інтегруючу ланку R5C12 подається сигнал 5В.

На 6 виводі DA2 встановлюється високий потенціал (12В), який через резисторний дільник R15R18 поступає на затвор польового транзистора VT1. Транзистор VT1 включається, коли потенціал між затвором і витоком складає більше 4В. При включенні VT1 через обмотку W2, транзистор VT1, резистор R22 починає протікати струм. Резистор R22 являється вимірювальним резистором. З його виводів знімаємо сигнал про величину струму, що протікає через транзистор і первинну обмотку трансформатора Т2. Цей сигнал поступає через R16 на вхід DA2. Даний вхід являється прямим входом внутрішнього компаратора по струму. На вхід 1 DA2 подається сигнал зворотного зв'язку по напрузі. Цей сигнал подається на інвертуючий вхід від компаратора по струму. При досягненні порогового рівня на вході компаратора виробляється сигнал на виключення вхідного транзистора.

Струм через первинну обмотку Т2 наростає лінійно, але при включенні і виключенні транзистора виникають викиди струму. Ці викиди можуть призводити до самовільного включення і виключення ІМС. Для запобігання цьому явищу в схемі сенсору струму ставиться RC фільтр [6].

Після включення транзистора починається етап передачі енергії, яка накопичена в трансформаторі, в навантаження. Напруга, знята з обмотки W1, Т2 випрямляється діодом VD11 та фільтрується ємнісним фільтром С29, С33.

Схема стабілізації вихідної напруги побудована на управляючому стабілітроні VD12-TL431.

Резистори R53, R54, R55 утворюють резисторний дільник, величиною опорів якого, в загальному, виставляється значення вихідної напруги зарядного присторою. Резистор R49 є струмообмежуючим резистором для стабілітрона VD12 та оптрона U1.2.

1.4.2 Перетворювач постійної напруги в постійну

Даний вузол призначений для перетворення постійної напруги 12В у постійну напругу 300В. Вихідна напруга даного перетворювача є нестабілізованою, при Uвх=13,8В, Uвих=300В при Uвх=10,5В, Uвих=225В.

Тому для нормальної роботи ДНЖ потрібна падальна стабілізація Uвих.

Даний перетворювач побудований на мікросхемі SG3525А.

З виходів мікросхеми (виводи 14 та 11) прямокутні імпульси поступають на трансформатор Т1. На вторинних обмотках трансформатора імпульси будуть двохполярні з скважністю 0,9.

Резисторно - конденсаторні ланки С25R33 та С26R34 призначені для того, щоб збити амплітуду викидів при переключеннях.

Сам перетворювач побудований по схемі з плаваючою середньою точкою. Пари силових транзисторів VT4, VT5 та VT6, VT7 включаються по черзі з щілинністю майже 0,5. Такий режим вибраний з метою зменшення викидів при переключенні, та отриманню симетрії в кожен період переключення. З вторинної обмотки прямі імпульси випрямляються діодними мостом VD19, VD20, VD21, VD22 та згладжується фільтром С1L1, С2С6, С3С7. З вторинної обмотки Т3 також беруться додаткові напруги живлення 9В та 18В, гальванічно розв'язані між собою. Стабілізація цих напруг проводиться стабілітроном VD25 VD26 VD27 VD28.

Мікросхема DA1 включена по типовій схемі включення. Ланкою С5,R1 визначається вихідна частота. Живлення вихідних каскадів ІМС проводиться через R19, С9, С11 призначені для фільтрації напруги живлення ІМС. Дистанційне керування роботою перетворювача проводиться через 10 вивід DA1 від мікроконтроллера.

1.4.3 Стабілізатор напруги 300В

Даний стабілізатор побудований по схемі однотактового підвищуючого перетворювача. Схема побудована на ІМС UC3842. Принцип роботи полягає в наступному: при подачі живлення на DA4 на її вихід (вивід 6) подається імпульс амплітудою 9В, який через дільник R27R35 поступає на затвор VT2 і відкриває його. Коли транзистор відкритий - через L2 VT2 R42 протікає струм. Індуктивність L2 накопичує енергію. При досягненні певного рівня сигналу, що знімається з вимірювального резистору R42, на виході DA4 з'являється логічний нуль. Наступний імпульс з'явиться при новому циклі тактового генератора. Зворотній зв'язок по напрузі здійснюється через резисторну ланку R11, R13, R17.

Оскільки для утворення спільної точки з напругою мережі утворено ємнісний дільник С2С6, С3С7 то вузол на DA4 стабілізує додатню півхвилю вихідної напруги, а вузол на DA5 - від'ємну.

Елементи схеми підібрані таким чином, що вхідній напрузі 300В на виході теж 300В, тобто стабілізація не потрібна. По мірі зменшення напруги на акумуляторі, на виході перетворювача постійної напруги в постійну також напруга буде зменшуватись, а вузол стабілізації її буде стабілізувати до 300В. Оскільки заземлені виводи DA5 підключені до мінусової напруги, яку потрібно стабілізувати, а стабілізацію потрібно здійснювати відносно нульової шини, то тут використовується ще додатковий вузол на DA3.

1.4.4 Вихідний інвертор

Вихідний інвертор побудований по півмостовій схемі. Навантаження підключається до середньої точки конденсаторного дільника C2 C6, C3 C7 та виходу інвертора (колектор VT13).

Ключовими елементами каскаду є силові транзистори VT12, VT13. Керування роботою здійснюється за допомогою мікроконтроллера.

Даний вузол забезпечує дуже хороше наближення напруги до синусоїдальної. Це дозволило виконати два силових ключа VT12, VT13 на біполярних транзисторах з ізольованим затвором (IGBT), котрі працюють в лінійному режимі. Їх почерговим відкриттям керують прямокутні імпульси, що поступають в протифазі від контролеру DА1. Ці імпульси проходять ланки, що формують з них сигнал, який подібний по формі до півперіода синусоїди, і подаються на затвори VT12, VT13.

Індуктивність L5 забезпечує згладжування фронтів вихідних імпульсів з інвертора.

1.4.5 Схема байпасу

Схема байпасу призначена для швидкого перемикання навантаження на роботу від мережі або на роботу від акумуляторної батареї. Перемикання здійснюється за допомогою реле K1, яке керується мікроконтролером. Конденсатори C54, C55 служать запобіганню виникнення іскри і підгорянню контактів реле при переключеннях.

Для забезпечення кращої форми вихідної напруги та запобіганню попадання електромагнітних завад від ДНЖ в навантаження служить фільтр C57, L8, C60.

1.4.6 Вузол керування

Вузол керування роботою ДНЖ виконаний на мікроконтролері DD1-ATTiny 261.

Для синхронізації роботи ДНЖ з мережею використовується вимірювальний трансформатор T4, вихідний сигнал з якого випрямляється та подається на входи АЦП мікроконтролера. Для вимірювання струму який споживається навантаженням використовується трансформатор струму T5. Його вихідний сигнал випрямляється і подається на вхід АЦП мікроконтролера. Загальний алгоритм роботи МК вписується в алгоритм роботи всього ДНЖ.

Після включення вмикача SA1 („Вкл.”) на вхід DA6 поступає постійна напруга з акумулятора. DA6 формує на виході +5В, необхідних для живлення мікроконтролера.

Мікроконтролер, після подачі на нього живлення, починає проводити вимірювання напруги акумуляторної батареї, а також вмикає реле K2, тим самим під'єднавши ДНЖ до мережі. Далі МК вимірює напругу мережі. Якщо напруга мережі не в межах норми, то МК дає команду на перемикання на роботу від акумулятора. Коли ж ні напруга акумулятора, ні напруга мережі не відповідає нормам, то МК здійснює повне відключення навантаження від мережі.

При нормальному функціонуванні від мережі МК постійно слідкує за мережею і підганяє фазу вихідного сигналу від інвертора до фази сигналу з мережі. Це потрібно для того, щоб у разі зникнення напруги мережі переключення на роботу від АБ пройшло з найменшими втратами.

Відповідно при відновленні напруги в мережі, МК спочатку робить підгонку фази вихідного сигналу з інвертора до сигналу з мережі, а тільки потім відбувається переключення на роботу від мережі.

Для запобігання попадання завад з ДНЖ у мережу поставлений мережевий фільтр C54, C55, C56, L6, C58.

Зв'язок мікроконтролера з ПК здійснюється через стандартний інтерфейс RS-232 (Com port). Інтерфейс виконаний з оптоізоляцією, що збільшує електробезпеку при роботі з ДНЖ.

Для індикації режимів роботи ДНЖ використовується індикатори HL1 - „Мережа”, HL2 - „~220В”, HL3 - „АБ ?10.5В”.

1.5 Обґрунтування вибору елементів схеми

Джерело безперервного живлення повинне забезпечувати цілодобову роботу будь-якого пристрою, що підключений до нього, із збереженням вихідних параметрів, тому до нього висуваються жорсткі вимоги, як до конструкції так і до вибору елементів схеми.

Умовно елементи схем можна поділити на елементи загального застосування і спеціальні.

Елементи загального застосування є виробами масового виробництва, тому вони піддалися досить широкій стандартизації. Стандартами і нормами встановлені техніко-економічні і якісні показники, параметри і розміри. Такі елементи називають типовими. Вибір типових елементів проводиться по параметрах і характеристикам, що описують їх властивості як при нормальних умовах експлуатації, так і при різних впливах (кліматичних, механічних і ін.).

Основними електричними параметрами є: номінальне значення величини, характерної для даного елемента (опір резисторів, ємність конденсаторів, індуктивність котушок і т.інш.) і межі припустимих відхилень; параметри, що характеризують електричну міцність і здатність довгостроково витримувати електричне навантаження; параметри, що характеризують втрати, стабільність і надійність.

Основними вимогами, якими потрібно керувати при проектуванні радіоелектронної апаратури, є вимоги по найменшій вартості виробу, його високій надійності і мінімальним масогабаритним показникам. Крім того, при проектуванні важливо збільшувати коефіцієнт повторюваності електрорадіоелементів. Виходячи з перерахованих вище критеріїв зробимо вибір елементної бази приладу.

1.5.1 Вибір резисторів
При виборі резисторів перш за все звертаємо увагу на їх габарити, вартість та надійність, що зумовлена напрацюванням на відмову. Виходячи з того, що сучасні інтегральні технології дуже просунулися, порівняно з минулими роками, ми маємо резистори, які характеризуються: високою надійністю та низькою собівартістю, компактними розмірами та великою різновидністю.
Порівняємо декілька типів резисторів.
Технічні параметри товстоплівкових резисторів з допуском 5% приведені в таблиці 1.5.1, товстоплівкових резисторів з допуском 1% - в таблиці 1.5.2, SMD резисторів - в таблиці 1.5.3.
Таблиця 1.5.1

Параметри

Значення

Тип

RC01

RC11

RC21

RC31

RC41

Типорозмір корпусу

1206

0805

0603

0402

0201

Діапазон номіналів опорів

1 Ом …1 МОм

10Ом…1

МОм

Допуск

±5%

Максимальна потужність

0.25 Вт

0.125Вт

0.1 Вт

0.063Вт

0.005 Вт

Максимальна робоча напруга

200 В

150 В

50 В

15В

Діапазон робочих температур

-55 … +155єС

Таблиця 1.5.2

Параметри

Значення

Тип

RC02H

RC02G

RC12H

RC12G

RC22H

Типорозмір корпусу

1206

1206

0805

0805

0603

Діапазон номіналів опорів

1 Ом …1 Мом

10Ом…1

МОм

Параметри

Значення

Допуск

±1%

Максимальна потужність

0.25 Вт

0.25Вт

0.125Bт

0.125Вт

0.1 Вт

Максимальна робоча напруга

200 В

150 В

50В

Діапазон робочих температур

-55 … +155єС

Таблиця 1.5.3

Типорозмір корпусу

L (мм)

W (мм)

T (мм)

Масса (г)

0201

0.6

0.3

0.3

0.02

0402

1.0

0.5

0.35

0.06

0603

1.6

0.8

0.45

0.2

0805

2.0

1.25

0.55

0.55

1206

3.2

1.6

0.55

1.0

Виходячи з таб.1.5.1. … таб.1.5.3. в якості опорів обираємо товстоплівкові резистори RC01 та RC02H з типорозміром корпусу 1206 (рис.1.6.1).
Технічні параметри потужних SMD резисторів приведені в таблиці 1.5.4
Таблиця 1.5.4

Параметри

Значення

Тип

XC0204

RWN5020

RWP5020

Типорозмір корпусу

SMD MELF

SMD POW

SMD POW

Діапазон номіналів опорів

0.22Ом…10МОм

0.003Ом…1МОм

1Ом…0.1МОм

Допуск

0.1%...5%

1;2;5%

1;5%

Максимальна потужність

1 Вт

1.6Вт

1.6Bт

Максимальна робоча напруга

300 В

Діапазон робочих температур

-55 … +155єС

1.5.2 Вибір конденсаторів

При виборі конденсаторів, враховуючи умови експлуатації виробу, а також електричні параметри, будемо керуватися тим, що для конденсаторів висуваються наступні вимоги:

- найменша маса;

- найменші розміри;

- відносна дешевизна;

- висока стабільність;

- висока надійність.

Візьмемо для розгляду декілька типів конденсаторів, і зробимо порівняння відносно класу діелектрика у вигляді таблиці 1.5.6.

Таблиця 1.5.6

Клас діелектрика

Клас 1

Клас 2

Типорозмір корпусу

0402…1210

0402…2220

Номінальна постійна напруга Uн

50В; 200В;500В;1кВ;3кВ

25В; 50 В; 100В; 200В; 500В;1кВ;2кВ;3кВ

Діапазон ємностей

1 пФ…10 нФ;1нФ…10мкФ

1 пФ…1 нФ; 1нФ…10мкФ

Допуск ємностей (в % чи пФ)

При Сн<10 пФ:

±0.1 пФ

±0.25 пФ

±0.5 пФ

При Сн?10 пФ:

±1 %

±2 %

±5 %

±10 %

±5 %

±10 %

±20 %

Максимально відносна девіація ємності ДС/С

-

±15 %

Діапазон робочих температур

-55…+125єС

-55…+125єС

Максимальне значення тангенса купа втрат tg д

<1.10-3

<25.10-3

<35.10-3 (16В)

Опір ізоляції при 25 єС

> 105 МОм

> 105 МОм

при 125 єС

-

> 104 МОм

Постійна часу при 25 єС

> 1000 с

> 1000 с

при 125 єС

> 100 с

> 100 с

Таблиця 1.5.7

Розмір

мм

0402

1005

06032

1608

0805

2012

1206

3216

1210

3225

l

1.5±0.1

1.6±0.15

2.0±.02

3.2±0.2

3.2±0.3

b

0.5±0.05

0.8±0.1

1.25±0.15

1.6±0.15

2.5±0.3

s

0.5±0.05

0.8±0.1

1.35max

1.3max

1.7max

k

0.1-0.4

0.1-0.4

0.13-0.75

0.25-0.75

0.25-0.75

Вибираємо електролітичні конденсатори фірми Hitano, для звичайного монтажу серії ECR, таблиця 1.5.8

Таблиця 1.5.8

діапазон напруг

6.3…100В

160…460В

діапазон ємностей

0.47…10000мкФ

0.47…220мкФ

температурний діапазон

-40…+85С

-25…+85С

струм втрат

<0.01CU

<0.03CU

розкид ємностей

20% при 20С, 120Гц

Діелектричні втрати (tg), не більше :

Таблиця 1.5.9

U,B

16

25

35

50

63

100

200

350

400

tg(D4-6.3)

0.16

0.14

0.12

0.1

0.1

0.08

0.18

0.2

0.2

Стабільність при низьких температурах (відношення імпедансів на частоті 120Г) :

Таблиця 1.5.10

U,B

16

25

35

50

63

100

200

350

400

Z(-25C)/ Z(+20C)

2

2

2

2

2

2

2

2

2

Z(-40C)/ Z(+20C)

4

4

3

3

3

3

Типорозміри електролітичних конденсаторів приведені в таблиці 1.5.11

Таблиця 1.5.11

мкФ/B

16

25

35

50

63

100

200

350

400

1

511

511

511

511

611

611

2.2

511

511

511

611

611

812

4.7

511

511

511

812

812

1013

10

511

511

511

511

511

611

1016

1013

1013

22

511

511

511

511

611

611

1021

1013

1016

33

511

511

511

611

611

812

1321

1021

1021

47

511

511

511

611

611

1013

1321

1321

1326

100

511

611

611

812

1013

1021

1626

1632

1632

220

611

812

814

1013

1016

1326

1836

1841

330

812

814

1013

1017

1020

1326

470

812

814

1016

1321

1326

1626

1000

1016

1021

1321

1326

1625

1841

2200

1321

1321

1626

1636

1836

3300

1326

1626

1632

1836

2241

4700

1626

1632

1836

2241

2541

Габаритні розміри електролітичних конденсаторів приведені в таблиці 1.5.12

Таблиця 1.5.12

Діаметр конденсатору D, мм

5

6

8

10

13

16

18

22

25

Відстань між виводами P, мм

2.0

2.5

3.5

5.0

5/0

7.5

7.5

10

12.5

Діаметр виводу d, мм

0.5

0.5

0.5

0.6

0.6

0.8

0.8

1.0

1.0

1.5.3 Вибір індуктивностей та трансформаторів

Вибираємо моточні вироби фірми Epcos.

У якості дроселів, для фільтрів по живленню, із таблиці 1.5.13 виберемо дроселі типу DB36-10-47, DST4-10-22, FMER-K26-09.

Таблиця 1.5.13

Тип

Індуктивність мкГн

Q

Тест. частота

Гц

Опір,

Ом

Струм тип.

А

Струм нас.

А

L

Q

DB36-10-47

150±20%

46

100К

2.520М

0.02

12.80

14.20

DST4-10-22

47±20%

42

100К

2.520М

0.01

12.20

15.50

FMER-K26-09

60±20%

56

100К

2.520М

0.12

8.2

10.4

Трансформатори вибираємо типу TS40-15-2, KERBIP-2-K20, TS300-12-K28, TS12-300-K32 діапазон робочих температур -40…+45оС.

1.5.4 Вибір активних елементів

Вибираємо транзистори фірми STMicroelectronics, таблиця 1.5.14.

Таблиця 1.5.14

Параметри

К1531

GT15Q101

BC556

IRFP150

IRFD123

2N2907

К792

Напруга колектор-база (втік-затвор)

500B

1200В

80В

100В

80В

-60В

900В

Напруга колектор-емітер (втік-витік)

500B

1200В

65В

100В

80В

-40В

900В

Напруга база-емітер

(затвор-витік)

±30B

±20В

±20B

±20B

-5В

±20B

Струм колектора (втока)

15A

15А

100мА

43A

1.1А

-600мА

3A

Імпульсний струм колектора (втока)

60A

30А

200мА

170A

4.4А

-1.2А

5A

Струм бази

2мА

20мА

Розсіювана потужність

150Bт

150Вт

0.5Вт

193Вт

1.5Вт

200мВт

100Вт

Вхідна ємність

1480пФ

1800пФ

10пФ

1750пФ

450пФ

30пФ

800пФ

Вихідна ємність

400пФ

3пФ

420пФ

200пФ

8пФ

250пФ

Допустима температура

150C

150С

150С

175С

150С

150С

150С

Вибираємо діоди фірм Fairchild та International Rectifier, таблиця 1.5.15.

Таблиця 1.5.15

Параметри

Uзв., В

Імакс., А

Ізв., мА

Fмакс., кГц

PSOF107

300

0.3

0.005

40

1N4937

600

1.5

2

150

LL4148

100

0.2

0.005

300

LL414P

60

0.5

0.01

300

MUR860

600

10

20

200

MUR31

800

8

2

10

RUR30100

1000

30

1

300

Вибираємо мікросхеми фірм Unitrode, National Semiconductor, Intersil, STMicroelectronics.

В якості контролерів живлення оберемо UC3842 фірми Unitrode, SG3525 фірми STMicroelectronics.

В якості мікросхеми стабілізатора напруги оберемо ІМС фірми STMicroelectronics. Технічні параметри мікросхеми інтегрального стабілізатора приведені в таблиці 1.5.16.

Таблиця 1.5.16

Тип

Вхідна напруга, В

Напруга стабілізації, В

Вихідний струм, А

Температура, С

78M05ST

+30

+5

1.2

-55…+125

1.6 Електричний розрахунок схеми імпульсного стабілізатора

Імпульсний стабілізатор напруги побудуємо по однотактній підвищуючій схемі без гальванічної розвязки - rising transducer.

UC3842 - інтегральна схема, яка призначена для управління и контролю роботи імпульсних стабілізаторів напруги побудованих по різноманітних однотактних схемах: з гальванічною розвязкою - однотактній зворотньоходовій та прямоходовій схемах, без гальванічної розвязки - понижаючого , повишаючого та інвертуючого перетворювачів. Мікроконтролер може безпосередньо керувати роботою силового ключа, контролювати вихідну напругу (стабілізувати її при зміні вхідної напруги.)

Дана мікросхема має наступні можливості:

– блокування роботи при перенапрузі;

– запуск роботи при малому рівні потужності;

– стійкий підсилювач помилки;

– захист від перенапруги на виході;

– перехідний спосіб функціонування;

– схема вимірювання струму та напруги

– внутрішній генератор.

1.6.1 Організація живлення мікроконтролера

Прецензійна ширини забороненої межі напруги та струму побудована в середині контролера, щоб гарантувати добре регулювання. Компаратор перенапруження з гістерезисом и дуже низьким струмом живлення дозволяє мінімізувати схему запуску та живлення рис.1.6.1а. Живлення ІМС береться з вторинної обмотки трансформатора Т3 та стабілізується стабілітроном до рівня 12В ( рис. 1.6.2б).

а) внутрішній компаратор по живленню

б) схема підключення по живленні.

Рис. 1.6.1 Схема організації живлення ІМС UC3842

1.6.2 Тактовий генератор

Тактовий генератор UC3842 розрахований на роботу в частотному діапазоні від 10кГц до 1Мгц. В нашому випадку він працюватиме на частоті 100кГц, так як це оптимальна частота для роботи всього перетворювача.

Розрахуємо значення Rt та Ct:

(1.6.1)

(1.6.2)

де: f=100кГц, - задана робоча частота.

Ct = 0.01мкФ, - рекомендоване значення ємності, вибирається в межах 0.001…0.1 мкФ.

1.6.3 Підсилювач помилки і блок датчика перенапруги

Вхід підсилювача помилки, через відношення двох зовнішніх резисторів, зв'язаних з вихідною шиною, що дозволяє за рахунок зворотного зв'язку підвищувати вихідну постійну напругу тим самим здійснювати регулювання напруги.

Пристрій забезпечено ефективним захистом від перенапруження, реалізовано на тому ж виводі що й регулятор напруги постійного струму.

Коли збільшиться вихідна напруга, відповідно і збільшиться напруга на виводі 2 IMC. Різницеве значення струму протікає через конденсатор. Величина струму визначається всередині мікроконтролера і порівнюється з еталонним значенням 40 мкА. Якщо значення буде перевищено то відповідно це відобразиться на керуванні роботою силового ключа, тривалість імпульсів відкритого стану ключа стає меншим, що призводить до зниження вихідної напруги.

Компаратор струму постійно слідкує за напругою на резисторі Rs і порівнює її з опорною напругою (1В) на іншому вході компаратора.

;(1.6.3)

; (1.6.4)

1.6.4 Вихідний буфер ІМС UC3842

Схема керування являє собою вихідний буферний каскад, вихідний струм цього каскаду - ±1А. Цей каскад може керувати роботою силового ключа на великій частоті.

Рис. 1.6.5 Вихідний буфер UC3842

1.6.5 Розрахунок елементів імпульсного стабілізатора

Оскільки імпульсний стабілізатор складається з двох однакових пів плеч (стабілізатор додатної напруги та стабілізатор відємної напруги )то доцільно буде порахувати тільки один із них, розраховані значення елементів перенести на інший. Для розрахунку виберемо стабілізатор додатної напруги.

Вихідні дані для розрахунку для електричного розрахунку:

- Вхідна напруга Uвх = 65...150 В;

- Вихідна напруга Uвих = 150 В;

- Зміна вихідної напруги U = 5В;

- Вихідна потужність Рвих = 300 Вт;

- Частота перемикання силового ключа fs = 100 кГц.

Розрахунок ємності вхідного конденсатора

Визначимо мінімальну ємність вхідного конденсатора С2:

Сin LF Р0 /(2··f ·V0·з) (4.10)

де - f - частота перемикання силового ключа (100 кГц)

- V0 - вихідна напруга (150 В)

- з=0.9 - прогнозований ККД перетворювача

- Р0 - вихідна потужність - 300 Вт

Сin LF = 300 / (2·3,14·25000·0.9·150) =82.7 мкФ

Вибираємо в якості вхідного конденсатора конденсатор ємністю 330мкФ і робочою напругою 400В

Розрахунок ємності вхідного високочастотного конденсатора

Вхідний високочастотний конденсатор фільтра (C4) повинен зменшити шуми, які виникають при високочастотних перемиканнях силового ключа, що в свою чергу викликає імпульси струму в індуктивності.

Cin HF = Irms /(2··f·r·Vin min) (4.7)

де - f - частота перемикання (100 кГц);

- Іrms - вхідний високочастотний струм;

- Vin min - мінімальна вхідна напруга (65 В);

- r - коефіцієнт високочастотних пульсацій вхідної напруги, який знаходиться між 3 і 9 %. Приймаємо r = 7%.

Іrms = Рout / Uin min; (4.8)

Іrms = 300 / 65 = 4,64 А;

Сin = 4,64/(2Ч3,14Ч100000Ч7Ч65) = 0.0065 мкФ.

Вибираємо в якості вхідного високочастотного конденсатора конденсатор ємністю 0.01мкФ і робочою напругою 400В

Вихідний конденсатор

Визначимо значення ємності вихідного конденсатора:

С0 Р0 /(4··V0 ·V0) (4.10)

де - V0 - зміна вихідної напруги (5 В)

- f - частота перемикання силового ключа ( 100 кГц)

- V0 - вихідна напруга (150 В)

- Р0 - вихідна потужність - 300 Вт

С0 = 300 / 4·3,14·100000·5·150 =63.7 мкФ

Вибираємо в якості вихідного конденсатор ємністю 220мкФ і робочою напругою 400В

Розрахунок котушки індуктивності

Значення індуктивності котушки розраховується з необхідної потужності яка протікає через останню, і значенню струму пульсацій.

(4.11)

(4.12)

де - - тривалість циклу відкриття, закриття силового ключа;

- ІLpk - піковий струм котушки індуктивності;

- f - частота перемикання силового ключа;

- V0 - вихідна напруга.

Тривалість циклу ми можемо визначити за формулою

(4.13)

Значення пікового струму який протікає через індуктивність можемо визначити за формулою:

(4.14)

де - Vin min - мінімальне значення вхідної напруги (65В),

Отже значення дорівнює

= (150 - 1,41·65)/150 = 0,389 сек

Значення пікового струму становитиме:

ІLpk = (2Ч1,41Ч300) / 65 = 13 А

Тоді значення індуктивності яка необхідна для роботи перетворювача напруги: L = (2·300·0,389)/(132·100000) = 15 мкГн.

Розрахунок силового ключа.

Вибір керуючого ключа зумовлюється максимальним струмом колектора, робочою напругою та граничною частотою перемикання. Так як в нас максимальний струм який протікатиме через транзистор складає 13 А, робоча напруга до 200 В, а частота перемикань складає 100 кГц в якості силового ключа обираємо польовийтранзистор К1531.

Його параметри наступні:

- Максимальна напруга Uсе - 400 В;

- Постійний струм колектора при Т = 1000С Іс - 27 А;

- Падіння напруги в відкритому стані Uсе - 1,65 В;

- Максимальна частота перемикань - 160 кГц.

Розрахуємо яка ж потужність буде розсіюватись на транзисторі.

Формула розрахунку втрат наступна

Р = Іс 2·Rсе (4.15)

Rсе - падіння напруги транзистора в відкритому стані (0.14 Ом)

Іс - струм який протікає через транзистор (13А - з розрахунку максимального пульсуючого струму в котушці індуктивності).

Отже втрати транзистора в відкритому стані становлять

РIGBT = 13·0.14 = 23.6 Вт.

Розрахунок вихідних діодів.

Максимальне значення середнього струму виходячи з значення потужності яка має передаватися в навантаження - 300 Вт.

Можна розрахувати:

І = P/U

І = 300/150 = 2A

Діоди вибираємо з наступних умов, що гарантують надійну роботу

ІDm ? 1,2Імакс

UDm ? 1,2Uмакс

Отже виходячи з цих розрахунків обираємо в якості вихідних діодів діод типу MUR860. Параметри діода наступні:

Максимальна зворотна напруга - 500 В;

Максимальний робочий струм - 8 А;

Максимальна допустима температура діода - 1500С.

1.6.6 Електричний розрахунок схеми зарядного пристрою

За базову схему для зарядного пристрою візьмемо схему однотактного зворотно ходового перетворювача напруги.

Це доцільно тим, що потрібно відносно невелику потужність Рвих.=100Вт для того, щоб заряджати акумулятори. Також ця схема приваблива простотою та дешевизною, порівняно з такими схемами як півмостова чи прямоходова. Скористаємося методикою розрахунку представленою в [5].

Вихідні дані для розрахунків. Таблиця 1.6.1.

Параметри

Позначення

Значення

Мінімальна змінна вх. напруга

85В

Максимальна змінна вх. напруга

270В

Частота мережі

50Гц

Максимальна вих. потужність

100 Вт

Мінімальна вих. потужність

1Вт

Вихідна напруга

13,8В

Пульсації вихідної напруги

0,05В

Напруга відбиття первинної обмотки

100В

Прогнозований ККД

0,84

Пульсації вх. постійної напруги

10В

Напруга живлення ІМС

12В

Кількість оптопар

1

Розрахуємо характеристики вхідного діодного моста та конденсатора.

Максимальна вхідна потужність:

;

Знайдемо максимальне значення струму через діод ний міст VD1:

;

Розрахуємо максимальне значення напруги на діодному мосту:

;

Знайдемо параметри вхідного конденсатора C6:

;

,

де: VDCminPK мінімальне амплітудне значення вхідної напруги, VDCmin мінімальне значення вхідної напруги з урахуванням пульсацій.

Знайдемо час розряду конденсатора C6 за половину періоду:

;

Розрахуємо потужність, що береться з конденсатора за час розряду:

;

Знайдемо мінімальне значення ємності C6:

;

Розрахунок трансформатора T2

Знайдемо максимальний струм через первинну обмотку трансформатора T2:

,

де Dmax=0,5, скважність імпульсів на первинній обмотці.

Розрахуємо максимальний струм через демпферний діод VD7:

;

Визначимо початкову індуктивність первинної обмотки при максимальному циклі:

;

Виберемо тип осердя трансформатора з продукції фірми Epcos. Вибираємо осердя : E3211619

Параметри осердя . Таблиця 1.5.2.

Параметр

Позначення

Значення

Індуктивність одного витка

AL

24,4нГн

Площа вікна

AN

108,5мм2

Ширина осердя

S

0,5мм

Площа перерізу осердяа

Ae

83мм2

Довжина середньої лінії

IN

64,6мм

Ваговий коефіцієнт потужності (при 100кГц)

PV

190мВт/г

Індукція насичення осердя

Bmax

0,2Т...0,3Т

Маса

m

30г

Знайдемо кількість витків первинної обмотки :

,

Приймаємо Np рівним 24 витки.

Визначимо кількість витків вторинної обмотки :

,

де: VFDiode спад напруги на діоді. Візьмемо NS=4 витки.

Знайдемо кількість витків додаткової обмотки :

;

Приймаємо NAUX=4 витки.

Розрахуємо реальну індуктивність первинної обмотки:

;

Знайдемо максимальний реальний струм через первинну обмотку T2 :

;

Вирахуємо максимальну реальну індукцію трансформатора:

, B<Bmax ;

Знайдемо площу перерізу з урахуванням кількості витків обмотки Np:

;

Конструкція трансформатора для осердя E3211619:

З таблиці даних осердя E3211619 : BWmax=20,1мм - максимальне значення ширина обмотки з осердям ; М=4мм мінімальна рекомендована значення ширини обмотки з осердям.

Визначимо ефективне значення ширини обмотки з осердям:

,

Вибираємо коефіцієнт заповнення вікна трансформатора обмотками :

Первинна - 0,5

Вторинна - 0,45

Допоміжна - 0,05

Коефіцієнт заповнення міді з таблиці даних осердя : fCu=0,2…0,4. Виберемо fCu=0,3:

Розрахуємо площу перерізу провідника первинної обмотки T1:

;

Приймаємо діаметр проводу для первинної обмотки dP=0.64мм (22 AWG) Розрахуємо площу перерізу провідника вторинної обмотки T1:

.

Приймаємо діаметр провідника dS=2Ч0,8 мм (2Ч20 AWG).

Розрахуємо площу перерізу провідника додаткової обмотки:

Приймаємо діаметр провідника dAUX=0,64мм (22 AWG).

Розрахуємо параметри вихідного діода VD11.

Визначимо максимальну зворотню напругу на діоді:

;

Визначимо максимальний імпульсний прямий струм через діод:

;

Визначимо максимальний імпульсний прямий струм через діод з урахуванням коефіцієнта заповнення:

;

Розрахуємо параметри вихідного конденсатора С36.

Максимальна імпульсна нестабільність вихідної напруги напруги Vout=0,5В, при кількості періодів тактової частоти : ncp=5.

Визначимо максимальний вихідний струм:

;

Мінімальна ємність конденсатора C36 дорівнюватиме :

;

Вибираємо конденсатор на 2200мкФ - 25В.

Розрахунок демпферної ланки : C23,R26,VD7

Знайдемо напругу на демпферні ланці:

,

де V(BR)DSS - максимально допустима напруга втік-витік транзистора.

Для розрахунку демпферної ланки необхідно знати індуктивність розсіювання (LLK) первинної обмотки, котра дуже сильно залежить від конструкції трансформатора. Тому приймемо значення індуктивності розсіювання на рівні 5% від первинної обмотки.

.

Знайдемо ємність конденсатора C23 демпферної ланки:

.

Приймаємо С23=470пФ.

Знайдемо опір резистора демпферної ланки R26:

.

Приймаємо R26=1,2кОм.

Розрахунок втрат

Визначимо втрати на діоді VD1:

;

Визначимо опір первинної обмотки:

;

Визначимо опір первинної обмотки:

,

де: з довідника питомий опір міді P100=0,0172ОмЧмм2/м.

Визначимо втрати в міді в первинній обмотці:

;

Визначимо втрати в міді в вторинній обмотці:

;

Знайдемо сумарні втрати в первинній та вторинній обмотках трансформатора:

;

Обчислимо втрати на вихідному діоді VD11 :

;

Втрати на силовому транзисторі

З таблиці характеристик транзистора маємо: C0=50пФ - вихідна ємність втік-витік транзистора; RDSon=1,6Ом (150 С0) - вихідний опір втік-витік транзистора.


Подобные документы

  • Вивчення принципів перетворення змінної напруги в постійну. Дослідження основ функціональної побудови джерел живлення. Аналіз конструктивного виконання випрямлячів, інверторів, фільтрів, стабілізаторів. Оцінка коефіцієнтів пульсації за даними вимірювань.

    методичка [153,2 K], добавлен 29.11.2010

  • Аналіз стану електрифікації та систем автоматизації технологічних процесів виробництва та обробки молока. Якість електроенергії в розподільчій електромережі. Розрахунок електричних навантажень, вибір джерела живлення та розрахунок електричних мереж.

    дипломная работа [7,0 M], добавлен 19.02.2012

  • Види систем електричного живлення, планування та основні вимоги до них. Джерела безперебійного й гарантованого електроживлення. Електромеханічні перетворювачі напруги. Вибір схеми інвертора, опис принципу дії. Собівартість виготовлення блоку живлення.

    дипломная работа [3,2 M], добавлен 21.02.2011

  • Галузі застосування стабілізованих джерел живлення. Основне призначення блоку живлення. Огляд існуючих елементів. Розрахунок компенсаційного стабілізатора послідовного типу. Синтез структурної схеми. Розрахунок однофазного випрямляча малої потужності.

    курсовая работа [612,7 K], добавлен 21.11.2010

  • Види систем електроживлення, вимоги до них. Огляд існуючих перетворювачів напруги. Опис структурної схеми інвертора. Вибір елементної бази: транзисторів, конденсаторів, резисторів та трансформаторів. Розрахунок собівартості виготовлення блоку живлення.

    дипломная работа [3,8 M], добавлен 08.02.2011

  • Графік вольт-амперної характеристики нелінійного елемента. Визначення режиму роботи елементів нелінійного ланцюга при заданій напрузі джерела живлення, параметрів нелінійного елементу в робочій точці. Лінеаризована схема для режиму малих сигналів.

    курсовая работа [4,5 M], добавлен 10.05.2013

  • Особливості конструкції та технології виготовлення джерела світла ЛБ-20Е. Лампи, розраховані на роботу в стандартних мережах змінного струму без трансформації напруги. Контроль якості, принцип роботи. Нормування трудових та матеріальних витрат.

    курсовая работа [315,1 K], добавлен 25.08.2012

  • Способи та джерела отримання біогазу. Перспективи його виробництва в Україні. Аналіз існуючих типів та конструкції біогазових установок. Оптимізація їх роботи. Розрахунок продуктивності, основних параметрів та елементів конструкції нової мобільної БГУ.

    дипломная работа [2,6 M], добавлен 21.02.2013

  • Характеристика цеху, опис технологічного процесу. розподіл електричних навантажень. Розробка принципової схеми живлення, вибір компенсуючих пристроїв. Вибір номінальних струмів. Комутаційна та захисна апаратура. Розрахунок струмів та заземлення.

    курсовая работа [504,4 K], добавлен 26.11.2014

  • Джерело живлення як елемент електричного кола, в якому зосереджена електрорушійна сила, його різновиди та функціональні особливості. Регульований стабілізатор 0–10В /3А на LM123. Індикатор напруги на 572ПВ2 (ПВ6). Операційний підсилювач і його параметри.

    контрольная работа [273,6 K], добавлен 17.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.