Экспериментальное исследование электромагнитного поля и его влияние на здоровье человека
Электромагнитное поле, его виды и классификация, основные источники, биологическое действие на здоровье человека. Санитарно-гигиеническое нормирование электромагнитных полей. Инженерно-технические и организационные мероприятия по защите населения.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 15.11.2009 |
Размер файла | 90,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство общего и профессионального образования
Государственное образовательное учреждение среднего профессионального образования
«Новочеркасский механико-технологический колледж им. А.Д. Цюрупы»
РЕФЕРАТ
по дисциплинам
«ФИЗИКА» и «ИНФОРМАТИКА»
на тему
«Экспериментальное исследование электромагнитного поля
и его влияние на здоровье человека»
Автор
Ст. 1 курса гр. ЭМ-1-1
Цыганов
г. Новочеркасск 2008г.
Содержание
Введение
1. Электромагнитное поле ,его виды и классификация
2. Основные источники электромагнитного поля
2.1. Электротранспорт
2.2 Линии электропередач
2.2.1 Биологическое действие
2.2.2 Санитарные нормы
2.2.3 Принципы обеспечения безопасности населения
2.3 Электропроводка
2.4 Бытовая электротехника
2.5Телерадиостанции
2.6.Спутниковая связь
2.7 Сотовая связь
2.8 Радары
2.9 Персональные компьютеры
3. Действие электромагнитного поля на здоровье человека
3.1.Биологическое действие электромагнитных полей
3.2Влияние на нервную систему.
3.3 Влияние на иммунную систему
3.4Влияние на эндокринную систему и нейрогуморальную реакцию
3.5Влияние на половую функцию.
3.6Другие медико-биологические эффекты
4. Защита от электромагнитного поля
4.1 Организационные мероприятия по защите от ЭМП
4.2 Инженерно-технические мероприятия по защите населения от ЭМП
4.3 Медицинские аппараты
4.3.1 Аппарат «Анотрон»
4.3.2 Вазореактивная камера Бароциклон
4.3.3 Импульсный активатор метаболизма МКР
4.3.4 Вибромассажное кресло - подвеска
4.3.5 Прибор GS-1
5. Санитарно гигиеническое нормирование электромагнитных полей
Заключение
Список использованных источников
Введение
Многолетние исследования показали, что причиной, способствующей возникновению заболеваний, часто является ЭМП Земли, реализующееся через геопатогенные зоны естественного происхождения, представляющие собой источники опасной для человека отрицательной энергии. Еще из древних письменных источников и археологических находок известно о структурно-кристаллической модели Земли, состоящей из 12 правильных пятиугольников и 20 треугольников. Причем оказалось, что именно в узлах гигантского каркаса Земли располагаются места с уникальной флорой и фауной, а также крупнейшие залежи полезных ископаемых. Естественно, что эти зоны оказались наиболее плотно заселены. Наряду с глобальной сеткой каркаса были выявлены более мелкие сетки с ячейками разной формы и размера. Они имеют энергополевую природу, выражающуюся в виде силовых линий, плоскостей и энергетических узлов, излучения которых поляризованы (например, сетки Хартмана и Карри). Помимо геопатогенных зон естественного происхождения существуют зоны искусственного происхождения. Это обусловлено различными антропогенными факторами, например, электрическими и телевизионными сетями, тепловыми и водопроводно-канализационными коммуникациями, а также техническими сооружениями разного рода .Все это обусловило появление большого числа энергетически активных мест, блуждающих электрических токов различных полей, взаимодействующих с естественными электромагнитными полями. Длительное нахождение человека в геопатогенной зоне вызывает чувство дискомфорта, общую слабость, сонливость или бессонницу, головные боли, мигрень, необъяснимую нервозность, чувство страха, жжение и покалывание в теле, судороги в ногах, охлаждение конечностей и др. Объективный анализ состояния человека, продолжительное время находящегося в геопатогенной зоне, показывает изменение показателей функционального состояния, характеризующееся сдвигом кислотно-щелочного баланса и формулы крови, увеличением скорости оседания эритроцитов, снижением электросопротивления кожного покрова, нарушением деятельности центральной нервной системы, проявлением тахикардии и другими изменениями. Таким образом, постоянное и длительное пребывание в геопатогенной зоне является фактором повышенного риска. Различные виды лечения могут дать только временное облегчение, т.к. их положительное воздействие будет перечеркиваться последующим воздействием геопатогенных излучений. Поэтому крайне необходимо нахождение и учет размещения геопатогенных зон, а еще лучше их нейтрализация. Если обратиться к нашей истории, то мы можем вспомнить, что наличие и расположение геопатогенных зон учитывалось уже при застройке Москвы и других городов России. Еще Петр Великий, вместе со своим сподвижником героем Полтавы Яковом Брюсом, отвечавшим за строительство, интересовались этим вопросом. Были составлены специальные планы застройки Москвы, где ряд районов, сегодня заселенных, были выделены как не соответствующие жизненным стандартам. Именно Брюс - один из первых создал энергоинформационные стандарты и организовал составление эниологических карт. При составлении указанных карт использовался даже опыт древней Греции. В России широкие исследования электромагнитных полей были начаты в 60-е годы. Был накоплен большой клинический материал о неблагоприятном действии магнитных и электромагнитных полей, было предложено ввести новое нозологическое заболевание “Радиоволновая болезнь” или “Хроническое поражение микроволнами”. В дальнейшем, работами ученых в России было установлено, что, во-первых, нервная система человека, особенно высшая нервная деятельность, чувствительна к ЭМП, и, во-вторых, что ЭМП обладает т.н. информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта. Результаты этих работ были использованы при разработке нормативных документов в России. В результате нормативы в России были установлены очень жесткими и отличались от американских и европейских в несколько тысяч раз (например, в России ПДУ для профессионалов 0,01 мВт/см2; в США - 10 мВт/см2).
1. Электромагнитное поле, его виды и классификация
На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.
Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.
Магнитное поле создается при движении электрических зарядов по проводнику.
Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.
Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).Электромагнитные волны характеризуются длиной волны, обозначение - (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение - f.Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны.
В "ближней" зоне, или зоне индукции, на расстоянии от источника r < ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение.
"Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3. В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1. В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны
Международная классификация электромагнитных волн по частотам
Наименование частотного диапазона |
Границы диапазона |
Наименование волнового диапазона |
Границы диапазона |
|
Крайние низкие, КНЧ |
3 - 30 Гц |
Декамегаметровые |
100 - 10 Мм |
|
Сверхнизкие, СНЧ |
30 - 300 Гц |
Мегаметровые |
10 - 1 Мм |
|
Инфранизкие, ИНЧ |
0,3 - 3 кГц |
Гектокилометровые |
1000 - 100 км |
|
Очень низкие, ОНЧ |
3 - 30 кГц |
Мириаметровые |
100 - 10 км |
|
Низкие частоты, НЧ |
30 - 300 кГц |
Километровые |
10 - 1 км |
|
Средние, СЧ |
0,3 - 3 МГц |
Гектометровые |
1 - 0,1 км |
|
Высокие частоты, ВЧ |
3 - 30 МГц |
Декаметровые |
100 - 10 м |
|
Очень высокие, ОВЧ |
30 - 300 МГц |
Метровые |
10 - 1 м |
|
Ультравысокие,УВЧ |
0,3 - 3 ГГц |
Дециметровые |
1 - 0,1 м |
|
Сверхвысокие, СВЧ |
3 - 30 ГГц |
Сантиметровые |
10 - 1 см |
|
Крайне высокие, КВЧ |
30 - 300 ГГц |
Миллиметровые |
10 - 1 мм |
|
Гипервысокие, ГВЧ |
300 - 3000 ГГц |
Децимиллиметровые |
1 - 0,1 мм |
2. Основные источники электромагнитного поля
Среди основных источников ЭМИ можно перечислить:
Электротранспорт (трамваи, троллейбусы, поезда)
Линии электропередач (городского освещения, высоковольтные)
Электропроводка (внутри зданий, телекоммуникации)
Бытовые электроприборы
Теле- и радиостанции (транслирующие антенны)
Спутниковая и сотовая связь (транслирующие антенны)
Радары
Персональные компьютеры
2.1 Электротранспорт
Транспорт на электрической тяге - электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. - является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных "электричках" достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл. Типичный результат долговременных измерений уровней магнитного поля, генерируемого железнодорожным транспортом на удалении 12 м от полотна, приведен на рисунке.
2.2 Линии электропередач
Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП - например ЛЭП 220 кВ), чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП. Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.
2.2.1 Биологическое действие
Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля. У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы - годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечнососудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.
2.2.2 Санитарные нормы
Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения. Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина - нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности. На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.
2.2.3 Принципы обеспечения безопасности населения
Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля - 1 кВ/м.
Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84
Напряжение ЛЭП |
330 кВ |
500 кВ |
750 кВ |
1150 кВ |
|
Размер санитарно-защитной (охранной) зоны |
20 м |
30 м |
40 м |
55 м |
Границы санитарно-защитных зон для ЛЭП в г. Москве
Напряжение ЛЭП |
<20 кВ |
35 кВ |
110 кВ |
150 -220 кВ |
330 - 500 кВ |
750 кВ |
1150 кВ |
|
Размер санитарно-защитной зоны |
10 м |
15 м |
20 м |
25 м |
30 м |
40 м |
55 м |
К размещению ВЛ ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно. Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно:330 кВ - 2 провода, 500 кВ - 3 провода, 750 кВ - 4 провода. Ниже 330 кВ по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде : 220 кВ 10 -15 шт., 110 кВ 6-8 шт., 35 кВ 3-5 шт., 10 кВ и ниже - 1 шт.
Допустимые уровни воздействия электрического поля ЛЭП
ПДУ, кВ/м |
Условия облучения |
|
0,5 |
внутри жилых зданий |
|
1,0 |
на территории зоны жилой застройки |
|
5,0 |
в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов; |
|
10,0 |
на участках пересечения воздушных линий электропередачи с автомобильными дорогами 1 - IV категорий; |
|
15,0 |
в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья); |
|
20,0 |
в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения. |
В пределах санитарно-защитной зоны ВЛ запрещается:
размещать жилые и общественные здания и сооружения;
устраивать площадки для стоянки и остановки всех видов транспорта;
размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;
производить операции с горючим, выполнять ремонт машин и механизмов.
Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда. В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках. В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.
2.3 Электропроводка
Наибольший вклад в электромагнитную обстановку жилых помещений в диапазоне промышленной частоты 50 Гц вносит электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, а также распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты, вызываемый протекающим электротоком. Уровень электрического поля промышленной частоты при этом обычно не высокий и не превышает ПДУ для населения 500 В/м. На рисунке представлено распределение магнитного поля промышленной частоты в жилом помещении. Источник поля - распределительный пункт электропитания, находящийся в смежном нежилом помещении. В настоящее время результаты выполненных исследований не могут четко обосновать предельные величины или другие обязательные ограничения для продолжительного облучения населения низкочастотными магнитными полями малых уровней. Исследователи из университета Карнеги в Питсбурге (США) сформулировали подход к проблеме магнитного поля который они назвали “благоразумное предотвращение”. Они считают, что пока наше знание относительно связи между здоровьем и последствием облучения остаются неполными, но существуют сильные подозрения относительно последствий для здоровья, необходимо предпринимать шаги по обеспечению безопасности, которые не несут тяжелые расходы или другие неудобства. Подобный подход был использован, например, в начальной стадии работ по проблеме биологического действия ионизирующего излучения: подозрение рисков ущерба для здоровья, основанное на твердых научных основаниях, должно само по себе составить достаточные основания для выполнения защитных мероприятий. В настоящее время многие специалисты считают предельно допустимой величину магнитной индукции равной 0,2 - 0,3 мкТл. При этом считается, что развитие заболеваний - прежде всего лейкемии - очень вероятно при продолжительном облучении человека полями более высоких уровней (несколько часов в день, особенно в ночные часы, в течении периода более года). Рекомендации по защите
Основная мера защиты - предупредительная. Необходимо исключить продолжительное пребывание (регулярно по несколько часов в день) в местах повышенного уровня магнитного поля промышленной частоты; кровать для ночного отдыха максимально удалять от источников продолжительного облучения, расстояние до распределительных шкафов, силовых электрокабелей должно быть 2,5 - 3 метра;если в помещении или в смежном есть какие-то неизвестные кабели, распределительные шкафы, трансформаторные подстанции - удаление должно быть максимально возможным, оптимально - промерить уровень электромагнитных полей до того, как жить в таком помещении; при необходимости установить полы с электроподогревом выбирать системы с пониженным уровнем магнитного поля.
2.4 Бытовая электротехника
Все бытовые приборы, работающие с использованием электрического тока, являются источниками электромагнитных полей. Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой “без инея”, кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа (смотри рисунок 1). Все ниже приведенные данные относятся к магнитному полю промышленной частоты 50 Гц. Значения магнитного поля тесно связаны с мощностью прибора - чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м.
Уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м.
Бытовой электроприбор |
От , мкТл |
До, мкТл |
|
Пылесос |
0,2 |
2,2 |
|
Дрель |
2,2 |
5,4 |
|
Утюг |
0,0 |
0,4 |
|
Миксер |
0,5 |
2,2 |
|
Телевизор |
0,0 |
2,0 |
|
Люминесцентная лампа |
0,5 |
2,5 |
|
Кофеварка |
0,0 |
0,2 |
|
Стиральная машина |
0,0 |
0,3 |
|
Микроволновая печь |
4,0 |
12 |
|
Электрическая плита |
0,4 |
4,5 |
Предельно допустимые уровни электромагнитного поля для потребительской продукции, являющейся источником ЭМП
Источник |
Диапазон |
Значение ПДУ |
Примечание |
|
Индукционные печи |
20 - 22 кГц |
500 В/м 4 А/м |
Условия измерения: расстояние 0,3 м от корпуса |
|
СВЧ печи |
2,45 ГГц |
10 мкВт/см2 |
Условия измерения: расстояние 0,50 ± 0,05 м от любой точки, при нагрузке 1 литр воды |
|
Видеодисплейный терминал ПЭВМ |
5 Гц - 2 кГц |
Епду = 25 В/м Впду = 250 нТл |
Условия измерения: расстояние 0,5 м вокруг монитора ПЭВМ |
|
2 - 400 кГц |
Епду = 2,5 В/м Впду = 25 нТл |
|||
поверхностный электростатический потенциал |
V = 500 В |
Условия измерения: расстояние 0,1 м от экрана монитора ПЭВМ |
||
Прочая продукция |
50 Гц |
Е = 500 В/м |
Условия измерения: расстояние 0,5 м от корпуса изделия |
|
0,3 - 300 кГц |
Е = 25 В/м |
|||
0,3 - 3 МГц |
Е = 15 В/м |
|||
3 - 30 МГц |
Е = 10 В/м |
|||
30 - 300 МГц |
Е = 3 В/м |
|||
0,3 - 30 ГГц |
ППЭ = 10 мкВт/см2 |
Возможные биологические эффекты
Человеческий организм всегда реагирует на электромагнитное поле. Однако, для того чтобы эта реакция переросла в патологию и привела к заболеванию необходимо совпадение ряда условий - в том числе достаточно высокий уровень поля и продолжительность облучения. Поэтому, при использовании бытовой техники с малыми уровнями поля и/или кратковременно ЭМП бытовой техники не оказывает влияния на здоровье основной части населения. Потенциальная опасность может грозить лишь людям с повышенной чувствительностью к ЭМП и аллергикам, также зачастую обладающим повышенной чувствительностью к ЭМП. Кроме того, согласно современным представлениям, магнитное поле промышленной частоты может быть опасным для здоровья человека, если происходит продолжительное облучение ( регулярно, не менее 8 часов в сутки, в течение нескольких лет) с уровнем выше 0,2 микротесла.
Рекомендации: приобретая бытовую технику проверяйте в Гигиеническом заключении (сертификате) отметку о соответствии изделия требованиям "Межгосударственных санитарных норм допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях", МСанПиН 001-96;используйте технику с меньшей потребляемой мощностью: магнитные поля промышленной частоты будут меньше при прочих равных условиях; к потенциально неблагоприятным источникам магнитного поля промышленной частоты в квартире относятся холодильники с системой “без инея”, некоторые типы “теплых полов”, нагреватели, телевизоры, некоторые системы сигнализации, различного рода зарядные устройства, выпрямители и преобразователи тока - спальное место должно быть на расстоянии не менее 2-х метров от этих предметов если они работают во время Вашего ночного отдыха; при размещении в квартире бытовой техники руководствуйтесь следующими принципами: размещайте бытовые электроприборы по возможности дальше от мест отдыха, не располагайте бытовые электроприборы поблизости и не ставьте их друг на друга. Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи электромагнитное поле, называемое также микроволновым излучением или СВЧ-излучением. Рабочая частота СВЧ-излучения микроволновых печей составляет 2,45 ГГц. Именно этого излучения и боятся многие люди. Однако современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает электромагнитному полю вырываться за пределы рабочего объема. Вместе с тем, нельзя говорить что поле совершенно не проникает вне микроволновой печи. По разным причинам часть электромагнитного поля предназначенного для курицы проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы. Для обеспечения безопасности при использовании печей в быту в России действуют санитарные нормы, ограничивающие предельную величину утечки СВЧ-излучения микроволновой печи. Называются они "Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами" и имеют обозначение СН № 2666-83. Согласно этим санитарным нормам, величина плотности потока энергии электромагнитного поля не должна превышать 10 мкВт/см2 на расстоянии 50 см от любой точки корпуса печи при нагреве 1 литра воды. На практике практически все новые современные микроволновые печи выдерживают это требование с большим запасом. Тем не менее, при покупке новой печи надо убедиться, что в сертификате соответствия зафиксировано соответствие вашей печи требованиям этих санитарных норм. Надо помнить, что со временем степень защиты может снижаться, в основном из-за появления микрощелей в уплотнении дверцы. Это может происходить как из-за попадания грязи, так и из-за механических повреждений. Поэтому дверца и ее уплотнение требует аккуратности в обращении и тщательного ухода. Срок гарантированной стойкости защиты от утечек электромагнитного поля при нормальной эксплуатации - несколько лет. Через 5-6 лет эксплуатации целесообразно проверить качество защиты для чего пригласить специалиста из специально аккредитованной лаборатории по контролю электромагнитного поля. Кроме СВЧ-излучения работу микроволновой печи сопровождает интенсивное магнитное поле, создаваемое током промышленной частоты 50 Гц протекающим в системе электропитания печи. При этом микроволновая печь является одним из наиболее мощных источников магнитного поля в квартире. Для населения уровень магнитного поля промышленной частоты в нашей стране до сих пор не ограничен, несмотря на его существенное действие на организм человека при продолжительном облучении. В бытовых условиях однократное кратковременнное включение (на несколько минут) не окажет существенного влияния на здоровье человека. Однако, сейчас часто бытовая микроволновая печь используется для разогрева пищи в кафе и в сходных других производственных условиях. При этом работающий с ней человек попадает в ситуацию хронического облучения магнитным полем промышленной частоты. В таком случае на рабочем месте необходим обязательный контроль магнитного поля промышленной частоты и СВЧ-излучения. Учитывая специфику микроволновой печи, целесообразно включив ее отойти на расстояние не менее 1,5 метра - в этом случае гарантированно электромагнитное поле вас не затронет вообще.
2.5 Теле- и радиостанции
На территории России в настоящее время размещается значительное количество передающих радиоцентров различной принадлежности. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком. Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части. Первая часть зоны - это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны - это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны. Расположение РНЦ может быть различным, например, в Москве и московском регионе характерно размещение в непосредственной близости или среди жилой застройки. Высокие уровни ЭМП наблюдаются на территориях, а нередко и за пределами размещения передающих радиоцентров низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМП для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ. Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов. Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.
Радиостанции ДВ (частоты 30 - 300 кГц). В этом диапазоне длина волн относительно большая (например, 2000 м для частоты 150 кГц). На расстоянии одной длины волны или меньше от антенны поле может быть достаточно большим, например, на расстоянии 30 м от антенны передатчика мощностью 500 кВт, работающего на частоте 145 кГц, электрическое поле может быть выше 630 В/м, а магнитное - выше 1,2 А/м.
Радиостанции СВ (частоты 300 кГц - 3 МГц). Данные для радиостанций этого типа говорят, что напряженность электрического поля на расстоянии 200 м может достигать 10 В/м, на расстоянии 100 м - 25 В/м, на расстоянии 30 м - 275 В/м (приведены данные для передатчика мощностью 50 кВт).
Радиостанции КВ (частоты 3 - 30 МГц). Передатчики радиостанций КВ имеют обычно меньшую мощность. Однако они чаще размещаются в городах, могут быть размещены даже на крышах жилых зданий на высоте 10- 100 м. Передатчик мощностью 100 кВт на расстоянии 100 м может создавать напряженность электрического поля 44 В/м и магнитного поля 0,12 Ф/м.
Телевизионные передатчики. Телевизионные передатчики располагаются, как правило, в городах. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт. В России в настоящее время проблема оценки уровня ЭМП телевизионных передатчиков особенно актуальна в связи с резким ростом числа телевизионных каналов и передающих станций. Основной принцип обеспечение безопасности - соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля. Каждый радиопередающий объект имеет Санитарный паспорт, в котором определены границы санитарно-защитной зоны. Только при наличии этого документа территориальные органы Госсанэпиднадзора разрешают эксплуатировать радиопередающие объекты. Периодически они производят контроль электромагнитной обстановки на предмет её соответствия установленным ПДУ.
2.6 Спутниковая связь
Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженной узконаправленный основной луч - главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни поля на большом удалении. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м2. Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.
2.7 Сотовая связь
Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. В настоящее время во всем мире насчитывается более 85 миллионов абонентов, пользующихся услугами этого вида подвижной (мобильной) связи (в России - более 600 тысяч). Предполагается, что к 2001 году их число увеличится до 200-210 миллионов (в России - около 1 миллиона). Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения в УВЧ диапазоне. Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или "соты", радиусом обычно 0,5-10 километров. Базовые станции поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта, БС излучают электромагнитную энергию в диапазоне частот от 463 до 1880 МГц. Антенны БС устанавливаются на высоте 15-100 метров от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т. д.) или на специально сооруженных мачтах. Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМП. Исходя из технологических требований построения системы сотовой связи, диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком "луче". Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы.
Краткие технические характеристики стандартов системы сотовой радиосвязи, действующих в России
Наименование стандарта |
Диапазон рабочих частот БС |
Диапазон рабочих частот МРТ |
Макси-мальная излучаемая мощность БС |
Макси-мальная излучаемая мощность МРТ |
Радиус "соты" |
|
NMT-450 Аналоговый |
463 - 467,5 МГц |
453 - 457,5 МГц |
100 Вт |
1 Вт |
1 - 40 км |
|
AMPS Аналоговый |
869 - 894 МГц |
824 - 849 МГц |
100 Вт |
0,6 Вт |
2 - 20 км |
|
D-AMPS (IS-136) Цифровой |
869 - 894 МГц |
824 - 849 МГц |
50 Вт |
0,2 Вт |
0,5 - 20 км |
|
CDMA Цифровой |
869 - 894 МГц |
824 - 849 МГц |
100 Вт |
0,6 Вт |
2 - 40 км |
|
GSM-900 Цифровой |
925 - 965 МГц |
890 - 915 МГц |
40 Вт |
0,25 Вт |
0,5 - 35 км |
|
GSM-1800 (DCS) Цифровой |
1805 - 1880 МГц |
1710 - 1785 МГц |
20 Вт |
0,125 Вт |
0,5 - 35 км |
БС являются видом передающих радиотехнических объектов, мощность излучения которых (загрузка) не является постоянной 24 часа в сутки. Загрузка определяется наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения БС, дня недели и др. В ночные часы загрузка БС практически равна нулю, т. е. станции в основном "молчат". Исследования электромагнитной обстановки на территории, прилегающей к БС, были проведены специалистами разных стран, в том числе Швеции, Венгрии и России. По результатам измерений, проведенных в Москве и Московской области, можно констатировать, что в 100% случаев электромагнитная обстановка в помещениях зданий, на которых установлены антенны БС, не отличалась от фоновой, характерной для данного района в данном диапазоне частот. На прилегающей территории в 91% случаев зафиксированные уровни электромагнитного поля были в 50 раз меньше ПДУ, установленного для БС. Максимальное значение при измерениях, меньшее ПДУ в 10 раз, было зафиксировано вблизи здания на котором установлено сразу три базовые станции разных стандартов. Имеющиеся научные данные и существующая система санитарно-гигиенического контроля при введения в эксплуатацию базовых станций сотовой связи позволяют отнести базовые станции сотовой связи к наиболее экологически и санитарно-гигиенически безопасным системам связи. Мобильные радиотелефоны (МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 - 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени, зависящей от состояния канала связи "мобильный радиотелефон - базовая станция", т. е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125-1 Вт, однако в реальной обстановке она обычно не превышает 0,05 - 0,2 Вт. Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран, включая Россию, на биологических объектах (в том числе, на добровольцах), привели к неоднозначным, иногда противоречащим друг другу, результатам. Неоспоримым остается лишь тот факт, что организм человека "откликается" на наличие излучения сотового телефона. Поэтому владельцам МРТ рекомендуется соблюдать некоторые меры предосторожности:
не пользуйтесь сотовым телефоном без необходимости;
разговаривайте непрерывно не боле 3 - 4 минут;
не допускайте, чтобы МРТ пользовались дети;
при покупке выбирайте сотовый телефон с меньшей максимальной мощностью излучения;
в автомобиле используйте МРТ совместно с системой громкоговорящей связи "hands-free" с внешней антенной, которую лучше всего располагать в геометрическом центре крыши.
Для людей, окружающих человека, разговаривающего по мобильному радиотелефону, электромагнитное поле, создаваемое МРТ не представляет никакой опасности. Исследования возможного влияния биологического действия электромагнитного поля элементов систем сотовой связи вызывают большой интерес у общественности. Публикации в средствах массовой информации достаточно точно отражают современные тенденции в этих исследованиях.
Мобильные телефоны GSM: швейцарские тесты показали, что излучение, поглощенное головой человека, находится в допустимых европейскими стандартами пределах. Специалисты Центра электромагнитной безопасности провели медико-биологические эксперименты по исследованию влияния на физиологическое и гормональное состояние человека электромагнитного излучения мобильных телефонов существующих и перспективных стандартов сотовой связи. При работе мобильного телефона электромагнитное излучение воспринимается не только приемником базовой станции, но и телом пользователя, и в первую очередь его головой. Что при этом происходит в организме человека, насколько это воздействие опасно для здоровья? Однозначного ответа на этот вопрос до сих пор не существует. Однако эксперимент российских ученых показал, что мозг человека не только ощущает излучение сотового телефона, но и различает стандарты сотовой связи. Руководитель исследовательского проекта доктор медицинских наук Юрий Григорьев считает, что сотовые телефоны стандартов NМТ-450 и GSМ-900 вызывали достоверные и заслуживающие внимания изменения в биоэлектрической активности головного мозга. Однако клинически значимых последствий для организма человека однократное 30-минутное облучение электромагнитным полем мобильного телефона не оказывает. Отсутствие достоверных измерений в электроэнцефалограмме в случае использования телефона стандарта GSМ-1800 может характеризовать его как наиболее “щадящий” для пользователя из трех использованных в эксперименте систем связи.
2.8 Радары
Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси. Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин - излучение, 30 мин - пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд. Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м2.Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты: Иркутск, Сочи, Сыктывкар, Ростов-на-Дону и ряд других.
2.9 Персональные компьютеры
Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения информации на электронно-лучевой трубке. Ниже перечислены основные факторы его неблагоприятного воздействия.
Эргономические параметры экрана монитора
снижение контраста изображения в условиях интенсивной внешней засветки
зеркальные блики от передней поверхности экранов мониторов
наличие мерцания изображения на экране монитора
Излучательные характеристики монитора
электромагнитное поле монитора в диапазоне частот 20 Гц- 1000 МГц
статический электрический заряд на экране монитора
ультрафиолетовое излучение в диапазоне 200- 400 нм
инфракрасное излучение в диапазоне 1050 нм- 1 мм
рентгеновское излучение > 1,2 кэВ
Компьютер как источник переменного электромагнитного поля
Основными составляющими частями персонального компьютера (ПК) являются: системный блок (процессор) и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер, и т. п. Каждый персональный компьютер включает средство визуального отображения информации называемое по-разному - монитор, дисплей. Как правило, в его основе - устройство на основе электронно-лучевой трубки. ПК часто оснащают сетевыми фильтрами (например, типа "Pilot"), источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя (см. таблицу 1).
ПК как источник ЭМП
Источник |
Диапазон частот (первая гармоника) |
|
Монитор сетевой трансформатор блока питания |
50 Гц |
|
статический преобразователь напряжения в импульсном блоке питания |
20 - 100 кГц |
|
блок кадровой развертки и синхронизации |
48 - 160 Гц |
|
блок строчной развертки и синхронизации |
15 110 кГц |
|
ускоряющее анодное напряжение монитора (только для мониторов с ЭЛТ) |
0 Гц (электростатика) |
|
Системный блок (процессор) |
50 Гц - 1000 МГц |
|
Устройства ввода/вывода информации |
0 Гц, 50 Гц |
|
Источники бесперебойного питания |
50 Гц, 20 - 100 кГц |
Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот от 0 Гц до 1000 МГц. Электромагнитное поле имеет электрическую (Е) и магнитную (Н) составляющие, причем взаимосвязь их достаточно сложна, поэтому оценка Е и Н производится раздельно.
Максимальные зафиксированные на рабочем месте значения ЭМП
Вид поля, диапазон частот, единица измерения напряженности поля |
Значение напряженности поля |
||
по оси экрана |
вокруг монитора |
||
Электрическое поле, 100 кГц- 300 МГц , В/м |
17,0 |
24,0 |
|
Электрическое поле, 0,02- 2 кГц, В/м |
150,0 |
155,0 |
|
Электрическое поле, 2- 400 кГц В/м |
14,0 |
16,0 |
|
Магнитное поле, 100кГц- 300МГц, мА/м |
нчп |
нчп |
|
Магнитное поле, 0,02- 2 кГц, мА/м |
550,0 |
600,0 |
|
Магнитное поле, 2- 400 кГц, мА/м |
35,0 |
35,0 |
|
Электростатическое поле, кВ/м |
22,0 |
- |
Диапазон значений электромагнитных полей, измеренных на рабочих местах пользователей ПК
Наименование измеряемых параметров |
Диапазон частот 5 Гц - 2 кГц |
Диапазон частот 2 - 400 кГц |
|
Напряженность переменного электрического поля, (В/м) |
1,0 - 35,0 |
0,1 - 1,1 |
|
Индукция переменного магнитного поля, (нТл) |
6,0 - 770,0 |
1,0 - 32,0 |
Компьютер как источник электростатического поля
При работе монитора на экране кинескопа накапливается электростатический заряд, создающий электростатическое поле ( ЭСтП ). В разных исследованиях, при разных условиях измерения значения ЭСтП колебались от 8 до 75 кВ/м. При этом люди, работающие с монитором, приобретают электростатический потенциал. Разброс электростатических потенциалов пользователей колеблется в диапазоне от -3 до +5 кВ. Когда ЭСтП субъективно ощущается, потенциал пользователя служит решающим фактором при возникновении неприятных субъективных ощущений. Заметный вклад в общее электростатическое поле вносят электризующиеся от трения поверхности клавиатуры и мыши. Эксперименты показывают, что даже после работы с клавиатурой, электростатическое поле быстро возрастает с 2 до 12 кВ/м. На отдельных рабочих местах в области рук регистрировались напряженности статических электрических полей более 20 кВ/м.
Влияние на здоровье пользователя электромагнитных полей компьютера
По обобщенным данным, у работающих за монитором от 2 до 6 часов в сутки функциональные нарушения центральной нервной системы происходят в среднем в 4,6 раза чаще, чем в контрольных группах, болезни сердечнососудистой системы - в 2 раза чаще, болезни верхних дыхательных путей - в 1,9 раза чаще, болезни опорно-двигательного аппарата - в 3,1 раза чаще. С увеличением продолжительности работы на компьютере соотношения здоровых и больных среди пользователей резко возрастает. Исследования функционального состояния пользователя компьютера, проведенные в 1996 году Центром электромагнитной безопасности, показали, что даже при кратковременной работе (45 минут) в организме пользователя под влиянием электромагнитного излучения монитора происходят значительные изменения гормонального состояния и специфические изменения биотоков мозга. Особенно ярко и устойчиво эти эффекты проявляются у женщин. Замечено, что у групп лиц (в данном случае это составило 20%) отрицательная реакция функционального состояния организма не проявляется при работе с ПК менее 1 часа. Исходя из анализа полученных результатов сделан вывод о возможности формирования специальных критериев профессионального отбора для персонала, использующего компьютер в процессе работы.
Влияние аэроионного состава воздуха. Зонами, воспринимающими аэроионы в организме человека, являются дыхательные пути и кожа. Единого мнения относительно механизма воздействия аэроионов на состояние здоровья человека нет.
Влияние на зрение. К зрительному утомлению пользователя ВДТ относят целый комплекс симптомов: появление "пелены" перед глазами, глаза устают, делаются болезненными, появляются головные боли, нарушается сон, изменяется психофизическое состояние организма. Необходимо отметить, что жалобы на зрение могут быть связаны как с упомянутыми выше факторами ВДТ, так м с условиями освещения, состоянием зрения оператора и др.
Синдром длительной статистической нагрузки (СДСН). У пользователей дисплеев развивается мышечная слабость, изменения формы позвоночника. В США признано, что СДСН - профессиональное заболевания 1990-1991 годов с самой высокой скоростью распространения. При вынужденной рабочей позе, при статической мышечной нагрузке мышц ног, плеч, шеи и рук длительно пребывают в состоянии сокращения. Поскольку мышцы не расслабляются, в них ухудшается кровоснабжение; нарушается обмен веществ, накапливаются биопродукты распада и, в частности, молочная кислота. У 29 женщин с синдромом длительной статической нагрузки бралась биопсия мышечной ткани, в которых было обнаружено резкое отклонение биохимических показателей от нормы.
Подобные документы
Характеристика электромагнитного излучения, его основные источники (сотовый телефон, персональный компьютер, бытовые электроприборы). Влияние электромагнитного поля на здоровье человека, его воздействие на клеточном уровне. Анализ методов защиты.
курсовая работа [87,0 K], добавлен 08.04.2015Описание свойств электромагнитных полей математическими средствами. Дефект традиционной классической электродинамики. Базовые физические представления современной теории электромагнитного поля, концепция корпускулярно-полевого дуализма микрочастицы.
статья [225,0 K], добавлен 29.11.2011Анализ квантовой теории полей. Способ получения уравнения Клейна-Гордона-Фока для электромагнитного поля и его классическое решение, учитывающее соответствующие особенности. Процедура квантования (переход к частичной интерпретации электромагнитного поля).
доклад [318,7 K], добавлен 06.12.2012Поля и излучения низкой частоты. Влияние электромагнитного поля и излучения на живые организмы. Защита от электромагнитных полей и излучений. Поля и излучения высокой частоты. Опасность сотовых телефонов. Исследование излучения видеотерминалов.
реферат [11,9 K], добавлен 28.12.2005Макроскопическое электромагнитное поле в сплошных неподвижных средах. Уравнения Максвелла в дифференциальной форме. Энергия электромагнитного поля и теорема Пойнтинга. Применение метода комплексных амплитуд. Волновой характер электромагнитного поля.
реферат [272,7 K], добавлен 19.01.2011Структура электромагнитного поля. Уравнения Максвелла. Условия реализации обычной магнитной поляризации среды. Возбуждение электродинамических полей в металле. Закон частотной дисперсии волнового числа магнитной волны. Характер частотных зависимостей.
доклад [93,2 K], добавлен 27.09.2008Влияние электромагнитного поля (ЭМП) на иммунную, гуморальную, половую и нервную систему. Механизм функциональных нарушений при воздействии ЭМП. Исследования о влиянии ЭМП на развитие эмбриона. Способы и методы защиты от электромагнитных излучений.
доклад [16,2 K], добавлен 03.12.2011Электрическое поле Земли. Атмосферики, радиоизлучения Солнца и галактик. Физические основы взаимодействия электромагнитных полей с биологическими объектами. Главные преимущества и недостатки лазеротерапии. Глубина проникновения волн в различные ткани.
курсовая работа [179,2 K], добавлен 16.05.2016Основные параметры электромагнитного поля и механизмы его воздействия на человека. Методы измерения параметров электромагнитного поля. Индукция магнитного поля. Разработка технических требований к прибору. Датчик напряженности электромагнитного поля.
курсовая работа [780,2 K], добавлен 15.12.2011Электромагнитное поле, его характеристики и источники. Влияние электромагнитных лучей, исходящих от сотовых телефонов, на организм человека. Источники радиационного излучения: естественные и созданные человеком. Термины и единицы измерения радиации.
курсовая работа [134,2 K], добавлен 10.04.2014