Применения в электроэнергетике емкостных преобразователей
Конструкция, принцип действия и область применения в электроэнергетике емкостных преобразователей, их достоинства и недостатки. Структурная схема АЦП кодоимпульсного последовательного приближения. Структурная схема автоматического моста постоянного тока.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.06.2009 |
Размер файла | 385,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
Описать конструкцию, принцип действия и область применения в электроэнергетике емкостных преобразователей
Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.
Для двухобкладочного плоского конденсатора электрическая емкость
где ? - диэлектрическая постоянная; ?- относительная диэлектрическая проницаемость среды между обкладками; ? - активная площадь обкладок; s - расстояние между обкладками.
Из выражения для емкости видно, что преобразователь может быть построен с использованием зависимостей
С =f1(?), С =f2(s), С=f3(?).
На рис. 1.1 схематически показано устройство различных емкостных преобразователей. Преобразователи на рис. 1.1, а представляют собой конденсатор, одна пластина которого перемещается под действием измеряемой величины х относительно неподвижной пластины. Изменение расстояния между пластинами s ведет к изменению емкости преобразователя.
Функция преобразования С = f3(?) нелинейная. Чувствительность преобразователя резко возрастает с уменьшением расстояния ?, поэтому целесообразно уменьшать начальное расстояние между пластинами. При выборе начального расстояния между пластинами необходимо учитывать пробивное напряжение воздуха (10 кВ/см для воздуха).
Рис.1.1 Емкостные преобразователи с изменяющимся расстоянием между пластинами (а), дифференциальный (б), дифференциальный с переменной активной площадью пластин (б) и с изменяющейся диэлектрической проницаемостью среды между пластинами
Такие преобразователи используются для измерения малых перемещений (менее 1 мм).
Малое рабочее перемещение пластин приводит к появлению погрешности от изменения расстояния между пластинами при колебаниях температуры. Соответствующим выбором размеров деталей преобразователя и материалов эту погрешность можно значительно снизить.
В емкостных преобразователях возникает усилие притяжения между пластинами, определяемое производной от энергии электрического поля по перемещению подвижной пластины.
где U и С -- соответственно напряжение и емкость между пластинами.
Применяются дифференциальные преобразователи (рис. 1.1 б), у которых имеется одна подвижная и две неподвижные пластины, При воздействии измеряемой величины х у этих преобразователей одновременно изменяются емкости С1 и С2.
На рис. 1.1 показано устройство дифференциального емкостного преобразователя с переменной активной площадью пластин. Такой преобразователь целесообразно использовать для измерения сравнительно больших линейных (более 1мм) и угловых перемещений. В этих преобразователях легко получить требуемый характер функции преобразования путем профилирования пластин.
Для измерения выходного параметра емкостных преобразователей применяются равновесные и неравновесные мостовые схемы и схемы с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на перемещения порядка 10"' мм.
Цепи с емкостными преобразователями обычно питаются током повышенной частоты (до десятков мегагерц), что вызвано желанием увеличить мощность, рассеиваемую в преобразователе: P=U?wC (а следовательно, и мощность, попадающую в измерительный прибор), и необходимостью уменьшить шунтирующее действие сопротивления изоляции.
Достоинства емкостных преобразователей -- простота устройства, высокая чувствительность и возможность получения малой инерционности преобразователя.
Недостатки -- влияние внешних электрических полей, паразитных емкостей, температуры, влажности, относительная сложность схем включения и необходимость в специальных источниках питания повышенной частоты.
Задание 2. Привести структурную или принципиальную схему АЦП кодоимпульсного последовательного приближения и пояснить его работу
Рис.2. Обобщенная структурная схема АЦП
Широкое применение АЦП в различных областях науки и техники явилось предпосылкой создания разных структур АЦП, каждая из которых позволяет решить определенные задачи, предъявляемые к АЦП в каждом конкретном случае. Из всего многообразия существующих методов аналого-цифрового преобразования в интегральной технологии нашли применение в основном три:
1) метод прямого (параллельного) преобразования;
2) метод последовательного приближения (поразрядного уравновешивания);
3) метод интегрирования.
Каждый из этих методов позволяет добиться наилучших параметров (быстродействия, разрешающей способности, помехоустойчивости и т. д.). Потребность в АЦП с оптимальными параметрами или с отдельными экстремальными параметрами обусловила появление структур преобразователей, использующих комбинацию перечисленных методов. Рассмотрим структурные схемы АЦП, нашедших наибольшее распространение в интегральной технологии.
АЦП последовательного приближения имеет несколько меньшее быстродействие, но существенно большую разрядность (разрешающую способность). В нем используется только один компаратор, максимальное число срабатываний которого за один цикл измерения не превышает числа разрядов преобразователя. Суть такого метода преобразования заключается в последовательном сравнении входного преобразуемого напряжения Us с выходным напряжением образцового ЦАП, изменяющимся по закону последовательного приближения до момента наступления их равенства (с погрешностью дискретности). Входной сигнал Ux с помощью аналогового компаратора КН сравнивается с выходным сигналом образцового ЦАП, который управляется в свою очередь регистром последовательного приближения РгПП. При запуске схемы РгПП устанавливается генератором Г в исходное состояние. При этом на выходе ЦАП формируется напряжение, соответствующее половине диапазона преобразования, что обеспечивается включением его старшего разряда 100 ... 0. Если Us меньше выходного напряжения ЦАП, то старший разряд выключается, включается второй по старшинству разряд (на входе ЦАП код 0100...0), что соответствует формированию на выходе ЦАП напряжения, равного половине предыдущего.
В случае если Их превышает это напряжение, то дополнительно включается третий разряд (на входе ЦАП код 0110...0), что приводит к увеличению выходного напряжения ЦАП в 1,5 раза. При этом выходное напряжение ЦАП вновь сравнивается с напряжением Ux и т. д. Описанная процедура повторяется m раз (где m -- число разрядов АЦП). В итоге на выходе ЦАП формируется напряжение, отличающееся от входного преобразуемого напряжения Ux не более чем на единицу младшего разряда ЦАП. Результат преобразования напряжения Ux в его цифровой эквивалент -- параллельный двоичный код Nx -- снимается с выхода РгПП. Очевидно, погрешность преобразования и быстродействие такого устройства определяются в основном параметрами ЦАП (разрешающей способностью, линейностью, быстродействием) и компаратора (порогом чувствительности, быстродействием). Преимуществом рассмотренной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразователей сравнительно высокого быстродействия (время преобразования порядка нескольких сот наносекунд). На основе метода последовательного приближения реализована и серийно выпускается ИМС 12-разрядного АЦП К572ПВ1 со временем преобразования 100 мкс.
Задание 3. Привести структурную схему и пояснить принцип работы автоматического моста постоянного тока
Автоматические уравновешенные мосты являются техническими приборами высокого класса точности. Они бывают показывающими, показывающими и самопишущими с записью или на дисковой, или на ленточной диаграмме. Приборы с ленточной диаграммой служат для измерения и записи температуры в одной точке (одноточечные) или в нескольких точках (многоточечные). Приборы с дисковой диаграммой изготавливаются только одноточечными. Шкала автоматических уравновешивающих мостов градуирована в градусах Цельсия с указанием её принадлежности к определенной градуировке термометра сопротивления.
По устройству автоматические уравновешенные мосты отличаются от автоматических потенциометров только измерительной схемой. На рис.3.1 дана принципиальная схема автоматического уравновешенного моста. В измерительную схему входят; R1, R2 и R3 - резисторы, образующие три плеча мостовой схемы, четвертое плечо образовано сопротивлением термометра; - реохорд; - шунт реохорда, служащий для подгонки сопротивления до заданного нормированного значения; - резистор для установки диапазона измерения; - добавочный резистор для подгонки начального значения шкалы; - балластный резистор в цепи питания для ограничения тока; - резисторы для подгонки сопротивления линии до определенного значения. Т0 - токоотвод; С1 и С2 - конденсаторы создающие необходимый фазовый сдвиг (90) между магнитными потоками обмотки возбуждения и управляющей обмотки и необходимое напряжение на обмотке возбуждения; С3 - конденсатор, включенный параллельно управляющей обмотке реверсивного двигателя, шунтирует её для компенсации индуктивной составляющей тока в этой обмотке; СД - двигатель для перемещения диаграммной ленты или каретки печатающего устройства. Все резисторы изготавливаются из манганиновой проволоки, следовательно, колебания температуры воздуха не влияют на значения сопротивлений этих резисторов.
Термометр сопротивления подключен к мосту по техпроводной схеме.
Измерение и запись температуры производятся следующим образом. Изменение сопротивления терморезистора нарушает равновесие мостовой схемы, и в диагонали АВ моста возникает напряжение рассогласования, которое поступает на входной трансформатор, затем усиливается усилителем до значения, достаточного для приведения в действие реверсивного двигателя РД. Выходной вал двигателя, вращаясь в ту или иную сторону в зависимости от знака сигнала рассогласования, перемещает движок реохорда и перо самописца СП
Рис. 3.1
При достижении равновесия мостовой схемы выходной вал двигателя останавливается, а движок реохорда, указатель и перо самописца занимают положение, соответствующее измеряемому сопротивлению термометра, а следовательно, температуре измеряемого объекта.
Для автоматических уравновешенных мостов установлена допускаемая основная погрешность, выраженная в процентах от нормирующего значения. Она составляет 0,25 или 0,5.
Основные типы автоматических уравновешенных мостов: показывающие КПМ1 и КВМ1; показывающие и самопишущие с ленточной диаграммой КСМ1, КСМ2 и КСМ4; показывающие и самопишущие с дисковой диаграммой КСМ3. эти приборы имеют дополнительные сигнальные и регулирующие устройства и могут быть использованы в системах сигнализации и регулировки температуры.
Используемая литература
1. Основы метрологии и электрические измерения. Учебник для вузов. Под ред. Е.Д. Душина. Издательство «Энергия», 1980 г.
2. Теплотехнические измерения и приборы. В.П. Преображенский. Издательство «Энергия», 1978 г.
3. Электрические измерения. Учебник для вузов. Под ред. А.В. Фремке. Издательство «Энергия», 1980 г.
Подобные документы
Питание двигателя при регулировании скорости изменением величины напряжения от отдельного регулируемого источника постоянного тока. Применение тиристорных преобразователей в электроприводах постоянного тока. Структурная схема тиристорного преобразователя.
курсовая работа [509,4 K], добавлен 01.02.2015Признаки классификации электроприводов постоянного тока, их составляющие и область применения. Замкнутая автоматическая система – следящий привод. Электромеханические характеристики, функциональная и структурная схемы электропривода, его элементы и блоки.
курсовая работа [4,1 M], добавлен 12.03.2012Рассмотрение двухзвенных преобразователей с импульсным регулированием выходного напряжения или тока как основных преобразователей для высококачественных электроприводов. Виды тока коллекторного двигателя постоянного тока, который получает питание от ИП.
презентация [366,0 K], добавлен 21.04.2019История развития электромеханических преобразователей. Электромеханические преобразователи постоянного тока. Серводвигатели и мотор-ролики. Синхронные и асинхронные двигатели. Сопоставление достоинств и недостатков электромеханических преобразователей.
реферат [786,6 K], добавлен 07.03.2012Назначение и принцип работы тахогенератора. Применение устройств, изготовленных по технологии LongLife. Тахогенераторы постоянного тока в схемах автоматики. Конструкция и принцип действия асинхронного тахогенератора. Амплитудная и фазовая погрешность.
контрольная работа [592,9 K], добавлен 25.09.2011Структурная схема контроля трансформаторных подстанций. Характеристика семейства PROFIBUS. Принцип действия измерительного трансформатора постоянного тока. Режим управления преобразователем частоты. Оценка погрешности каналов измерения напряжения и тока.
курсовая работа [1,2 M], добавлен 29.05.2010Тиристорные однофазные двухполупериодные усилительно-преобразовательные устройства. Автоматизация электроснабжения: общие сведения работы схемы автоматического повторного включения. Устройство, принцип действия, конструкция магнитоуправляемых контактов.
контрольная работа [132,3 K], добавлен 16.02.2015Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.
курсовая работа [1,6 M], добавлен 25.02.2010Датчик как совокупность измерительных преобразователей, виды: генераторные, параметрические. Анализ первичного и завершающего элементов измерительной цепи. Знакомство с датчиками, применяемыми в медицине. Общая характеристика структурной схемы съема.
презентация [1,5 M], добавлен 28.03.2013Моделирование пуска двигателя постоянного тока ДП-62 привода тележки слитковоза с помощью пакета SciLab. Структурная схема модели, ее элементы. Паспортные данные двигателя ДП-62, тип возбуждения. Диаграмма переходных процессов, построение графика.
лабораторная работа [314,7 K], добавлен 18.06.2015