Биомагнетизм
Природа биомагнитных полей и магнитное поле человека. Достоинства биомагнитографии как метода исследования, новейшие разработки в создании приборов для определения биомагнетизма на основе СКВИД (сверхпроводящий квантовый интерференционный датчик).
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 29.04.2009 |
Размер файла | 405,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6
Введение
БИОМАГНЕТИЗМ - это магнитные поля биологических объектов. Жизнедеятельность любого организма сопровождается протеканием внутри него очень слабых электрических токов - биотоков (они возникают как следствие электрической активности клеток, главным образом мышечных и нервных). Биотоки порождают магнитное поле с индукцией 10-14-10-11 Тл, выходящее и за пределы организма. Его называют биомагнитным. Измерение биомагнитного поля и получение на этой основе информации о генерирующих его биотоках составляют метод и предмет возникшего в 70-х гг. 20 века направления исследований, получившего наименование “биомагнетизм”, в отличие от магнитобиологии, изучающей воздействие магнитного поля на живые организмы.
В конце 1960-х годов развитие физики сверхпроводимости привело к созданию нового измерительного прибора, получившего название СКВИД (сверхпроводящий квантовый интерференционный датчик). СКВИД представляет собой чувствительный элемент магнитометров, применяемых для измерения магнитного поля и, следовательно, таких физических величин, как электрический ток, магнитная восприимчивость, перемещение магнетика и т.п. Чувствительность этих новых приборов, по крайней мере, в 1000 раз выше, чем у лучших несверхпроводниковых магнитометров. Для поддержания сверхпроводящего состояния, которое возможно при очень низкой температуре, СКВИД помещают в сосуд Дьюара с жидким гелием (с обнаружением в 1986 году оксидных высокотемпературных сверхпроводников появилась принципиальная возможность создания “азотных” СКВИДов, работающих при температуре 77 К). Если стенки сосуда металлические, то возникающие в них токи искажают магнитные поля от источников, находящихся снаружи. В последнее время разработаны специальные диэлектрические сосуды Дьюара из стеклопластика. В них СКВИД или его специальное входное устройство из сверхпроводящей проволоки (так называемый трансформатор магнитного потока) размещены всего лишь в сантиметре от наружной стенки сосуда и могут без искажений воспринимать магнитное поле от внешнего источника, находящегося при комнатной температуре.
Такой прибор (СКВИД-магнитометр) очень быстро нашел применение для измерения магнитных полей, порождаемых живыми организмами, и прежде всего человеком. Стала развиваться новая область исследований, основанных на анализе информации, поставляемой этими слабыми полями, и получившая наименование биомагнетизма в отличие от магнитобиологии, занимающейся изучением влияния сильных магнитных полей на биопроцессы. Резкое увеличение чувствительности магнитометров, достигнутое благодаря СКВИДу, практически открыло биомагнетизм. Биомагнитные сигналы очень слабы, и их измерение представляет собой непростую физическую задачу. Прежде всего, это объясняется высоким уровнем магнитных шумов в окружающем нас пространстве (рис. 1). Без применения специальных мер защиты от них проведение биомагнитных измерений невозможно.
Большинство исследований сердца, плода, скелетных мышц, глаза, сетчатки глаза, магнитных загрязнений легких, постоянных токов в коже человека и т.п. возможны только в условиях тщательного экранирования от “шумовых” магнитных полей самой различной природы. Существуют разные способы подхода к устранению влияния шумов. Наиболее радикальный -- создание сравнительно большого объема (комнаты), в котором магнитные шумы резко уменьшены с помощью магнитных экранов. Для наиболее тонких биомагнитных исследований (на мозге) шумы необходимо снижать примерно в миллион раз, что может быть обеспечено многослойными стенками из магнитомягкого ферромагнитного сплава (например, пермаллоя). Экранированная комната--дорогостоящее сооружение, и лишь крупнейшие научные центры могут позволить себе ее сооружение. Количество таких комнат в мире в настоящее время исчисляется единицами.
Есть и другой, более доступный способ ослабить влияние внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями) земного магнитного поля и промышленными электроустановками. Вдали от резких магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со временем, но пространственно однородно, слабо меняясь ни расстояниях, сравнимых с размерами человеческого тела. Собственно же биомагнитные поля быстро ослабевают при удалении от живого организма. Это означает, что внешние поля, хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения с удалением от объекта), чем биомагнитные поля.
Приемное устройство прибора со СКВИДом в качестве чувствительного элемента изготовляется так, что оно чувствительно только к градиенту магнитного поля, - в этом случае прибор называют градиометром. Однако, часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится применять прибор, измеряющий вторую пространственную производную индукции магнитного поля -- градиометр второго порядка. Такой прибор можно применять уже в обычной лабораторной обстановке. Но все же и градиометры предпочтительно применять в местах с «магнитно-спокойной» обстановкой, и некоторые исследовательские группы работают и в специально сооружаемых немагнитных домах в сельской местности.
В настоящее время интенсивные биомагнитные исследования ведутся как в магнитоэкранированных комнатах, так и без них, с применением градиометров. В широком спектре биомагнитных явлений есть много задач, допускающих разный уровень ослабления внешних шумов.
Природа биомагнитных полей
Магнитные поля живого организма могут быть вызваны тремя причинами. Прежде всего, это ионные токи, возникающие вследствие электрической активности клеточных мембран (главным образом мышечных и нервных клеток). Другой источник магнитных полей--мельчайшие ферромагнитные частицы, попавшие или специально введенные в организм. Эти два источника создают собственные магнитные поля. Кроме того, при наложении внешнего магнитного поля проявляются неоднородности магнитной восприимчивости различных органов, искажающие наложенное внешнее поле.
Магнитное поле в двух последних случаях не сопровождается появлением электрического, поэтому при исследовании поведения магнитных частиц в организме и магнитных свойств различных органов применимы лишь магнитометрические методы. Биотоки же, кроме магнитных полей, создают и распределение электрических потенциалов на поверхности тела. Регистрация этих потенциалов уже давно используется в исследованиях и клинической практике -- это электрокардиография, электроэнцефалография и т.п. Регистрация биомагнитных полей по аналогии с электрографическими методами (кардиографией, энцефалографией и т.п.) называется биомагнитографией. Казалось бы, что их магнитные аналоги, т.е. магнитокардиография и магнитоэнцефалография, регистрирующие сигналы от тех же электрических процессов в организме, будут давать практически аналогичную информацию об исследуемых органах. Однако, как следует из теории электромагнетизма, строение источника тока в электропроводящей среде (организме) и неоднородность этой самой среды существенно по-разному отражаются на распределении магнитных и электрических полей: некоторые виды биоэлектрической активности проявляют себя преимущественно в электрическом поле, давая слабый магнитный сигнал, другие -- наоборот. Поэтому есть много процессов, наблюдение которых магнитографически предпочтительнее.
К достоинствам биомагнитографии можно отнести следующее:
- магнитография не требует прямого контакта с объектом, т.е. позволяет проводить измерения через повязку или другую преграду. Это не только практически удобно, но и составляет принципиальное преимущество перед электрическими методами регистрации данных, так как места крепления электродов на коже могут быть источниками медленно меняющихся контактных потенциалов. Подобных паразитных помех нет при магнитографических методах, и потому магнитография позволяет, в частности, надежно исследовать медленно протекающие процессы (на сегодняшний день с характерным временем в десятки минут);
- магнитные поля быстро ослабевают при удалении от источника активности, так как являются следствием сравнительно сильных токов в самом работающем органе, в то время как поверхностные потенциалы определяются более слабыми и «размазанными» токами в коже. Поэтому магнитография более удобна для точного определения (локализации) места биоэлектрической активности;
- и, наконец, индукция магнитного поля как вектор характеризуется не только абсолютной величиной, но и направлением, что также может давать дополнительную полезную информацию.
Магнитография и электрография дают разную информацию о токах в организме, поэтому они - не конкурирующие, а дополняющие друг друга методы исследования. Наоборот, именно их комбинация дает наиболее полную информацию об исследуемых процессах. Но для каждого из методов есть области, где применение какого-либо одного из них предпочтительнее.
В качестве датчика для магнитокардиографии обычно используют тороидальную катушку с большим количеством витков, которую размещают по возможности ближе к грудной клетке пациента, находящегося в положении лежа или сидя. Сигнал от датчика через усилитель регистрируется на самописце, в качестве которого можно использовать электрокардиограф. Непременное условие успешной регистрации магнитокардиограммы (МКГ) -- отсутствие у пациента магнитных материалов (металлических зубных протезов, часов и др.), т.к. сигнал от них намного превышает сигнал магнитной составляющей электродвижущей силы сердца.
МКГ напоминает ЭКГ; при ее описании применяют обозначения, принятые для ЭКГ. Максимальная амплитуда основных зубцов регистрируется при записи с подложечной области. По-видимому, МКГ позволяет более четко регистрировать магнитные сигналы от близко расположенных участков сердца. Установлено, что на МКГ патологическая динамика биоэлектрических процессов в периинфарктной зоне отражается полнее, чем на ЭКГ. Из-за сложности технических условий регистрации МКГ метод применяется в основном в научных исследованиях.
Биомагнетизм оказался не только важной частью биологической науки, но и обеспечил базу для развития других применений сверхчувствительной магнитометрии.
Энциклопедия чудес
Биомагнетизм - способность человека удерживать тяжелые предметы на лбу, груди, других вертикальных частях тела. Впервые это явление было обнаружено экспертами объединения "Феномен" в 1988 году у 13-летней девочки из города Гродно Инги Гайдученко и описано в газете "Труд". Многие исследователи относят биомагнетизм в разряд пси-явлений. Но эксперты "Феномена", проведя в том же 1988 году ряд исследований с И. Гайдученко и другими людьми, пришли к выводу, что "налипание" происходит скорее благодаря свойствам влажной кожи, поры которой действуют как присоски на щупальцах осьминога, чем каким-либо психическим особенностям человека. Стоит между поверхностью тела и предметом проложить самую тончайшую пленку, как эффект не то что ослабевает, а начисто исчезает. Не "магнитятся" к телу и шероховатые предметы, хотя их вес может быть значительно меньше гладких объектов, удерживающихся на коже.
Киевлянка Лидия Янковская обладает уникальной биомагнитной способностью. Она притягивает и удерживает на весу различные предметы - от утюгов, ложек и вилок - до стекла весом 5 кг и больше, деревянную плиту в 8 кг, пластиковых изделий.
Учёные, пытаясь разгадать феномен Янковской, выдвигают множество гипотез, но не приходят к единому мнению.
Магнитное поле человека
Человеческий организм способен испускать множество излучений. Самое "примитивное" - тепло (инфракрасное излучение), а также звуковые (акустические) волны. Наконец, на поверхности тела (на коже, волосах) всегда существует электромагнитное поле.
Большинство процессов, происходящих в нашем организме, так или иначе связаны с электрическими и магнитными полями. Причем характеристики таких полей сугубо индивидуальны. Они зависят от многих факторов, к примеру, от частоты сердечных сокращений, интенсивности обмена веществ. Каждому органу присущи свои электромагнитные поля. Для определения электромагнитного поля человека достаточно несложных приборов. Правда, чтобы извлечь полезную информацию, например, для диагностики заболеваний, нужны аппараты посложнее. Впервые их сконструировали в Институте атомной энергии им. И.В.Курчатова.
Наиболее совершенный прибор для определения электромагнитных полей человека - энцефалограф. Он позволяет точно измерить поле в разных точках вокруг головы и по этим данным восстановить распределение электрической активности в коре мозга. С помощью энцефалографа врачи диагностируют многие заболевания.
Впрочем, пока ученые создают все более точные приборы для определения биомагнетизма, животные запросто пользуются своими естественными локаторами. Вспомните, идете вы с кем-нибудь из знакомых, мирно беседуете и даже внимания не обращаете на пробегающую мимо собаку. А та останавливается, ощетинивается и начинает неистово лаять. Это необычное поведение как раз и есть наглядное проявление магнетизма. Животные как бы измеряют наше поле и в соответствии с этим строят свое поведение. Агрессивность собаки, внезапно облаивающей случайного прохожего, вполне объяснима: с точки зрения пса, высокое напряжение, исходящее от человека, опасно, оно представляет угрозу, следовательно, чужака надо прогнать.
В течение жизни поле человека постоянно меняется. У младенца, едва появившегося на свет, биомагнетизм практически отсутствует. В течение первого месяца жизни, пока формируется поле, ребенок особенно уязвим для любого внешнего воздействия. Недаром традиции многих народов запрещают показывать новорожденного родственникам и друзьям в первые три недели после рождения. Ученые установили, что именно к этому сроку вокруг ребенка формируется первая защитная оболочка. Она еще очень слабая, и оттого малыш уютнее чувствует себя на руках у мамы или папы. Он успокаивается, ощущая силу родительского магнетизма. А возможно, и впитывает недостающую энергию.
С возрастом дети становятся все более энергетически независимыми. Строго говоря, процесс взросления можно было бы назвать процессом накопления энергии. С этой точки зрения, пугающие выходки подросткового возраста есть не что иное, как знак независимости: магнетизм личности достиг своего уровня, установленного природой, и не нуждается в дополнительной подпитке. Родителям следует отнестись к этому с пониманием, изменить свое поведение, снизить энергообмен с ребенком, ведь перенасыщение биополя - явление столь же негативное, как и его недостаточность.
Новейшие разработки в создании приборов для определения
биомагнетизма (по материалам Technology Review)
Магнитное поле можно обнаружить практически у любого объекта, оно есть и у человеческого организма, и у мины, закопанной в толще земли. Даже такие микроскопические объекты, как молекулы белка, способны к созданию своего собственного, уникального магнитного поля. Магнитно-резонансная томография (МРТ) и ядерная магнитно-резонансная спектроскопия (ЯМР) - две технологии позволяющие получать потрясающего качества снимки внутренних органов человека, также используются для изучения белковых и других соединений, таких например, как нефть, основываясь на информации о магнитном поле изучаемого объекта. Датчики, построенные с использованием этих технологий, используются для выявления очень слабых магнитных полей, имеют существенные недостатки - габариты и стоимость. Стационарная аппаратура имеет очень высокие показатели по чувствительности, но в то же время, она очень дорогая и потребляет много энергии. Портативные или просто дешевые образцы, имеют крайне низкие показатели по чувствительности.
Джон Китчинг, физик из Национального института стандартов и технологий США, развивает технологию крошечных магнитных датчиков малой мощности, столь же чувствительных как их большие и дорогие аналоги. Датчик размером с рисовое зерно, называется атомный магнитометр.
В атомном магнитометре используется технология оптической магнитометрии. Крошечный датчик состоит из трех ключевых компонентов, которые расположены на кремниевом чипе. Довольно стандартное решение - инфракрасный лазер, фотоэлемент чувствительный к инфракрасному излучению и между ними расположена кубическая камера заполненный атомами цезия. Пока магнитное поле отсутствует, лазерной луч без потерь проходит через цезий. При наличии даже очень слабого магнитного поля, атомы цезия группируются и поглощают свет от лазера, пропорционально мощности магнитного поля. Все эти изменения фиксирует фотоэлемент.
Атомные магнитометры применяются уже около 50 лет, значительная часть из них имеет большой размер за счёт камеры заполненной чувствительным к магнитному полю газом. Самые чувствительные из таких приборов позволяют обнаруживать магнитное поле порядка одного фемтотесла, что составляет миллиардные доли от мощности магнитного поля Земли. Инновация в разработке Китчинга заключается в том, что объем камеры с магнитночувствительным газом уменьшен до нескольких кубических миллиметров, соответственно в тысячи раз сокращено потребление энергии.
Комбинируя литографию и химическое травление, они создают квадратные отверстия диаметром три миллиметра в кремниевых пластинах. Затем, с одной стороны к полученной "кремниевой коробочке" припаивается стеклянная грань. Получается основа для вакуумной камеры, которую заполняют с помощью крошечного стеклянного шприца с цезием, находящемся в парообразном состоянии. После заполнения газом, к камере припаивается вторая стеклянная грань. Процесс наполнения газом и запаивание второй стороны происходит в вакууме, так как цезий легко вступает в реакцию с водородом и кислородом. Далее, готовая вакуумная камера, инфракрасный лазер и фотоэлемент монтируются на микрочип. На верхнюю и нижнюю части вакуумной камеры наносится тонкая проводящая пленка, с помощью разогрева которой, цезий удерживается в парообразном состоянии.
Датчики имеют низкое энергопотребление и могут применяться в портативных сканерах с очень высокой чувствительностью. Такие сканеры помогут определять не только мощность, но и размер магнитного поля, чем больше датчиков в сканере, тем больше информации он сможет предоставить о местоположении объекта и его форме.
При использовании таких датчиков в МРТ и ЯМР аппаратах можно получать снимки высокого качества с помощью магнитов, мощность которых намного ниже, а следовательно, они будут меньше и дешевле.
Технология МРТ получит ещё более широкое распространение. Врачи смогут использовать её при диагностике пациентов с кардиостимуляторами или другими чувствительными имплантантами, которые не должны подвергаться воздействию мощного излучения. Портативные системы найдут широкое применение в каретах скорой помощи и на полях боевых действий. Технология ЯМР сможет выйти за пределы лабораторий и начать использоваться непосредственно на местах - нефтяных вышках, рудниках и шахтах.
Среди различных методов магнитометрии в последние годы наибольшее развитие получила СКВИД-магнитометрия, в основе которой лежат эффекты слабой сверхпроводимости в сверхпроводящих квантовых интерференционных устройствах (СКВИДах). В первую очередь это связано с рекордно высокой чувствительностью метода, достигающей 5*10-33 Дж/Гц (чувствительность по магнитному полю - 10-13 Тл). Примечательно, что чувствительность метода не зависит от уровня сигнала, на фоне которого проводятся измерения, это позволяет надежно регистрировать малые изменения намагниченности на фоне большой статической величины.
Благодаря высокой чувствительности, метод СКВИД-магнитометрии нашел применение не только в традиционной области физического эксперимента, но и в биомедицине, низкотемпературной термометрии, геофизике. Этот метод имеет большие перспективы при исследовании магнитных характеристик вещества, содержащего незначительное количество магнитных примесей, а также микрограммовых образцов. Наконец, высокая чувствительность метода позволяет проводить измерения в очень слабых полях менее 10 Гс, в ряде случаев это обстоятельство имеет принципиальное значение.
В Институте физики СО РАН в начале 90х годов на базе СКВИДа постоянного тока был разработан магнитометр для научных исследований, обладающий следующими характеристиками:
· абсолютная чувствительность - 1*10-7 Гс*см3
· динамический диапазон - до 5*10 -2 Гс*см3
· интервал магнитных полей - 0 - 2000 Э
· диапазон температур - 4,2 - 300 К
· объем гелиевой ванны - 1,2 л.
Магнитометр укомплектован оптической приставкой, позволяющей регистрировать изменения намагниченности при световом воздействии.
В ходе эксплуатации в течение длительного срока (15 лет) прибор показал высокую чувствительность, надежность и универсальность. Благодаря высокой чувствительности, прибор позволяет проводить исследования статических магнитных свойств широкого спектра объектов: от сильномагнитных ферро- и ферримагнетиков до спиновых стекол, мультислойных пленок и наноструктур.
При современной тонкоплёночной технологии изготовления квантовый интерферометр (СКВИД) представляет собой плоский сверхпроводящий замкнутый контур с характерным размером внутреннего отверстия около 50 мкм, обеспечивающим индуктивность интерферометра на уровне 10-10 Гн, что необходимо для оптимизации режима работы магнитометра в целом. Именно малые пространственные размеры интерферометра в сочетании с достаточно высокой прямой чувствительностью (порядка 1 пТл Гц-1/2) к магнитному полю, получаемой без использования входных трансформаторов магнитного потока, породили в начале 90-х идею визуализации магнитного поля с помощью СКВИДа.
ВТСП (высокотемпературный сверхпроводниковый) СКВИД располагается в вакуумированном пространстве криостата на хладопроводе из сапфира, нижний конец которого соединен с стержнем из меди, охлаждаемым за счет контакта с жидким азотом, заливаемым в центральную камеру. СКВИД находится под окном с впаянным магнитопроводом, которые с помощью юстировочных винтов совмещаются при настройке. В процессе измерений образец перемещается с помощью прецизионного координатного маханизма над магнитопроводом. Сигнал со СКВИДа, пропорциональный действующему магнитному потоку, регистрируется с помощью специализированной СКВИД электроники и записывается в персональный компьютер вместе с текущей координатой точки образца, над которой производится измерение. Результатом измерения является двумерное или трехмерное изображение магнитного поля рассеяния объекта на некотором расстоянии от его поверхности. При сохранении общих принципов работы конструкция ССМ может изменяться в зависимости от исследуемого объекта и типа выявляемых магнитных источников.
Уникальная чувствительность ССМ в сочетании с достаточно высоким разрешением по координате делают этот прибор привлекательным для физических экспериментов с экстремально малым количеством вещества в слабых магнитных полях.
Применение биомагнетизма (отрывок из статьи)
Следует понимать, что магниты сами не лечат, они лишь стимулируют организм к самовосстановлению. Магнетизм - абсолютно натуральный фактор. Это не волшебство и не лекарство, но он даёт возможность клеткам оптимально функционировать.
В последние годы значительно расширились показания к применению магнитотерапии. При лечении растяжения связок, переломов костей, ожогов и разрезов (ран) магнитотерапия не только способствует восстановлению, но и позволяет добиться более быстрого результата с меньшим количеством рубцов и хорошим косметическим эффектом. При травмах магнитное лечение сокращает время заживления процесса в два и более раз. При лечении хронических проблем, типа некоторых форм артрита, дегенеративных состояний, диабетических язв и рака магнитотерапия показала великолепные результаты, проявляющиеся в улучшении состояния или выздоровлении.
Доктор медицины Эндрю Бассет, один из наиболее авторитетных специалистов по магнито- и электромагнитотерапии в США, сотрудник Колумбийского университета и Правительственного Медицинского центра в Нью-Йорке, достиг драматических результатов в лечении травм и переломов бедра. С помощью электрической индукции магнитного поля он сумел стимулировать рост мягких тканей, нервов, костей и активизировать циркуляцию крови. По оценке его работы экспертами FDA приблизительно 85% из этих больных смогут обойтись без операции. В октябре 1982 года в обзорной статье, названной «Биомагнетизм: мощная сила нашей жизни», доктор Бассет предсказывал: «Электричество станет столь же вездесущим в медицине, как хирургия и лекарства, а во многих случаях заменит их».
Доктор Р. Беккер в книгах «Телесное электричество» и «Взаимные потоки» описал будущее использования магнитной терапии. Он предсказывал такие удивительные открытия и достижения, которые только сегодня стали реальностью.
Многие врачи Европы и США получают прекрасные результаты при использования магнитотерапии для лечения повреждений мягких тканей от пролежней до ожогов. Эти ткани также хорошо отвечают на лечение, как кости и суставы. В Советском Союзе многие врачи применяют магнитотерапию в послеоперационном периоде для ускорения заживления ран и срастания костей. Такие исследователи. Как Норденстром и Воллин сообщили об использовании магнитов для лечения рака лёгких и молочной железы. Американский стоматолог, доктор Д. Принс успешно применил воздействие магнитов на акупунктурные точки для уменьшения кровоточивости, рвотных позывов и болевой чувствительности. Он обнаружил, что магниты облегчают хронические боли, вызываемые вывихом челюсти и TMJ-синдромом, шлифовкой зубов, мигрени.
Одним из наиболее современных и методов диагностики патологии мягких и твёрдых тканей считается MRI (ядерно-магнитный резонанс), по точности исследования давно обогнавший рентген и компьютерную томографию. К другим ведущим методам исследований, основанным на использовании магнитного поля, относятся: SQUID (квантовая интерферентная диагностика), MKG (магнитокардиография).
В Японии и других странах Востока производится большое количество оздоровительных магнитных устройств для домашнего использования. Одними из наиболее популярных и эффективных считаются магнитные матрасы и подушки (валики). Эти предметы уникальны также и потому, что они не требуют от человека времени на проведение оздоровительных процедур - на них просто спят и получают лечение во сне.
Хотя наука ещё не всегда может объяснить все детали лечебного воздействия магнитного поля во время сна, тем не менее, специальные тесты показывают, что энергетические акупунктурные меридианы под воздействием MSS начинают работать более гармонично. Причём, чем дольше человек использует магнитный матрас, тем больший баланс возникает в его организме.
Другим лечебным эффектом магнитного поля, основанным на законах физики и хорошо аргументированным иследователями, является активизация крово- и лимфообращения. В отчётах по использованию магнитных матрасов пациенты сообщают об увеличении тепла в ногах во время сна, снятии мышечного напряжения, исчезновении болей в суставах. Улучшение кровообращения основано на законе Фарадея и эффекте Холла, двух давно известных законах физики, объясняющих механизм влияния магнитных полюсов на образование ионных потоков и биоэлектрической активности, которые в свою очередь, ведут к расширению кровеносных сосудов и облегчению движения крови.
*FDA - Food and Drug Administration - Государственное Управление по контролю качества пищевых продуктов и медикаментов США.
*TMJ temporo - mandibular joint - синдром - болезнь височно-нижнечелюстного сустава.
*MSS magnetic sleep system - магнитная система сна, магнитный матрас.
Подобные документы
История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.
презентация [3,9 M], добавлен 22.04.2010Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.
курсовая работа [840,5 K], добавлен 12.02.2014Введение в магнитостатику. Сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля, его графическое изображение. Примеры расчета магнитных полей прямого тока и равномерно движущегося заряда. Сущность закона Био–Савара-Лапласа.
лекция [324,6 K], добавлен 18.04.2013Основные свойства постоянных магнитов. Причины намагничивания железа при внесении его в магнитное поле. Элементарные электрические токи. Магнитное поле постоянных магнитов. Взаимодействие магнитов между собой. Магнитное поле постоянного магнита.
презентация [364,4 K], добавлен 13.04.2012Изучение геофизических и магнитных полей Земли, влияние их на атмосферу и биосферу. Теория гидромагнитного динамо. Причины изменения магнитного поля, исследование его с помощью археомагнитного метода. Передвижение и видоизменение магнитосферы планеты.
реферат [19,4 K], добавлен 03.12.2013История магнита и магнитного компаса. Применение магнитов. Жидкий магнит. Магнитное поле Земли и последствие его возмущений. Электромагнетизм. Магнитное поле в веществе (магнетики). Наблюдение зависимости намагничивания железа от температуры.
реферат [55,5 K], добавлен 01.03.2006Открытие связи между электричеством и магнетизмом, возникновение представления о магнитном поле. Особенности магнитного поля в вакууме. Сила Ампера, магнитная индукция. Магнитное взаимодействие параллельных и антипараллельных токов. Понятие силы Лоренца.
презентация [369,2 K], добавлен 21.03.2014Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.
презентация [293,1 K], добавлен 16.11.2011Магнитное поле двухфазной, трехфазной обмотки. Пример обмотки одной фазы, состоящей из трех симметрично расположенных по окружности статора катушек, образующей шесть полюсов. Условия образования кругового поля. Синхронная скорость машины переменного тока.
контрольная работа [534,4 K], добавлен 25.11.2013Анализом действующих на дипольную частицу сил. Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц. Формула расчета эффективных полей при разных формах зависимости, когда выполняется требование однородности среды.
доклад [47,9 K], добавлен 20.03.2007