Основы формирования основных понятий курса физики средней школы в разделе "Акустика"

Развитие акустики в русле старых традиционных представлений Ньютоновской класcической физики. Изменение силы колебательной системы и вызов в ней явления резонанса. Различие между музыкой и шумом. Возникновение продольных волн колебательных частиц.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 10.02.2009
Размер файла 12,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Если бы каждая струна колебалась только с одной частотой, то все гитары имели бы практически одинаковое звучание. Небольшие отличия были бы обусловлены особенностями резонаторных ящиков. Но «голоса»

Гитар различаются. И во многом благодаря струнам. Дело в том, что струна, помимо основного колебания, частота которого задается гитаристом при зажатии струны, участвует и в других колебаниях, больших частот и меньших амплитуд. Это уже упомянутые выше кратные частоты. Их набор и определяет тембр. Сложное колебание с разными частотами хорошо заметно на басовых («толстых», т.е. 4-й, 5-й и 6-й)струнах (рис.5).

Эти частоты в 2,3,4,6,8 раз выше основной. В зависимости от упругих свойств материала струны эти частоты могут иметь разные амплитуды, т.е. разную громкость звучания на фоне звука основной частоты. Отсюда и разный тембр. Поэтому при смене струн меняется голос гитары (если только новые струны не той же марки, не из той же промышленной партии и не с таким же сроком службы).

Место удара по струне тоже накладывает отпечаток на тембр. Тут дело все в том, что место, где наносится удар пальцем, должно стать пучностью. Середина струны может быть пучностью для основной частоты, но при этом она является узлом для частот вдвое, вчетверо, в восемь раз выше, чем основная (рис.6.). Удар посередине не возбудит колебания с упомянутыми кратными частотами, но может возбудить частоты в 3,6,9… раз выше основной. Зато удар на расстоянии 1/3 от конца струны не возбудит звучание последнего набора кратных частот, но может возбудить звучание частот первого набора.

Таким образом, для наиболее сочного, «богатого» звучания струны надо выбирать такое место, которое являлось бы узлом для наименьшего числа кратных частот. Самое лучшее, если место удара не будет узлом ни для каких кратных частот. Короче, не бейте по узлам! Теперь становится ясно, почему розетка деки расположена не под серединой струн и не где попало, а именно там, где вероятность образования узлов наименьшая. Демонстрируем учащимся, как меняется тембр звучания струны при ударе по ней в разных местах (а не только над розеткой, как это обычно делается при игре). Лучше всего, если учитель сам владеет навыками игры. Тогда он может сыграть несколько раз одну и ту же мелодию, перебирая струны или ударяя по ним в разных местах, - тут разница в оттенке звучания еще заметнее. Теперь обсуждаем ноты, созвучия и аккорды. Современный нотный строй, в теории музыки называемый темперированным, таков, что одноименные ноты соседних октав различаются по частоте в 2 раза. Например, «ля» первой октавы соответствует частоте 440 Гц, второй - 880 Гц, третий - 1320 Гц и т.д.

Расстояние (музыкальный интервал) между одноименными нотами соседних октав так и называется - октава. Разумеется, есть и более мелкие интервалы: малая и большая секунды (полутон и тон соответственно), малая и большая терции (1,5 и 2 тона), кварта (2,5тона), квинта (3,5 тона), секта (4,5 тона), септима (5,5 тона). Даже человеку, не владеющему игройна гитаре, не очень трудно будет эти созвучия воспроизвести: в обозначениях для гитары они показаны на рис. 7. При воспроизведении имеет смысл спрашивать учащихся, приятно или нет звучит интервал. Созвучия, соответствующие разным интервалам, воспринимаются слухом и сознанием по-разному: одни звучат более приятно, другие - менее или вовсе неприятно, «грязно», как говорят музыканты. Почему? А вот почему. Каждое созвучие - это одновременное звучание двух (или нескольких) основных частот или результат сложения колебаний. Результаты сложения электромагнитных колебаний мы можем наблюдать на экране осциллографа, т.е. видеть. Вспомним, когда при сложении электромагнитных колебаний получается устойчивая, хорошо различимая, «приятная» для наблюдателя картина? При идеальной кратности частот складываемых колебаний. То же самое и с механическими, в том числе звуковыми колебаниями. Если отношение частот не кратное, то уху как бы непонятно, на какую из «непримиримых» частот настраиваться, оно чувствует диссонанс.

Посмотрим на частоты, соответствующие звукам какого-либо небольшого диапазона. Например, от «до» первой октавы до «ми» второй октавы:

до 261,7 Гц

до# 277,2 Гц

ре 293,7 Гц

ре# 311,1 Гц

ми 329,6 Гц

фа 349,2 Гц

фа# 370,0 Гц

соль 392,0 Гц

соль# 415,3 Гц

ля 440,0 Гц

ля# 46,7 Гц

си 493,9 Гц

до 523,4 Гц

до# 554,4 Гц

ре 587,3 Гц

ре# 622,6 Гц

ми 659,3 Гц

При необходимости легко вычислить значения частот, соответствующих нотам других октав, зная правило удвоение частоты при переходе от одной октавы к другой. В приведенном списке от каждой ноты до соседней с ней - полутон. Следовательно:

до - до# - малая секунда;

до - ре - большая секунда;

до - ре# - малая терция;

до - ми - большая терция;

до - фа - кварта и т.д.

Если мы посмотрим на соотношения частот в разных созвучиях, построенных, например, от ноты «до» первой октавы, то увидим, что они таковы:

Малая секунда 277,2:21,7 = 1,059

Большая секунда 293,7:261,7 = 1,122

Малая терция 311,1:261,7 = 1,188 приблизительно равно 1,2 = 6:5.

Большая терция 329,6:261,7 = 1,259приблизительно равно 1,25 = 5:4.

Кварта 349,2:261,7 = 1,310приблизительно равно 4:3.

Квинта392,0:261,7 = 1,498 приблизительно равно 1,5 = 3:2.

Секста440,0:261,7 = 1,681

Септима493,9:261,7 = 1,887

Октава523,4:261,7 = 2:1.

Как видим, те созвучия, которые для слуха более приятны (они в списке выделены), имеют лучшую или даже идеальную кратность частот, либо отношение, очень близкое к отношению небольших целых чисел. Недаром аккорды (и в особенности гитарные) состоят в основном из терций!

Добавляя в аккорд новый звук, надо следить за тем, чтобы он образовывал «приятное» созвучие хотя бы с одним из уже имеющих звуков. Например, при переходе от обычного аккорда (трезвучия) к септаккордам (так называемым «семеркам»), четвертая нота образует терцию с третьей, а поэтому и аккорд звучит красиво. Желательно сыграть пару таких аккордов. Аппликатура наиболее простой пары аккордов «ля-мажор» и «ля-мажор-септаккорд» (А и А7) приведена на рис.8.

Обратим внимание еще и вот на что. При переходе от ноты к ноте частота звука повышается примерно в 1,06 раза. Этот коэффициент постоянен для всего нотного диапазона. А вот разность частот (Dn) между соседними нотами с ростом частоты (т.е. с повышением тона) увеличивается. Это хорошо видно хотя бы из приведенной выше таблицы. Можно сказать, что в диапазоне частот ноты расположены неравномерно: более низкие ближе друг к другу, а более высокие дальше. Этим и объясняется неравномерность расстановки ладов на грифе гитары: с ростом номера лада порожки располагаются все чаще.

Обратите внимание, что точное значение частоты равно 1,059228. Если при переходе от лада кладу это значение не выдерживается, то с увеличением номера лада ошибка в частоте будет возрастать и гитару будет невозможно настроить правильно. Чем точнее расставлены порожки на грифе, тем гитара дороже, но тем и приятнее звучание, и настраивать гитару легче.

В завершении серии уроков, посвященных рассматриваемой теме (а лучше в конце каждого урока) можно сыграть на гитаре и спеть какую-нибудь песенку. Играть может как учитель, так и кто-либо из учеников. Такое запоминается на всю жизнь, а значит, идет на дело укрепления любви к сложной, но интересной и красивой науке - физике.


Подобные документы

  • Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие [7,9 M], добавлен 03.04.2010

  • Метод совпадений и антисовпадений как один из экспериментальных методов ядерной физики и физики элементарных частиц. Регистрация частиц и квантов с заданной между ними корреляцией в пространстве и во времени. Способы повышения временного разрешения.

    контрольная работа [295,2 K], добавлен 15.01.2014

  • Определение понятия свободных затухающих колебаний. Формулы расчета логарифмического декремента затухания и добротности колебательной системы. Представление дифференциального уравнения вынужденных колебаний пружинного маятника. Сущность явления резонанса.

    презентация [95,5 K], добавлен 24.09.2013

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Основные закономерности развития физики. Аристотелевская механика. Физические идеи средневековья. Галилей: принципы "земной динамики". Ньютоновская революция. Становление основных отраслей классической физики. Создание общей теории относительности.

    реферат [22,0 K], добавлен 26.10.2007

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

  • Понятие "единой теории полей", анализ известных типов взаимодействий, направлений их объединения. Суть основных положений и достижений современной физики. Особенности физики элементарных частиц. Теории электрослабого взаимодействия, "всего", суперструн.

    курсовая работа [636,9 K], добавлен 23.07.2010

  • Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.

    реферат [685,8 K], добавлен 01.12.2010

  • Поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики. Изучение движения материальной точки по окружности. Понятие динамики вращательного движения твердого тела вокруг неподвижной оси.

    курсовая работа [1,7 M], добавлен 04.05.2011

  • Проведение цикла лабораторных работ, входящих в программу традиционного курса физики: движение электрических зарядов в электрическом и магнитном полях; кинематика и динамика колебательного движения; термометрия и калориметрия.

    методичка [32,9 K], добавлен 18.07.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.