Законы геометрической оптики

Прямолинейность распространения света, принцип Ферма. Сложение гармонических колебаний. Плоское, эллиптическое, сферическое и параболическое зеркало. Отражение света, закон его преломления и скорость света в веществе. Аномальная и нормальная дисперсия.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.02.2009
Размер файла 95,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РЕФЕРАТ

По физике

Законы геометрической оптики

Прямолинейность распространения света. Принцип Ферма

Физика в разных своих разделах часто занимается вопросами весьма несхожими. В частности оптика никак не представляется логическим продолжением предыдущих разделов, которыми мы с Вами занимались. И хотя свет представляет собой электромагнитную волну, разговором о которой мы закончили предыдущий раздел “Электричество и магнетизм”, вопросами электромагнитной природы света мы будем заниматься не слишком много, нас скорее будет интересовать собственно волновая природа света, а не то, что это волна электромагнитная.

В свою очередь мы не станем подробно говорить об оптике геометрической. Но основные ее законы, видимо, обсудить необходимо. Первым из них является закон прямолинейности распространения света. Выглядит он чрезвычайно простым - между двумя точками свет распространяется вдоль прямой. И достаточно естественно возникает вопрос такого рода: “А как же иначе?”

Действительно, такой “способ” распространения света кажется более чем естественным. Но в дальнейшем возникнут достаточно серьезные трудности для понимания - когда мы встретимся с отклонениями от этого закона. Да и едва ли Вам часто приходилось наблюдать прямолинейное распространение волны - прямолинейность распространения и волновая природа, пожалуй, представляются скорее несовместимыми. Разве что такие два примера.

Примерно плоскими являются морские волны, рожденные ветром и пришедшие к нам с очень большого расстояния. Большое расстояние и плоский характер волны представляются неразрывно связанными. И еще такой пример. Возможно, в кинофильмах о войне Вам случалось обратить внимание на непривычную для современного взгляда форму “динамиков” (тогда они назывались репродукторами) - этакая плоская “тарелка”. В те времена еще не было создано мощных источников звука и достаточно хорошая слышимость достигалась за счет создания по возможности узко направленной в нужном направлении плоской звуковой волны, амплитуда колебаний которой слабо уменьшается с расстоянием.

Прежде всего следует подробнее поговорить о том, что именно мы понимаем под направлением или путем распространения света. Важным здесь оказывается понятие луча. Часто говорят, что, например, солнечный луч можно легко увидеть в слегка запыленном затемненном помещении, если свет проникает в него через небольшое отверстие. Или в тени дерева мы можем видеть отдельные солнечные “зайчики” - места падения лучей, прошедших через промежутки между листьями кроны дерева. Такой “наблюдаемый” луч оказывается прямолинейным и о его отражении и преломлении обычно идет речь при постановке экспериментов.

Но мы знаем, что свет имеет волновую природу и более строго лучом называется кривая (прямая в частном случае), проведенная перпендикулярно касательным к фронтам волны в разных точках. Это уже достаточно абстрактное понятие, то, что мы можем увидеть в слегка запыленной комнате, лишь приблизительно соответствует такому пониманию луча.

A *

Итак, если нет никаких препятствий и среда однородна, то луч света прямолинеен. На рисунке мы соединяем точки A и B прямой и говорим, что свет распространяется вдоль этой прямой. Изображенные пунктирными отрезками касательные к фронтам волны перпендикулярны лучу. Сами фронты не обязательно плоские.

Заметим, что фронт волны образуют точки, в которых фазы колебаний одинаковы. (Вспомним также, что фазой называется аргумент гармонической функции.) Обычно рисуют линии пересечения плоскости рисунка фронтами, на которых достигается максимум амплитуды колебаний. В таком случае говорят о гребнях волн.

Вдоль прямой расстояние между двумя точками минимально. Оказывается, что и в других случаях, когда, например, имеется отражающая поверхность, путь распространения света оказывается таким, что вдоль него время движения волны минимально. Это утверждение называют принципом Ферма - в простейшей, можно сказать, первоначальной формулировке. Эту формулировку нам еще предстоит в дальнейшем уточнять.

Отражение света. Плоское зеркало

Отражение света происходит на границе сред с различными (фазовыми) скоростями распространения волны. Особый интерес представляет собой граница металл - вакуум. Внутри металла распространение света, вообще говоря, невозможно.

Рассмотрим процесс отражения света от зеркальной металлической поверхности подробнее.

Сложности при анализе оптических явлений возникают из-за сложности самих процессов. По мере углубления их анализа нам будет необходимо учитывать все больше разного рода тонкостей и особенностей. К таковым относится, например, поляризация света.

Мы говорили, что электромагнитная (световая) волна называется поперечной - в ней колеблющееся электрическое поле направлено перпендикулярно лучу, перпендикулярно направлению распространения света. При этом возникает достаточно много разных возможностей изменения направления вектора электрического поля вдоль луча света, типов поляризации. Простейшим является случай линейно или плоско поляризованного света, когда направление вектора в некоторой точке или вдоль направления распространения остается неизменным. Им мы пока и ограничимся. Более того, будем считать вектор направленным перпендикулярно плоскости чертежа, параллельно поверхности зеркала. В этом случае (согласно граничным условиям для вектора электрического поля) вблизи зеркальной поверхности равно нулю, что существенно упрощает наши рассуждения. А рассуждения наши будут такими.

В направлении от точки A к точке B' распространяется электромагнитная волна, встречающая на своем пути металлическое зеркало. Под действием электрического поля в металле возникает ускоренное (колебательное) движение электронов, и в результате возникает вторичное излучение. Результирующая волна (или волны) есть результат сложения (суперпозиция) волны, пришедшей от точки A, и волны, которая излучается электронами зеркала. Эта последняя такова, что справа от зеркала электрическое поле равно нулю - колебания этих двух волн противоположны по фазе, они “гасят” друг друга.

A A'

Вспомним результат, который мы получили для излучения цепочки непрерывно расположенных точечных источников - при линейном изменении фазы колебаний вдоль цепочки излучение происходит под некоторым отличном от /2 направлении. При “косом” падении волны на поверхность зеркала фаза колебаний электронов, естественно, изменяется от точки к точке - расстояния от источника света до этих точек различны. Поэтому и вторичная волна, излучаемая колеблющимися электронами, направлена под некоторым углом к норамали к поверхности зеркала. И именно под тем, под которым она на него падает.

Можно быть уверенными, что справа и слева от зеркала излучение колеблющихся электронов симметричны. Излучаемая вправо волна гасит исходную волну, а излучаемая влево как раз и является волной отраженной. Как мы видели, фаза этой волны должна быть противоположна фазе волны падающей.

Волну, идентичную отраженной, мы могли бы получить поместив в точку A' такой же источник света как в A, но излучающий волну с противоположной фазой. И этом случае в плоскости зеркала (в плоскости симметрии) напряженность электрического поля равна нулю - такие волны “гасят” друг друга в плоскости симметрии, в плоскости зеркала. Амплитуда электромагнитных колебаний равна нулю.

При взаимодействии электромагнитной волны с веществом с этим последним взаимодействует именно электрическое, а не магнитное поле. Поэтому, если из точки A' происходит излучение волны с противоположной фазой и мы просто уберем зеркало, картина колебаний не изменится.

В связи с изменением фазы колебаний при отражении от зеркала на вводится новый для нас термин - “потеря полуволны”. Он будет достаточно понятен, если вспомнить, что при распространении волны в отстоящих на /2 точках колебания происходят в противофазе.

Закон отражения утверждает, что при отражении света луч падающий, луч отраженный и перпендикуляр к поверхности зеркала в точке отражения лежат в одной плоскости. При этом угол падения равен углу отражения - 1 = 2. Этот закон можно считать следствием принципа Ферма: длина ломаной ACB, равная длине отрезка A'B, представляет собой минимальный путь между точками A и B для распространения света с отражением от зеркала. При смещении точки отражения C вверх или вниз длина пути увеличивается.

Сложение гармонических колебаний

Из всех разнообразных видов волн мы ограничиваемся здесь лишь волнами, которые представляют собой процесс распространения гармонических или почти гармонических колебаний. Нам придется достаточно много заниматься сложением большого числа колебаний и потому представляется полезным еще раз вспомнить о сущности используемого метода - метода векторных диаграмм.

Сначала посмотрим, как могут быть представлены или описаны волновой процесс и происходящие при этом колебания.

На рисунке представлен график зависимости напряженности электрического поля световой волны от координаты. Естественно, это график зависимости E(x) в некоторый момент времени. Эту картинку следует представлять себе движущейся со скоростью света вдоль оси OX. Если по оси абсцисс будет отложено времени, тот же график будет представлять собой колебания электрического поля в некоторой точке.

E0

Такие способы представления волны достаточно наглядны, но неудобны для сложения колебаний или волн. Для этих целей часто используется представление колебаний в виде векторной диаграммы.

Предположим, что в некоторой точке происходят колебания по закону E = E0cos(t+). Эти колебания можно представить таким способом.

E0

Нарисуем некий вспомогательный вектор длины E0 таким образом, чтобы его угол с осью абсцисс при t=0 был равен . Если мы теперь будем вращать вектор с угловой скоростью , его проекция на ось абсцисс будет равна E0cos(t+), т.е. будет представлять собой наше колебание.

Предположим теперь, что в некоторой точке происходит несколько колебаний вида Ei=E0icos(t+i). Для прямого нахождения их суммы нужно решить достаточно сложную тригонометрическую задачу. Но векторная диаграмма позволяет достаточно просто решить эту проблему геометрически.

Для этого достаточно нарисовать векторы длиной E0i так, как это показано на рисунке. Легко найти сумму этих векторов - обозначим длину суммарного вектора E0, его угол с осью абсцисс в начальный момент времени . Поскольку проекция суммы векторов равна сумме их проекций, при вращении суммарного вектора со скоростью его проекция на ось абсцисс будет представлять собой сумму колебаний Ei.

При практическом использовании векторной диаграммы обычно “забывают” о том, что вектора вращаются: определив длину суммарного вектора E0 и начальную фазу , можно записать выражение для суммарных колебаний:

.

Таким образом, тригонометрическая задача сводится к задаче геометрической, которая обычно оказывается проще, а результат - более наглядным. Но то обстоятельство, что этот вектор вращается, в некоторых задачах неожиданно становится существенным и приходится вспоминать об этом вращении.

Применим этот метод для анализа отражения волны от плоского зеркала. Предположим, что в точке A находится некоторый источник света. В разных точках зеркала (C и C', например) колебания электронов будут происходить с разными начальными фазами. С разными фазами будут происходить и колебания электрического поля в точке B, вызванные колебаниями расположенных в разных точках электронов.

Разность фаз этих колебаний определяется разностью длин ломаных ACB и AC'B. Обозначим их как L и L'. Тогда разность фаз колебаний

.

A Z

Здесь c - скорость света, t - разность времен распространения света вдоль ломаных AC'B и ACB, время запаздывания одного сигнала по отношению к другому. Появление знака “минус” связано с тем, что вдоль ломаной AC'B волна проходит большее расстояние, в сложении участвуют колебания волны, излученной в более ранний момент времени.

Длина ломаной ACB минимальна. Поэтому при прохождении луча через эту точку

.

Это означает, что при малом смещении от точеи C вверх или вниз фаза колебаний в точке B из-за колебаний отдельных электронов остается примерно одинаковой, амплитуды соответствующих колебаний складываются. Но при отклонении точки от положения z = 0 (точки C) производная dt/dz и, стало быть, будет возрастать по модулю и “скорость” изменения (модуль производной) будет тем больше, чем сильнее отличается значение координаты z от нуля. На векторной диаграмме это проявляться в быстром изменении разности фаз колебаний (в точке B), вызванных даже близко друг другу расположенных электронов. Соответствующие векторы E0i на диаграмме поворачиваются и при больших значениях z собираются в тесный “клубок”, т.е. дают все меньший вклад в суммарное колебание напряженности электрического поля в точке B.

Так вот, при рисовании векторной диаграммы необходимо решить, в какую сторону поворачивать векторы, отвечающие опережающим по фазе колебаниям. Иначе говоря, выбрать положительное направление отсчета угла, и тем самым - направление вращения вектора.

В механике и электричестве за положительное направления отсчета угла принимается направление против часовой стрелки. Но в оптике традиционно за положительное направление выбирается противоположное направление, по часовой стрелке. Это изменяет вид векторной диаграммы и будет существенно при решении некоторых задач.

В этой связи полезно запомнить такое простое правило для рисования векторных диаграмм: если путь распространения света больше, то соответствующий вектор на диаграмме оказывается повернутым на некоторый угол против часовой стрелки.

Произведем некоторые оценки для конкретного взаимного расположения зеркала, источника света A и точки наблюдения B. Будем считать, что 1 = 2 450, а координаты точек zA = 20 см, и zB = -15 см. Нас будет интересовать, при каком смещении точки C фаза электромагнитных колебаний в точке B изменится на /2.

При такой геометрии длина пути распространения света

И

.

Изменение фазы колебаний на /2 (и, соответственно, поворот вектора на фазовой диаграмме на такой угол) отвечает разности путей распространения света /4. Приняв длину волны = 0,5 мкм, мы получаем:

;

.

Таким образом, согласно нашей оценке заметный вклад в электромагнитные колебания в точке B дают лишь колебания электронов, расположенных на расстояниях меньше 0,2 мм в окрестности точки C.

Эллиптическое зеркало

Уточненная формулировка принципа Ферма

Эллипс представляет собой геометрическое место точек, сумма расстояний от которых до некоторых двух точек (фокусов эллипса) постоянна. Благодаря этому зеркало, сечение которого представляет собой эллипс, оказывается исключительно интересным. При отражении от такого зеркала каждый луч, вышедший из фокуса A после отражения попадает в фокус B. Мы рассматривали отражение от плоского зеркала, тогда путь распространения был минимальным. В случае эллиптического зеркала все пути распространения света одинаковы. Как и в случае плоского зеркала, отраженная волна представляет собой результат излучения колеблющихся электронов, колебания которых вызвала падающая волна Будем считать, что источник волн, излучатель находится в точке A. Но теперь вызванные движением разных электронов электромагнитные колебания в точке B будут происходить с одинаковыми фазами. Векторная диаграмма будет выглядеть иначе - отдельные векторы не будут повернуты один по отношению к другому, будут лежать на одной прямой.

Естественно, при таком отражении для каждого луча также будет справедлив закон отражения.

Если кривизна зеркала в точке отражения будет больше кривизны эллиптического зеркала, длина пути распространения (длина ломаной ACB) будет не минимальной, а максимальной. Но отражение в точке C будет происходить так же, как от эллиптического зеркала. Это вынуждает нас уточнить формулировку принципа Ферма: для пути распространения света определяющей оказывается не минимальность, а экстремальность этого пути. Или же длина пути не должна изменяться при смещении точки отражения.

В этой связи можно провести такие более доказательные рассуждения.

Луч CB проходит также через точки B' и B”. И если длины разных лучей, приходящих из точки A в точку B одинаковы, такого утверждения нельзя сделать для точек B' и B”. Соответственно, и векторные диаграммы для сложения колебаний от отдельных электронов в этих точках будут выглядеть иначе - эти векторы не будут выстраиваться по одной прямой, станут скручиваться в “клубки”. Попробуйте самостоятельно разобраться, какая из приведенных на рисунке диаграмм относится к точке B', а какая к точке B”.

Если Вам понятен смысл векторных диаграмм, Вы поймете и то, что такое различие их вида означает весьма существенное различие амплитуд колебаний в точке B (амплитуда велика) и точках B' и B” с другой стороны. Говорят, что свет “фокусируется” в точке B, в этой точке находится изображение источника света A.

Сферическое зеркало

A B

Свойством сферического зеркала является то, что после отражения от него лучи собираются в некоторой точке, называемой фокусом зеркала.

Рассмотрим падение плоской волны на сферическое зеркало радиуса R. При этом мы ограничимся рассмотрением отражения параксиальных лучей, расстояние которых от оптической оси на малое расстояние, равное длине отрезка AB << R. В этом приближении угол падения можно считать малым.

После отражения луч пересечет оптическую ось в некоторой точке F. При малых будут справедливы выражения:

; ,

из которых следует, что фокусное расстояние зеркала OF равно половине радиуса.

Собственно, мы решили задачу о сферическом зеркале. Но более важной задачей для нас является детальное знакомство с процессами излучения, распространения волн. Поэтому поговорим о процесс фокусировки подробнее.

Ранее мы получили связь между характером изменения фазы колебаний непрерывно расположенных точечных источников при переходе от точки к точке и направлением излучения :

.

При малых значениях будет:

.

Применим это выражение к случаю отражения плоской волны от сферического зеркала. Обозначим на этот раз угол падения через и вместо дифференцирования по y нам нужно будет провести дифференцирование фазы по расстоянию x() от точки .

Почему при переходе от точки к точке вдоль поверхности зеркала изменяется фаза вызванных волной колебаний электронов? Видно, что чем дальше точка падения от центра зеркала, тем меньше путь луча, попадающего в эту точку. Если разность хода равна L, то для подсчета разности фаз необходимо разделить эту величину на и умножить на 2. Таким образом (по модулю),

; .

Теперь мы можем найти зависимость угла направления излучения (по отношению к нормали, радиусу) от угла :

; .

Мы не получили нового результата. Как и должно быть, в чем мы убедились еще раз, угол отражения равен углу падения . Но для нас важно, что этот результат для отражения от сферического зеркала может быть получен и с помощью анализа зависимости фазы колебаний электронов, излучающих вторичную, отраженную волну, от x - расстояния от точки падения луча до оптической оси OC.

Параболическое зеркало

При отражении от сферического зеркала происходит фокусировка только параксиальных лучей. Попробуем теперь найти такое сечение зеркала, чтобы в его фокусе собирались все лучи независимо от расстояния до оптической оси.

У

Для определения вида сечения зеркала воспользуемся принципов ферма. Пусть соответствующая кривая описывается функцией y(x), координаты точки падения x и y. Обозначим буквой F фокус зеркала, его координата (фокусное расстояние) - f.

От точки падения луч пройдет до фокуса расстояние

.

Чтобы у всех параллельных лучей была одинаковая длина пути, необходимо чтобы выполнялось условие

-

после пересечения с горизонтальной пунктирной линии до фокуса совпадающий с оптической осью луч пройдет сначала путь y до точки отражения и затем - f в обратном направлении. Этот путь должен быть равен L, Только в этом случае все лучи соберутся в фокусе зеркала.

Таким образом, мы получаем:

;

;

.

Это парабола и, значит, необходимым нам свойством обладает параболическое зеркало.

Закон преломления света. Скорость света в веществе

Мы с Вами убедились в свое время, что из уравнений Максвелла следует волновое уравнение. Электромагнитные волны с длиной волны примерно в пределах 0,4 0,7 мкм, воспринимаемые глазом, называют светом. И среди множества веществ есть такие, в которых свет может распространяться без заметного уменьшения амплитуды электромагнитных колебаний, прозрачные вещества. Однако, скорость света в веществе отличается от скорости света в вакууме, выражение для которой мы в свое время получили. Повторим теперь проведенные ранее преобразования уравнений Максвелла, но теперь не для вакуума, а для некоторого вещества.

Выпишем уравнения Максвелла для случая отсутствия свободных зарядов и токов проводимости:

Мы будем также использовать выражения

,

считая вещество однородным.

Как и раньше, ограничимся случаем плоской волны, когда электрическое и магнитное поля зависят от одной координаты - от координаты x, т.е. в последующих выражения из производных по координатам отличны от нуля только производные по x:

.

Как видно из этого уравнения, . Это означает, что x - составляющая магнитного поля не зависит от времени. Положим ее равной нулю, поскольку стационарное поле (магнитное как и электрическое) к распространению волны отношения не имеет.

Далее, вектор имеет некоторое направление, и если мы вдоль этого направления направим ось 0Z, то будет и, следовательно, (см. уравнение). Таким образом,

. (*)

Аналогично получим

;

(поскольку ) и

. (**)

Продифференцируем уравнение (*) по координате x, а уравнение (**) по времени:

.

Тогда

.

Мы получили волновое уравнение, и скорость распространения света в веществе . При распространении световой волны с большой степенью точности можно считать = 1, и скорость света в веществе . Таким образом, для нахождения значения скорости v необходимо знать значение диэлектрической проницаемости .

Заметим, что на больших частотах, характерных для световой волны, значение существенно отличается от стационарного, которое входит в уравнения электростатики, и - зависит от частоты. Соответственно, от частоты зависит и (фазовая) скорость распространения световой волны в веществе. В таком случае говорят, что вещество обладает дисперсией.

Самым существенным, что происходит при взаимодействии поля с веществом, это “подвижка” электронов, поляризация молекул. При этом поляризованность оказывается пропорциональной полю, что свидетельствует о квазиупругом характере действующих на электрон “возвращающих” сил. Поэтому при взаимодействии электронов со световой волной будет:

.

Этому уравнению удовлетворяет решение вида . Подставив x в уравнение, получим:

; .

Итак, при смешении под действием электрического поля волны на электрон образуется диполь с моментом p = ex. Обозначив через N концентрацию электронов, мы получим такие выражения для поляризованности , для поляризуемости вещества и диэлектрической проницаемости :

;

; .

В зависимости от соотношения между и 0 и от величины N величина больше или меньше единицы и даже отрицательной. Соответственно мы должны сказать, что скорость света в веществе

будет либо меньше скорости света в вакууме, либо больше ее, либо мнимой. Эти возможности нам нужно будет обсудить более подробно. А пока сделаем одно уточнение. В каком-то конкретном веществе входящие в атомы электроны могут иметь различные частоты свободных колебаний 0k, разными могут быть и их концентрации Nk. Все они будут вносить свой вклад в поляризованность вещества и, соответственно, в величину . поэтому в более общем случае выражение для скорости волны запишется в виде

.

Таким получается выражение для фазовой скорости волны в веществе.

Преломление света

Преломление луча света происходит при переходе из одной среды в другую. Причина преломления - изменение скорости распространения. Применим для получения закона преломления принцип Ферма.

Пусть скорость распространения света в некоторой среде равна v, в вакууме - c. Обычно скорость распространения света в среде меньше скорости в вакууме. Это означает, что для прохождения некоторого пути l в веществе потребуется несколько большее время

.

Мы ввели обозначение n = c/v, эта величина называется показателем преломления. Произведение ln называют оптической длиной пути. Для вакуума n = 1. Если n > 1, то время распространения света от точки A до точки B будет уменьшаться при отклонении пути распространения от прямолинейного, причем при таком отклонении, когда длина пути в вакууме несколько увеличивается, а в веществе - уменьшается.

Подсчитаем время распространения света между точками A и B. Пусть (xA,zA) и (xB,zB) - координаты точек, z - координата точки преломления луча. В вакууме и в веществе свет проходит расстояния

и ,

время распространения -

.

Согласно принципу Ферма

.

Используя введенное ранее обозначение, мы можем записать закон преломления в виде:

.

Получим теперь закон преломления иначе, анализируя пересечение границы плоской волной.

Нарисуем фронты волны таким образом, чтобы они проходили через максимумы напряженности электрического поля при одинаковом их направлении. Они будут совпадать с гребнями волн. Тогда расстояние между фронтами будет равно длине волны света.

Частота колебаний в вакууме и в оптически более плотной среде (n > 1), естественно, одинакова. Значит, длины волны в этих средах различаются так же, как различаются скорости, - в n раз. Это приводит к “излому” фронтов на поверхности оптически плотной среды, причем углы между фронтами и этой поверхностью 1 и 2 равны углам падения и преломления (как углы со взаимно перпендикулярными сторонами).

Треугольники, в которых отрезки длиной n и 0 являются катетами, имеют общую гипотенузу. Поэтому,

.

Мы вновь получили закон преломления.

Полученное нами ранее выражение для скорости распространения света является достаточно грубым приближением. Однако, оно позволяет в принципе понять причину зависимости скорости света от частоты.

Заметим, что удовлетворительное описание зависимости фазовой скорости от частоты полученное нами выражение дает лишь при не слишком малой величине разности 0 и . Иначе амплитуда колебаний электронов становится слишком большой и некоторые наши утверждения оказываются неверными. Так, мы считали, что при колебании электронов не происходит диссипации механической энергии, что при больших амплитудах оказывается неверным. Кроме того, возникают некоторые проблемы с фазой колебаний.

Мы знаем, что при резонансе разность фаз колебаний вынуждающей силы (электрического поля ) и координаты равно /2. Это легко понять и запомнить после такого рассуждения.

При резонансе максимальны амплитуда и диссипация энергии. Значит, при резонансе максимальна мощность вынуждающей силы. Для этого необходимо, чтобы сила изменялась в фазе со скоростью:

.

Умножение экспоненты на мнимую единицу как раз и означает изменение фазы колебаний на /2. В таких условиях не будет пропорциональности между электрическим полем и поляризованностью вещества - они просто не совпадают по фазе, например, обращаются в нуль в разные моменты времени.

0

При малых потерях даже при не слишком большом различии 0 и разность фаз колебаний электрона и электрического поля можно считать равной нулю (при < 0) или (при > 0). Это обстоятельство важно для нас по нескольким причинам.

Зависимость разности фаз от частоты мы в свое время обсуждали. Тем не менее представляется уместным сказать здесь об этом несколько слов.

Рассмотрим этот вопрос на примере движения грузика на пружине. При действии медленно изменяющейся силы ( < 0) наличие грузика, собственно, несущественно - внешняя сила уравновешивается упругой силой деформированной пружины, и в соответствии с законом Гука эта сила пропорциональна смещению грузика. Поэтому изменение координаты, смещение происходит в фазе с силой.

Более удивительным представляется случай, когда частота вынуждающей силы больше резонансной частоты, когда смещение и сила изменяются в противофазе: не просто понять, почему грузик смещается, например, вверх, тогда как сила направлена вниз, “тянет” его в противоположную сторону. Для этого может быть предложено такое объяснение.

При большой частоте несущественным оказывается наличие пружины. Движение грузика определяется законом Ньютона, т.е. в фазе с силой изменяется ускорение, а это последнее - изменяется в противофазе со смещением.

Общий ход показателя преломления от частоты показан на рисунке. При частотах 01, 02 происходит поглощение света, при частотах меньших или больших этих значений показатель преломления оказывается больше или меньше единицы. Это означает, что скорость распространения волны в веществе оказывается больше или меньше скорости света в вакууме. И это обстоятельство непосредственно связано с фазами колебаний электронов. Сколько-нибудь точный расчет, приводящий к такому результату, провести с нашим уровнем знаний не представляется возможным. Попробуем, тем не менее, понять причины изменения скорости распространения волны хотя бы качественно.

Дело в том, что, вообще говоря, скорость распространения электромагнитной волны и в веществе равна скорости волны в вакууме. Но при этом, проходя некоторый тонкий слой вещества, волна возбуждает в нем колебания электронов. В свою очередь, колебания электронов создают некоторую вторичную волну, которая складывается с волной, приходящей к этому слою. И здесь нам нужно провести достаточно тонкое рассуждение.

Сказанное означает, что за слоем колебания представляют собой сумму двух колебаний: колебаний проходящей волны и другой, “вторичной” волны, излученной колеблющимися электронами. Естественно, мы будем рассматривать (бесконечно) тонкий слой и амплитуда колебаний вторичной волны (бесконечно) мала. Но при этом амплитуда результирующих колебаний должна остаться прежней. Это возможно только в том случае, если эти колебания различаются по фазе на . И это приводит к удивительному результату.

t+-kx t--kx

t-k'x t-k”x

Обратимся к векторной диаграмме, которую мы уже неоднократно использовали для сложения колебаний. Пусть на этой диаграмме колебания проходящей волны представлены вектором длиной E, а вторичной волны dE. Как мы выяснили, эти векторы перпендикулярны и на рисунке показаны возможные взаимные расположения этих векторов.

С одной стороны в каждой точке частота колебаний одинакова. Но при переходе от точки к точке изменяется фаза колебаний, изменяется на kx. Таким образом, для этих колебаний в разных точках слагаемое -kx имеет смысл начальной фазы. Но при распространении света в веществе при переходе от точки к точке мы “подключаем” все новые и новые слои вещества, которые добавляют к начальной фазе колебаний плюс или минус . Иначе говоря, при одной и той же частоте в веществе при переходе от точки к точке фаза колебаний изменяется либо больше, чем на -kx, либо меньше чем в вакууме. Говоря иначе, волновое число k в веществе другое, не такое, как в вакууме. Поэтому и наблюдаемая фазовая скорость в веществе v = /k другая, отличная от скорости в вакууме c.

Вспомним еще раз, что мы говорим о частотах, достаточно сильно отличающихся от резонансной, и при этом в зависимости от знака разности 0- фаза колебаний электронов по отношению к фазе электрического поля принимает либо значение 0, либо - . Поэтому, в зависимости от 0- фазовая скорость либо меньше, либо больше c.

Групповая и фазовая скорости света в веществе

Человека, хоть немного сведущего в физике, сильно шокирует утверждение, что скорость света в веществе может быть больше скорости света в вакууме c. Такой человек обычно знает, что согласно теории относительности Эйнштейна скорость c - это максимальная скорость движения физического объекта. Но фазовую скорость нельзя связать с движением какого-нибудь объекта, это лишь скорость движения точки с постоянной фазой колебаний:

.

Иное дело групповая скорость v = d/dk - она не может быть больше c.

Обратимся к зависимости фазовой скорости световой волны от частоты:

;

и рассмотрим в качестве примера распространение рентгеновских лучей. Для них характерна очень большая частота колебаний, так что в выписанном выражении можно пренебречь частотой 0, величина < 1. В этом случае

; .

Запишем выражение для квадрата волнового числа:

и возьмем дифференциал от обеих частей полученного выражения:

.

Таково соотношение между скоростью света в вакууме, фазовой и групповой скоростями. При этом

; .

Таким образом, хотя фазовая скорость электромагнитной волны в рентгеновском диапазоне больше c, групповая скорость оказывается меньше этой величины.

Аномальная дисперсия

Присмотримся внимательнее к выражению для скорости света в веществе:

.

Слагаемые под знаком суммирования велики при частотах ~0. При резонансной частоте такое слагаемое меняет знак, причем при меньшей по отношению к резонансной частоте фазовая скорость больше скорости света в вакууме, а при большей v < c. Такую зависимость фазовой скорости от частоты называют аномальной дисперсией.

Нормальная дисперсия наблюдается в промежутке между соседними резонансными частотами 0k и 0k+1. Аномальная дисперсия наблюдается в узком диапазоне частот, это объясняет тот факт, что, как правило, прозрачные вещества обладают нормальной дисперсией.

Для наблюдения дисперсии может быть использована призма, при прохождении которой лучи света отклоняются к ее основанию. При нормальной дисперсии в видимой области показатель скорость распространения красного цвета больше, а показатель преломления больш меньше, чем фиолетового. Поэтому красный и фиолетовый цвета будут наблюдаться в разных точках экрана, как это показано на рисунке.

Для наблюдения аномальной дисперсии можно воспользоваться методом скрещенных призм. В этом случае отклонение по вертикали определяется дисперсией одной призмы, а по горизонтали - другой. Выбрав одну из призм такой, что дисперсия ее материала нормальная, мы сможем наблюдать на экране зависимость показателя преломления материала другой призмы от частоты.

Ниже на рисунках показаны получающиеся при этом картинки. И более узкой области аномальной дисперсии происходит сильное поглощение света, что и определяет разрыв наблюдаемой кривой.

Как мы видели, ничего ненормального в аномальной дисперсии нет. Просто в некоторых диапазонах частот показатель преломления увеличивается, а в некоторых - уменьшается. Теперь мы понимаем, почему это так происходит.


Подобные документы

  • Особенности физики света и волновых явлений. Анализ некоторых наблюдений человека за свойствами света. Сущность законов геометрической оптики (прямолинейное распространение света, законы отражения и преломления света), основные светотехнические величины.

    курсовая работа [2,1 M], добавлен 13.10.2012

  • Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.

    презентация [1,3 M], добавлен 02.10.2014

  • Исторические факты и законы геометрической оптики. Представления о природе света. Действие вогнутых зеркал. Значение принципа Ферма для геометрической оптики. Развитие волновой теории света. Геометрическая оптика как предельный случай волновой оптики.

    реферат [231,0 K], добавлен 19.05.2010

  • Понятие дисперсии света. Нормальная и аномальная дисперсии. Классическая теория дисперсии. Зависимость фазовой скорости световых волн от их частоты. Разложение белого света дифракционной решеткой. Различия в дифракционном и призматическом спектрах.

    презентация [4,4 M], добавлен 02.03.2016

  • Основные принципы геометрической оптики. Изучение законов распространения световой энергии в прозрачных средах на основе представления о световом луче. Астрономические и лабораторные методы измерения скорости света, рассмотрение законов его преломления.

    презентация [1,5 M], добавлен 07.05.2012

  • Понятие оптического излучения и светового луча. Оптический диапазон длин волн. Расчет и конструирование оптических приборов. Основные законы геометрической оптики. Проявление прямолинейного распространения света. Закон независимости световых пучков.

    презентация [12,0 M], добавлен 02.03.2016

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

  • Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.

    реферат [893,5 K], добавлен 20.03.2014

  • Основные законы оптических явлений. Законы прямолинейного распространения, отражения и преломления света, независимости световых пучков. Физические принципы применения лазеров. Физические явления и принципы квантового генератора когерентного света.

    презентация [125,6 K], добавлен 18.04.2014

  • Основные законы геометрической оптики. Принцип прямолинейного распространения света. Обратимость световых лучей. Явление полного внутреннего отражения в оптических приборах. Фотометрические величины и их единицы. Спектральное распределение яркости.

    контрольная работа [17,6 K], добавлен 09.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.