Электрическое сопротивление

Электрическое сопротивление как предмет изучения. Начальные сведения о силе тока и сопротивлении. Электрическое сопротивление различных веществ. Удельное электрическое сопротивление. Особенности измерения электрической проводимости, его применение.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 26.12.2008
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8

35

СОДЕРЖАНИЕ

  • Введение
  • Глава 1. Электрическое сопротивление как предмет изучения
    • 1.1 Начальные сведения о силе тока и сопротивлении
    • 1.2 Электрическое сопротивление различных веществ
    • 1.3 Удельное электрическое сопротивление
    • 1.4 Особенности измерения электрической проводимости
  • Глава 2. Применение электрического сопротивления
    • 2.1 Теория удельной объёмной проводимости применительно к магнитной жидкости
    • 2.2 Экспериментальные исследования электрической проводимости и диэлектрической проницаемости магнитной жидкости
  • Заключение
  • Список литературы

Введение

В современной жизни электричество применяется практически повсеместно, выступая посредником при передаче энергетических и информационных сигналов. Без электричества невозможно городское хозяйство и обеспечение жизнедеятельности людей. Без знания основ электротехники невозможно исследование природы Земли и околоземного пространства. Без электричества невозможно практически ни одно производство. Без электричества невозможно функционирование наземного и воздушного транспорта. Без электричества невозможны современные системы связи коммуникаций. Без электричества невозможны современные информационные технологии и internet.

Поэтому практически любой инженер должен знать законы распространения электрического сигнала, способы его получения, основные методы анализа электрических цепей и основные устройства, из которых они состоят.

Электрическое сопротивление - величина, характеризующая противодействие электрической цепи (или её участка) электрическому току, измеряется в омах. Электрическое сопротивление обусловлено передачей или преобразованием электрической энергии в другие виды: при необратимом преобразовании электрической энергии (преимущественно в тепловую) Электрическое сопротивление называется сопротивлением активным; Электрическое сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно), называется сопротивлением реактивным.

При постоянном токе Э с цепи (обозначается R) в соответствии с Ома законом равно отношению приложенного к ней напряжения U к силе протекающего тока I (при отсутствии в цепи других источников тока или эдс).

При переменном токе (синусоидальном) Электрическое сопротивление цепи равно , где r - активное сопротивление, а x -реактивное сопротивление цепи, определяемое наличием в цепи индуктивности и электрической емкости; величина Z называется полным электрическим сопротивлением.

Активное сопротивление элемента электрической цепи зависит как от формы элемента и его размеров, так и от материала, из которого он изготовлен. Для однородного по составу элемента в виде бруска, пластины, трубки или проволоки при постоянном его сечении S и длине l, , где r - удельное сопротивление, характеризующее материал элемента; измеряется в ом·м, ом·см или . По удельному сопротивлению все вещества делятся на проводники, полупроводники, изоляторы. При очень низких температурах Электрическое сопротивление некоторых металлов и сплавов падает до нуля. Часто вместо удельного сопротивления, особенно при рассмотрении физической природы Электрическое сопротивление, вводят величину, обратную удельному Электрическое сопротивление,- электропроводность.

Целью данной работы является систематизация, накопление и закрепление знаний об электрическом сопротивлении различных веществ и их применении.

В соответствии с поставленной целью в работе предполагается решить следующие задачи:

- рассмотреть начальные сведения об электрическом токе и электрическом сопротивлении;

- изучить электрическое сопротивление различных веществ и их применение;

- охарактеризовать электрическое сопротивление полупроводников, жидкостей, металлов, твердых веществ, газообразных веществ;

- проанализировать применение электрического сопротивления.

Глава 1. Электрическое сопротивление как предмет изучения

1.1 Начальные сведения о силе тока и сопротивлении

Соберем цепь из лампочки и источника тока. При замыкании цепи, лампочка, конечно же, загорится. Включим теперь в цепь отрезок стальной проволоки. Лампочка станет гореть тусклее. Заменим теперь стальную проволоку на никелиновую. Накал спирали лампочки еще уменьшится. Другими словами, мы наблюдали ослабление теплового действия тока или уменьшение мощности тока. Из опыта следует вывод: последовательное включение в цепь дополнительного проводника всегда приводит к уменьшению мощности тока.

Вспомним, что тепловое действие тока мы объясняем ударами электронов об ионы кристаллической решетки. Следовательно, если накал спирали лампочки уменьшился, значит, уменьшился поток электронов через ее спираль. В таком случае говорят, что уменьшилась сила тока. Итак, под изменением силы тока мы будем понимать изменение количества электронов, проходящих через поперечное сечение металлического проводника за единицу времени.

Теперь вывод из опыта с лампочкой и проволоками запишется так: дополнительный проводник, последовательно включенный в цепь, уменьшает в ней силу тока. Другими словами, проводник оказывает току сопротивление. Различные проводники (отрезки проволоки) оказывают току различное сопротивление.

В чем же причина электрического сопротивления? Вспомним, что ток в металлическом проводнике - это направленное движение электронов, сопровождающееся их соударениями с ионами кристаллической решетки металла. Физикой установлено, что во всех кристаллах электроны совершенно одинаковы, а ионы (их размеры, порядок и плотность расположения) - различны. Именно поэтому различные металлы имеют различное электрическое сопротивление.

Итак, сопротивление проводника зависит от рода вещества, из которого этот проводник изготовлен. Есть ли другие причины, влияющие на сопротивление проводника?

Рассмотрим опыт, изображенный на рисунке. Буквами A и B обозначены концы тонкой никелиновой проволоки, а буквой K - подвижный контакт. Передвигая его вдоль проволоки, мы изменяем длину того ее участка, который включен в цепь (участок AK). Сдвигая контакт K влево, мы увидим, что лампочка станет гореть ярче. Передвижение контакта вправо заставит лампочку гореть тусклее. Из этого опыта следует вывод, что изменение длины проводника, включенного в цепь, приводит к изменению его сопротивления.

Существуют специальные приборы - реостаты. Принцип их действия такой же, как и в рассмотренном нами опыте с проволокой. Отличие лишь в том, что для уменьшения размеров реостата проволоку наматывают на фарфоровый цилиндр, закрепленный в корпусе, а подвижный контакт (говорят: "движок" или "ползунок") насаживают на металлический стержень, одновременно служащий проводником. Итак, реостат - электрический прибор, сопротивление которого можно изменять. Реостаты служат для регулирования тока в цепи.

Третьей причиной, влияющей на сопротивление проводника, является площадь его поперечного сечения. При ее увеличении сопротивление проводника уменьшается. Сопротивление проводников также изменяется при изменении их температуры.

1.2 Электрическое сопротивление различных веществ

Электрическое сопротивление -

1) величина, характеризующая противодействие электрической цепи (или её участка) электрическому току, измеряется в омах. Электрическое сопротивление обусловлено передачей или преобразованием электрической энергии в другие виды: при необратимом преобразовании электрической энергии (преимущественно в тепловую) Электрическое сопротивление называется сопротивлением активным; Электрическое сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно), называется сопротивлением реактивным.

При постоянном токе Э с цепи (обозначается R) в соответствии с Ома законом равно отношению приложенного к ней напряжения U к силе протекающего тока I (при отсутствии в цепи других источников тока или эдс).

При переменном токе (синусоидальном) Электрическое сопротивление цепи равно , где r - активное сопротивление, а x -реактивное сопротивление цепи, определяемое наличием в цепи индуктивности и электрической емкости; величина Z называется полным электрическим сопротивлением.

Активное сопротивление элемента электрической цепи зависит как от формы элемента и его размеров, так и от материала, из которого он изготовлен. Для однородного по составу элемента в виде бруска, пластины, трубки или проволоки при постоянном его сечении S и длине l, , где r - удельное сопротивление, характеризующее материал элемента; измеряется в ом·м, ом·см или . По удельному сопротивлению все вещества делятся на проводники, полупроводники, изоляторы. При очень низких температурах Электрическое сопротивление некоторых металлов и сплавов падает до нуля. Часто вместо удельного сопротивления, особенно при рассмотрении физической природы Электрическое сопротивление, вводят величину, обратную удельному Электрическое сопротивление,- электропроводность.

2) Термин «Электрическое сопротивление» в обиходе часто употребляют применительно к резистору или какому-либо другому элементу, присоединяемому к электрической цепи, например для ограничения или регулирования силы тока в ней.

Электрическое сопротивление -- мера способности тел препятствовать прохождению через них электрического тока. В системе СИ единицей сопротивления является ом (Щ). Сопротивление тела (R) является постоянной величиной для данного проводника, которую можно определить как

,

где

R -- сопротивление

U -- разность электрических потенциалов на концах объекта, измеряется в вольтах

I -- ток, протекающий между концами объекта под действием разности потенциалов.

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой служит сименс.

Высокая электропроводность металлов связана с тем, что в них имеется громадное количество носителей тока -- электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому.

Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов.

Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Данный эффект (свойство проводников) получил название сопротивление. Сопротивлением также называют деталь, оказывающую электрическое сопротивление току.

Свойство проводников ограничивать силу тока в цепи, т. е. противодействовать электрическому току, называют электрическим сопротивлением. Электрическое сопротивление проводника принято обозначать буквой R.

От чего зависит электрическое сопротивление?

Включите в цепь последовательно с амперметром кусок провода и измерьте проходящий через него ток. Потом возьмите кусок такого же провода, но в два раза длиннее, и снова измерьте ток. Вы увидите, что он стал в два раза меньше. Значит сопротивление зависит от длины проводника и эта зависимость обратно пропорциональная.

Если мы возьмем провод такой же длины и из такого же материала, но с площадью сечения в два раза больше, то ток через него тоже станет в два раза больше. Значит, сопротивление зависит от площади сечения проводника.

Наконец, возьмем несколько кусков провода одинаковой длины и одинакового сечения, но сделанных их разного материала, и увидим, что ток через них будет разным. Через медный провод ток будет самым большим, через алюминиевый - поменьше, еще меньше - через железный, и совсем маленький - через нихромовый (нихром - сплав никеля и хрома). Значит сопротивление зависит и от материала проводника.

Эти экспериментальные зависимости можно объединить в одной формуле.

Итак, сопротивление проводника прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от материала, из которого он изготовлен.

Буквой с мы обозначили величину, характеризующую материал проводника. Эта величина называется удельным сопротивлением. Оно равно сопротивлению проводника, изготовленного из данного материала, длиной 1 м и площадью поперечного сечения 1 м2. Удельное сопротивление зависит от температуры.

В Международной системе единиц (СИ) сопротивление выражается в Омах (Ом).

1.3 Удельное электрическое сопротивление

Удельное сопротивление проводника характеризует его способность проводить ток и зависит, прежде всего, от свойств вещества, образующего проводник. Единица измерения удельного сопротивления -- ом*метр (Ом*м); в технике часто применяется производная единица: Ом * мм?/м, равная 10-6 от ом * м. Величина удельного сопротивления обозначается символом с (ро).

Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике

Металл

с, Ом*м?10-6

Алюминий

0,028

Вольфрам

0,055

Железо

0,098

Золото

0,024

Медь

0,0172

Свинец

0,205

Серебро

0,016

Сплав

с, Ом*м?10-6

Нихром

1,05…1,4

Хромаль

1,3…1,5

Манганин

0,43…0,51

Константан

0,5

Никелин

0,4

Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где с -- удельное сопротивление проводника, L -- длина проводника, а S -- площадь сечения проводника (экспериментальный факт). Величина электрического сопротивления проводника измеряется в омах.

Проделаем несколько опытов. Для них нам потребуются: источник тока, реостат, вольтметр, амперметр и доска с натянутыми на ней специально подобранными проволоками одинакового диаметра. Проволока АА - никелиновая; ВВ - тоже никелиновая, но в два раза длиннее первой; следующая проволока, СС - тоже никелиновая, но сложена вдвое; последняя проволока, DD - нихромовая или фехралевая.

Никелин, нихром и фехраль - сплавы железа, никеля, хрома и др.

Все названные приборы соединяют по схеме. От вольтметра отходят провода с металлическими наконечниками (на схеме показаны стрелками). Их можно зажимать под клеммы A, B, C, D на доске с проволоками. Реостат и вольтметр здесь нужны для того, чтобы во время опыта напряжение на проволоках поддерживать постоянным.

Поочередно присоединяя наконечники к клеммам, замечают, что сила тока во второй (длинной) проволоке в два раза меньше, чем в первой, а в третьей (сложенной вдвое) проволоке - в два раза больше, чем в первой. При постоянном напряжении это свидетельствует о том, что сопротивление проволоки ВВ в два раза больше, а сопротивление проволоки СС в два раза меньше, чем сопротивление проволоки АА. На языке алгебры вывод из этого опыта звучит так: сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения.

Под площадью поперечного сечения провода мы понимаем площадь круга, образующегося в месте поперечного перерезания провода. К примеру, поперечное сечение проволоки СС (которая сложена вдвое) представляет собой два круга.

Вспомним теперь про проволоку DD на нашей доске. Она изготовлена не из никелина, как все предыдущие, а из другого сплава. Поочередно присоединяя наконечники к клеммам проволок DD и AA и, сравнивая показания амперметра, мы придем к выводу, что сопротивления проволок отличаются, несмотря на то, что их длины и площади поперечных сечений одинаковы. Следовательно, кроме двух рассмотренных причин - длины и площади поперечного сечения проводника, его сопротивление зависит также и от рода вещества, из которого проводник изготовлен.

Итак, опытным путем мы установили, что сопротивление проводника зависит от трех причин - рода вещества, длины и площади поперечного сечения проводника:

R -

сопротивление проводника, Ом

r -

удельное сопротивление вещества, Ом·мм2/м

l -

длина проводника, м

S -

площадь поперечного сечения проводника, мм2

Коэффициент “r” - удельное сопротивление вещества - различен для различных веществ. Его значения измерены и занесены в специальные таблицы. Например, удельное сопротивление фехраля - 1.3 Ом·мм2/м. Это значит, что фехралевая проволока длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 1.3 ома.

Удельные сопротивления веществ, Ом·мм2/м при 20°С

Алюминий

0.03

Медь

0.02

Вольфрам

0.06

Никелин

0.4

Графит

13

Нихром

1.1

Железо

0.1

Ртуть

0.96

Константан

0.5

Фехраль

1.3

Опытами установлено, что при повышении температуры сопротивление металлических проводников увеличивается.

Выведем формулы для вычисления сопротивлений проводников, соединенных последовательно или параллельно.

Последовательное соединение проводников

Параллельное соединение проводников

Так как

и, согласно закону Ома,

то, подставляя, получим:

Но

тогда

Вынесем и затем сократим общий множитель I :

Таким образом, мы получили формулы для расчета сопротивления проводников, соединенных последовательно или параллельно:

Общее сопротивление последовательного соединения равно сумме сопротивлений его отдельных участков.

Величина, обратная общему сопротивлению параллельного соединения, равна сумме величин, обратных сопротивлениям его отдельных участков.

Рассмотрим формулу в левой рамочке. Вы видите, что общее сопротивление складывается (суммируется) из отдельных сопротивлений. Это значит, что при последовательном соединении проводников общее сопротивление соединения всегда больше сопротивления любого его участка. Пусть, например, соединение составлено из резисторов с сопротивлениями 4 Ом и 5 Ом. Тогда общее сопротивление будет 4 + 5 = 9 Ом. Вы видите, что 9 Ом > 4 Ом и 9 Ом > 5 Ом.

Вообразим теперь, что пять одинаковых резисторов соединили последовательно. Тогда их общее сопротивление вычислится так:

Rоб = R + R + R + R + R = 5R

Обобщая это на случай n штук проводников, получим, что их общее сопротивление увеличивается в n раз:

Перейдем теперь к формуле в правой рамочке. Используя ваши знания по алгебре, вы и сами можете получить следующий вывод: при параллельном соединении проводников общее сопротивление соединения всегда меньше сопротивления любого его участка. Сделав вычисления по формуле, вы найдете, что общее сопротивление резисторов с сопротивлениями 4 и 5 Ом, соединенных параллельно, равно » 2 Ом. Вы видите, что 2 Ом < 4 Ом и 2 Ом < 5 Ом.

Вообразим теперь, что пять одинаковых резисторов соединили параллельно. Тогда их общее сопротивление будет:

Из алгебры вы знаете, что если две величины равны друг другу, то и величи'ны, обратные им, также равны:

Обобщая это на случай n штук проводников, получим, что их общее сопротивление уменьшается в n раз:

1.4 Особенности измерения электрической проводимости

Все проводники, существующие в природе, в зависимости от механизма переноса электричества при прохождении через них электрического тока можно разделить на три класса: электронные, ионные и смешанные.

К классу электронных проводников, в которых переносчиками электрических зарядов являются электроны, относятся металлы, полупроводники, большинство металлических сплавов, углерод и некоторые твёрдые соли и окислы.

В класс ионных проводников входят газы и электролиты, в которых переносчиками электрических зарядов являются ионы и прохождение тока сопровождается переносом вещества.

Изоляционные свойства материалов характеризуются электрическим сопротивлением и пробивным напряжением. Электрическое сопротивление жидкости определяет силу тока, проходящего по ней при заданном напряжении. Величина, обратная сопротивлению, называется объёмной электрической проводимостью.

Класс смешанных проводников состоит из веществ, обладающих частично электронной и частично ионной проводимостью. К ним относятся, например, растворы щелочных и щелочноземельных металлов в жидком аммиаке, некоторые жидкие сплавы и соли, характер проводимости которых меняется в определённом интервале температур, и другие вещества.

Область измерения электропроводности электролитов как одна из областей электрохимических измерений охватывает классы ионных и смешанных проводников. К ним относятся следующие типы веществ:

1) чистые вещества в твёрдом состоянии, в жидком состоянии, расплавленные соли и гидриды;

2) растворы одного или нескольких веществ в твёрдом состоянии, в расплаве, коллоидные и истинные жидкие водные и неводные растворы в неорганических и органических растворителях: окислов, солей кислот, оснований и некоторых элементарных веществ.

Измерительные методы классифицируются по большому количеству характеристик, в частности по роду контакта, по типу выходного сигнала, по характеру напряжения, применяемого для измерения.

В данном эксперименте использовался контактный метод измерения, который характеризуется тем, что в процессе измерения исследуемая магнитная жидкость находится в прямом гальваническом контакте с электродами измерительной ячейки. Однако, хотя они и дают возможность производить точные измерения, но не свободны от погрешностей, обусловленных в частности, в большей или в меньшей степени поляризационными явлениями на электродах. Даже использование мостового метода переменного тока, который обладает высокой точностью измерений и даёт возможность получать непосредственный отсчёт измеряемой величины, при измерении концентрированных растворов появляется погрешность из-за наличия поляризационных явлений.

Эти поляризационные явления при переменном токе выражены в сотни раз слабее, чем при постоянном токе (этим и обусловлено использование переменного тока в эксперименте), и зависят от частоты и концентрации раствора, а также в значительной степени от материала электрода и состояния его поверхности. Несмотря на малую величину поляризации, при измерениях электропроводности она может внести погрешность в измеряемую величину.

Изучению поляризации растворов электролитов переменным током посвящено много экспериментальных и теоретических работ. Из их результатов можно сделать выводы:

1) при прохождении переменного тока через раствор в отдельных его точках происходят периодические изменения концентрации;

2) частота этих периодических изменений пропорциональна частоте переменного тока;

3) амплитуда периодических изменений концентрации уменьшается по мере удаления от поверхности электрода, причём такое уменьшение происходит быстрее с увеличением частоты и с уменьшением коэффициента диффузии потенциалопределяющих ионов.

Величина поляризационного сопротивления, а следовательно, и величина погрешности, которое вносится в измеряемое сопротивление или электрическую проводимость, зависят от большого числа различных параметров системы: материал электрода, состав и концентрация раствора, частота и другое. В некоторых случаях погрешность от поляризационного сопротивления достигает 20%.

Наименьшая погрешность наблюдается при измерении с платинными платинированными электродами, которая при частоте 3000 Гц равна погрешности измерения, и следовательно, этой величиной можно пренебречь. Теория явлений, происходящих на поверхности электрода при прохождении переменного тока, и связь этих явлений со свойствами активной поверхности и величиной поляризационного сопротивления ещё не разработана. На основании экспериментальных данных можно предполагать, что величина поляризационного сопротивления связана со строением кристаллической решётки материала электрода, адсорбционными свойствами его активной поверхности.

Состояние поверхности электрода в значительной степени влияет на величину импеданса. Для электродов, изготовленных из двух различных материалов, развитие истинной поверхности приводит к уменьшению поляризационных явлений. Это объясняется тем, что при увеличении истинной поверхности электрода снижается соответственно истинная плотность тока поляризации и, следовательно, поляризационный эффект.

Что касается частоты переменного тока, то многими исследователями было показано, что для обратимых электродов из различных материалов в водных растворах различных концентраций зависимость величины поляризационного сопротивления RS от частоты выражается формулой:

,

где - константа. Из этого выражения следует, что RS уменьшается с повышением частоты и достигает незначительной величины при частоте выше 1 кГц. Это было учтено при проведении данного эксперимента. Использовалась частота 1 кГц.

Выше уже отмечалось, что погрешность, создаваемую поляризационным сопротивлением, при измерениях электропроводности можно значительно уменьшить, применяя платиновые электроды, покрытые платиновую чернью. Этот эффект впервые обнаружен Кольраушем, который рекомендовал проводить осаждение платиновой черни электролизом из раствора хлороплатината с добавлением следов ацетата свинца.

Таким образом, на основании изложенного выше, первым способом уменьшения или исключения погрешности ДRS является применение платинирования. При этом необходимо учитывать, что платинированные электроды возможно применять только в тех случаях, когда измеряют электропроводность нейтральных и слабо разведённых растворов, имеющих концентрацию выше 0.01 н., если отсутствует опасность, что платиновая чернь будет катализатором нежелательной химической реакции в растворе.

Итак, когда есть условия для применения платинированных электродов, то при соответственном выборе степени платинирования и частоты погрешность, создаваемую поляризационным сопротивлением, можно уменьшить до такой величины, что даже при измерениях, производимых с самой высокой точностью, нет необходимости вводить поправку в результаты измерения на поляризационное сопротивление.

Однако, кроме погрешностей, создаваемых за счёт поляризационного эффекта, необходимо учитывать погрешности от теплового эффекта при протекании тока через ячейку и погрешность от паразитных токов. Для устранения данных видов погрешностей необходимо стремиться к уменьшению напряжения , приложенного к ячейке от источника, которое увеличивает тепловой эффект, также следует предельно сократить продолжительность времени отдельного измерения, нужно увеличить константу ячейки А, что достигается увеличением расстояния между электродами и уменьшением поперечного сечения сосуда. Увеличение объёма сосуда ячейки приводит к уменьшению погрешности измерения, так как для нагревания большого объёма электролита требуется длительное время.

В данном экспериментальном исследовании измерялась электрическая проводимость магнитной жидкости в зависимости от концентрации твёрдой фазы. Для этого использовалась двухэлектродные ячейки, одна из которых имеет электроды из гладкой платины, а другая из меди.

Для вычисления электропроводности магнитной жидкости необходимо знать константу ячейки А (м-1), которую невозможно определить прямым измерением длины сосуда и площади его поперечного сечения вследствие:

а) рассеивания силовых линий тока, которые не ограничиваются столбиком магнитной жидкости, находящейся точно между электродами;

б) невозможности выдержать точно параллельное расположение электродов и строго определённую их форму;

в) сложной формы стеклянного сосуда, ограничивающего распространение силовых линий тока.

На практике принято [Лопатин] для определения константы ячейки А применять стандартные водные растворы хлористого калия, величина электропроводности которых при различных температурах известна с большой точностью. После измерения сопротивления ячейки, заполненной раствором хлористого калия с известной величиной у, из произведения А=уR легко вычисляется константа ячейки А.

Для вычислений стандартной величины электропроводности нормальных растворов хлористого калия при температурах до 50?С удовлетворительные результаты даёт формула:

,

где с - константа, зависимость которой от концентрации раствора хлористого калия приведена ниже:

KCl…………………………………..0.01 0.1 0.5

C104…………………………………232 228 218

При определении константы ячейки с применением стандартных растворов KCl, концентрация которых ниже 0.1 н., необходимо делать поправку на электропроводность воды, которая при 25?С должна иметь величину, близкую к 1.110-6 симсм-1.

Глава 2. Применение электрического сопротивления

2.1 Теория удельной объёмной проводимости применительно к магнитной жидкости

Жидкими основами в магнитных жидкостях, как правило, являются органические среды, занимающие промежуточное положение между ионными диэлектриками и жидкими ионными проводниками (водными растворами электролитов). Широко используемый в качестве твёрдой фазы магнетит имеет в монолите относительно высокую удельную электрическую проводимость, которая, однако, на несколько порядков ниже, чем у металлов

г?2*104 См*м-1

Напомним, что в технических магнитных жидкостях объёмное содержание твёрдых частиц не превышает 25% (иначе наблюдается резкое снижение текучести). При этом магнитные частицы отделены друг от друга слоем ПАВ. Поверхностно активное вещество (например, олеиновая кислота) обычно также органическая жидкость, имеющая химическое сродство к основе и близкие с ней значения подвижности носителей заряда и их концентрации. Так как в качественно приготовленной магнитной жидкости все твёрдые частицы окружены слоем ПАВ, то объёмная проводимость магнитной жидкости должна определяться, по-видимому, концентрацией носителей заряда и их подвижностью в жидкой фазе.

В многочисленных экспериментах не было зарегистрировано существенного влияния магнитного поля, направленного либо параллельно, либо перпендикулярно к постоянному току, проходящему по измерительной ячейке, на электрическую проводимость магнитной жидкости.

Типичные вольт-амперные характеристики качественно приготовленных магнитных жидкостей на основе керосина, снятые без магнитного поля означают:

1) для жидкости с умеренной концентрацией дисперсной фазы (ц=0,008) ток резко возрастает с увеличением напряжения;

2) для жидкости высококонцентрированной (ц=0,3) ток с увеличением напряжения возрастает на очень маленькую величину.

Качественной считалась жидкость, коллоидные частицы Fe3O4 которой пять раз отмывались дистиллированной водой после осаждения. Для этих жидкостей в исследованном диапазоне концентраций ц=0-0,3, начиная с напряжённости Е=2,5 кВ/м, вольт-амперные характеристики становились линейными. По их углу наклона рассчитывалась удельная электрическая проводимость.

Удельная проводимость исследуемых магнитных жидкостей зависела от объёмной концентрации магнетита немонотонным образом. В области 0<ц?0.09 проводимость росла с увеличением концентрации магнитных частиц, а в области высоких концентраций (ц>0.16) - падала. Причём графики, полученные разными экспериментаторами, расходятся. Это можно объяснить, по-видимому, температурной зависимостью электрической проводимости жидкости. Различие в значениях г может быть обусловлено разной степенью отмывки дисперсного магнетита после его получения.

Известно, что аналогичный вид зависимости электрической проводимости свойствен растворам сильных электролитов, и снижение проводимости в области высоких концентраций объяснялось падением подвижности ионов при увеличении общего числа носителей заряда. Это обстоятельство позволяет предположить, что в магнитных жидкостях, полученных методом химической конденсации, существует примесный тип проводимости.

Для уточнения механизма переноса заряда в магнитных жидкостях проводилась серия опытов на жидкостях с магнетитом, который вообще не отмывался после процесса химической конденсации. Вольт-амперные характеристики таких жидкостей снять не удалось, кроме одной, у которой концентрация твёрдой фазы ц=0.27. В экспериментах, проводимых при t=22?C, наблюдался экспоненциальный рост силы тока с увеличением напряжённости электрического поля. Начиная с Е=15-20 кВ/м, наблюдались скачкообразное увеличение I и нестационарность переноса заряда. Для жидкости, у которой ц=0.27, сила тока увеличивалась пропорционально напряжению до Е=15кВ/м, затем вольт-амперная характеристика теряла линейность. Электрическая проводимость этой жидкости рассчитывалась по линейному участку.

Сделаем оценку гидродинамической концентрации для объёмной концентрации ц=0.27. Для частиц средним диаметром dср=10 нм и толщины адсорбционного слоя д=2нм (максимальная длина молекулы олеиновой кислоты) получим цr=(dr/dср)*ц=0.74. При такой концентрации покрытые слоем олеиновой кислоты полидисперсные частицы магнетита находятся в непосредственной близости друг к другу. Следовательно, перемещение в электрическом поле примесных ионов, адсорбирующихся на частицах магнетита в процессе химической конденсации и переходящих в раствор после разбавления концентрированной пасты жидкой основой, затруднено из-за их взаимодействия с полярными длинноцепочечными молекулами олеиновой кислоты. Это взаимодействие и могло быть причиной стационарного переноса заряда в жидкости с объёмной концентрацией непромытого магнетита ц=0.27, содержащей избыточное количество примесных ионов. В жидкостях с меньшими концентрациями непромытого магнетита примесные ионы относительно свободно перемещаются по жидкой фазе, вызывая предпробойное состояние при увеличении напряжённости поля. Другая причина падения электрической проводимости в области высоких концентраций магнитных частиц может заключаться в усиливающимся рассеивании примесных ионов на магнитных моментах частиц.

Приведённые результаты позволяют оценить качество магнитной жидкости по её вольт-амперной характеристике. Избыток примесных ионов в концентрате из коллоидных частиц магнетита и стабилизатора затрудняет стабилизацию магнитной жидкости, так как адсорбирующиеся на частицах ионы препятствуют полному покрытию частиц адсорбционной оболочкой. Следовательно, отклонение от линейной вольт-амперной характеристики или нестационарность процесса переноса заряда в жидкости означают неполную отмывку высокодисперсного магнетита, что приводит к снижению агрегативной устойчивости магнитной жидкости.

Удельная электрическая проводимость магнетитовых магнитных жидкостей на углеводородной основе, измеренная на переменном токе f=60Гц, имеет тот же порядок, что и проводимость, измеренная на постоянном токе: г=10-6 См/м. Такой же результат был получен Б. Капланом и Д. Джейбековым (1976) для магнитной жидкости на основе воды.

По зависимости удельной электрической проводимости магнитной жидкости от температуры можно оценит энергию активации носителей заряда. Обработка данных зависимостей lnг от 1/Т находят энергию активации

Энергия активации приблизительно равна 0.2 эВ для магнитных жидкостей и 0.6 Эв для керосина. Снижение этой энергии для магнитных жидкостей по сравнению с керосином согласуется с гипотезой о существовании в магнитных жидкостях примесных ионов.

Отметим, что электрическое сопротивление магнитных жидкостей снижается приблизительно на три порядка по сравнению с основой. Однако оно остаётся на несколько порядков выше, чем у традиционных магнитных материалов, и поэтому при воздействии внешних магнитных полей потери в них на индукционные токи будут малы.

Электрическая прочность магнитных жидкостей характеризуется пробивным напряжением. Измерения пробивного напряжения для магнитных жидкостей на углеводородной основе показали его снижение (более чем на 50%) по сравнению с жидкой основой. С увеличением магнитного поля, направленного параллельно электрическому, пробивное напряжение дополнительно уменьшается и достигает Епр?0.5 МВ/м при индукции 0.4=0.8 Тл. Эти данные получены для магнетитовых магнитных жидкостей на кремнийорганической основе. Многократное воздействие электрического поля снижало пробивное напряжение испытуемого образца.

2.2 Экспериментальные исследования электрической проводимости и диэлектрической проницаемости магнитной жидкости

В данной курсовой работе проводились исследования электрической проводимости и диэлектрической проницаемости магнитной жидкости. Все измерения проводились мостовым методом с помощью прибора

Магнитная жидкость заливалась в измерительные ячейки двух видов. Одна из них имеет платиновые электроды, другая медные. Конструкции ячеек отличаются друг от друга, их схемы приведены на рисунке.

Схемы применяемых ячеек.

Ячейка с платинированными электродами, как уже отмечалось выше, имеет большую точность результатов измерений. Самым главным её недостатком является необходимость наличия большого объёма магнитной жидкости, что очень трудно осуществить при изучении концентрационных рядов, состоящих из большого количества концентраций. В эту ячейку помещался объём магнитной жидкости равный 50 мл. Исследуемая жидкость разводилась до концентрации ц=1%, имея начальную ц = 16%. С каждой концентрацией отдельно проводились измерения электрической проводимости и диэлектрической проницаемости.

Электроды каждой ячейки соединялись с выходами измерительного прибора на возможно короткое время, что делалось, как было описано выше, во избежание ненужных погрешностей измерений. Все эксперименты проводились при одинаковой температуре. После снятия показаний измерительного прибора для электрической проводимости и значение ёмкости для расчёта диэлектрической проницаемости, ячейка с магнитной жидкостью помещалась в перпендикулярное и параллельное магнитные поля, создаваемые кольцами Гельмгольца. Значения измеряемых величин снимались, когда напряжённость магнитного поля была максимальной. После снятия всех необходимых измерений, магнитная жидкость изымалась из ячейки, разводилась до нужной концентрации и использовалась вновь. Для повторного эксперимента изначально был приготовлен концентрационный ряд, который впоследствии можно использовать многократно.

Первое измерение проводилось в ячейке с платиновыми электродами. Результаты измерений приведены на графиках.

Концентрационная зависимость электрической проводимости.

Из графика видно, что концентрационная зависимость электрической проводимости имеет максимум, который приходится на концентрацию магнитной жидкости около 10%. Далее величина электропроводности плавно спадает с уменьшением концентрации.

Концентрационная зависимость диэлектрической проницаемости.

График зависимости диэлектрической проницаемости от концентрации магнитной жидкости подтверждает ранее полученные результаты [Ферт], в которых проницаемость вела себя подобным образом, т.е. при уменьшении концентрации величина е уменьшается. Разница настоящих и ранее полученных измерений не велика, от неё график лишь сдвигается на определённое значение. Эта разница может быть объяснена разными температурами условий измерения.

Следующие графики получены при измерении этих же величин, но для более точного и многоуровневого концентрационного ряда. Здесь использовалась ячейка с медными электродами. Схема эксперимента такая же как и в случае с ячейкой, имеющую платиновые электроды.

Зависимость электропроводности от концентрации.

Как видно из рисунка, проводимость и в данном случае ведёт себя также, её величина начинает убывать с концентрации 10%. Этот максимум вызывает множество вопросов у исследователей. Некоторые объясняют его изменением подвижности ионов магнитной жидкости с изменением концентрации. Предполагается, что при больших концентрациях подвижность большая, следовательно, число ионов, участвующих в электропроводности велико. При разбавлении МЖ карасином проводимость, а значит, и подвижность увеличивается до определённого значения количества керосина в МЖ. Далее, начиная приблизительно с концентрации 10%, подвижность ионов падает, и проводимость соответственно уменьшается. Другая теория объясняет такое поведение проводимости увеличением степени электролитической диссоциации при увеличении дисперсной фазы в МЖ. Возможно, эти два механизма осуществляются одновременно, накладывая такой отпечаток на поведение графика.

Диэлектрическая проницаемость ведёт себя следующим образом.

Зависимость диэлектрической проницаемости от концентрации МЖ.

Следующие графики изображают зависимости измеряемых величин от изменения направления параллельного и перпендикулярного магнитных полей для различных концентраций.

Изменение проводимости в перпендикулярном магнитном поле

Изменение проницаемости в перпендикулярном магнитном поле.

Относительное изменение проводимости в параллельном магнитном поле.

Изменение проницаемости в параллельном магнитном поле

Заключение

В заключении подведем основные итоги. На основании изученного материала можно сделать следующие выводы.

Итак, электрическое сопротивление -- мера способности тел препятствовать прохождению через них электрического тока. В системе СИ единицей сопротивления является ом (Щ). Сопротивление тела (R) является постоянной величиной для данного проводника, которую можно определить как

,

где

R -- сопротивление

U -- разность электрических потенциалов на концах объекта, измеряется в вольтах

I -- ток, протекающий между концами объекта под действием разности потенциалов.

Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой служит сименс.

Высокая электропроводность металлов связана с тем, что в них имеется громадное количество носителей тока -- электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому.

Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов.

Список литературы

1. Агапов Б.Т., Максютин Г.В., Островерхов П.И. Лабораторный практикум по физике. - М.: Высшая школа, 2004.

2. Ахматов А.С. Молекулярная физика. - М., Знание, 2001.

3. Бакушинский В.Н. Организация лабораторных работ по физике в средней школе. - М., 2003.

4. Беклемишев А.В. Методика и организация лабораторных занятий по физике в высшей школе. - М.: Советская наука, 2006.

5. Деденко Л.Г., Керженцев В.В. Математическая обработка и оформление результатов эксперимента. - М., 2001.

6. Евграфова Н.Н., Каган В.Л. Руководство к лабораторным работам по физике. - М.: Высшая школа, 2004.

7. Зайдель А.Н. Ошибки измерений физических величин. - Л.: Наука, 2004.

8. Кикоин А.К., И. К. Кикоин, Молекулярная физика, «Наука», 2000.

9. Ковалёв П.Г. Молекулярная физика, электродинамика. - Ростов: Университетское, 2003.

10. Лабораторные занятия по физике / Под ред. Гольдина Л.Л. - М.: Наука, 2005.

11. Лабораторный практикум по физике / Под ред. Ахматова А.С. - М.: Высшая школа, 2002.

12. Матвеев А. Н., Молекулярная физика, «Высшая школа», 2001.

13. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. - Л., 2003.

14. Павленко Ю.Г. Молекулярная физика. - М., 2002.

15. Павлов В.И. Механика, молекулярная физика. М., 2002.

16. Телеснин Р. В., Молекулярная физика, «Высшая школа», 2003.

17. Яковлев В.Ф. Курс физики. Теплота и молекулярная физика. - М.: Просвещение, 2004.


Подобные документы

  • Общие сведения о проводниковых материалах. Электрическое сопротивление проводников. Параметры и использование стабилитронов. Полупроводниковые приборы. Основные определения и классификация диэлектриков. Характеристики электроизоляционных материалов.

    реферат [207,6 K], добавлен 27.02.2009

  • Определение силы, направления и плотности электрического тока. Основные параметры детерминированных периодических сигналов. Резистивное сопротивление и проводимость. Индуктивность, ее свойства и единицы измерения. Законы Ома и Кирхгофа. Метод наложения.

    курс лекций [1,1 M], добавлен 26.02.2014

  • Электрическое сопротивление - основная электрическая характеристика проводника. Рассмотрение измерения сопротивления при постоянном и переменном токе. Изучение метода амперметра-вольтметра. Выбор метода, при котором погрешность будет минимальна.

    презентация [158,9 K], добавлен 21.01.2015

  • Единицы измерения электрического тока. Закон Ома и электрическое сопротивление. Применение Закона Ома при расчетах электрических цепей. Применение анализа цепи к модели мембраны. Свойства конденсатора в электрической цепи. Понятие электрической емкости.

    реферат [1,3 M], добавлен 06.11.2009

  • Термобарические условия залегания породы. Влияние температуры и давления на петрофизические зависимости параметров пористости и насыщения. Содержание глинистого материала. Физико-математическое моделирование электромагнитных процессов в горной породе.

    курсовая работа [1,5 M], добавлен 14.01.2015

  • Ток и плотность тока проводимости. Закон Ома в дифференциальной форме. Стороннее электрическое поле. Законы Кирхгофа в дифференциальной форме. Уравнение Лапласа для электрического поля в проводящей среде. Дифференциальная форма закона Джоуля-Ленца.

    презентация [512,3 K], добавлен 13.08.2013

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

  • Действие электрического тока на организм человека. Факторы, влияющие на исход поражения током. Нормирование напряжений прикосновения и токов через тело человека. Эквивалентная схема электрического сопротивления различных тканей и жидкостей тела человека.

    контрольная работа [69,3 K], добавлен 30.10.2011

  • Сопротивление от трения в буксах или подшипниках полуосей троллейбусов. Нарушение симметрии распределения деформаций по поверхности колеса и рельса. Сопротивление движению от воздействия воздушной среды. Формулы для определения удельного сопротивления.

    лекция [359,7 K], добавлен 14.08.2013

  • Система из двух и более электродов, разделенных диэлектриком. Сохранение электрического заряда. Обозначение конденсаторов на схемах. Номинальное напряжение и полярность. Паразитные параметры, электрическое сопротивление изоляции и удельная емкость.

    презентация [1,2 M], добавлен 17.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.