Коэффициент поверхностного натяжения и его значение

Определение коэффициента поверхностного натяжения. Явление поверхностного натяжения. Коэффициент поверхностного натяжения. Обнаружение поверхностного натяжения у жидкостей с использованием поплавка. Получение мыльных плёнок на каркасах разной формы.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 26.12.2008
Размер файла 366,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8

25

СОДЕРЖАНИЕ

  • Введение
  • Глава 1. Определение коэффициента поверхностного натяжения
    • 1.1 Явление поверхностного натяжения
    • 1.2 Коэффициент поверхностного натяжения
  • Глава 2. Определение коэффициента поверхностного натяжения
    • 2.1 Обнаружение поверхностного натяжения у жидкости с помощью поплавка
    • 2.2 Получение мыльных плёнок на каркасах разной формы
  • Заключение
  • Список литературы

Введение

Поверхностные явления - совокупность явлений обусловленных тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности.

К поверхностным явлениям относятся: поверхностное натяжение, капиллярные явления, поверхностная активность, смачивание, адсорбция, адгезия и др.

Коэффициент поверхностного натяжения - работа, необходимая для изотермического увеличения площади поверхности жидкости на 1 кв.м.

Коэффициент поверхностного натяжения:

- уменьшается с повышением температуры;

- равен нулю в критической точке;

- зависит от наличия примесей в жидкости.

Предмет исследования: определение коэффициента поверхностного натяжения.

Цель работы: рассмотрение явления поверхностного натяжения, его коэффициента, изучение существующих методов определения коэффициента поверхностного натяжения жидкостей.

Для достижения данной цели были поставлены следующие задачи:

- углублённое изучение явления поверхностного натяжения;

- рассмотрение понятия и значения коэффициента поверхностного натяжения;

- ознакомиться с существующими методами определения коэффициента поверхностного натяжения.

Цель и задачи работы обусловили выбор ее структуры. Работа состоит из введения, двух глав, заключения, списка использованной при написании работы литературы. Такое построение работы наиболее полно отражает организационную концепцию и логику излагаемого материала.

Глава 1. Определение коэффициента поверхностного натяжения

1.1 Явление поверхностного натяжения

Изучим одно из свойств поверхности жидкости, соприкасающейся с другой средой, например с её собственным паром, с твёрдым телом, в частности со стенками сосуда.

Возьмём катушку и выдуем мыльный пузырь. Как только мы отнимем катушку ото рта, плёнка мыльного пузыря начнёт сокращаться, он уменьшится, а затем исчезнет. Взяв проволочное кольцо с привязанной к нему в двух толчках нитью, получим на нём мыльную плёнку (рис.1, а). На плёнке нить лежит свободно. Прорвём плёнку с одной стороны нити. Оставшаяся часть плёнки сократилась, натянув нить (рис.1, б). Получим плёнку на проволочной рамке, одна перекладина которой подвижна (рис.1, в). В этом случае плёнка тоже сократилась, подняв перекладину Стрючков И.А., Краев П.И. Руководство к лабораторным работам по молекулярной физике. - Ашхабад, 2004.

Выясним, чем обусловлено свойство поверхности жидкости сокращаться. На рис. 2 изображены три молекулы и сферы их действия. Молекулярные силы, действующие на молекулу 1 со стороны молекул, находящихся в сфере молекулярного действия, взаимно уравновешиваются. В иных условиях оказывается молекула 2 на поверхности жидкости. Над ней имеется пар жидкости, действием молекул которого можно пренебречь. При таком условии молекулярные силы, действующие на молекулу 2, оказываются неуравновешенными, их равнодействующая R направлена вглубь жидкости перпендикулярно к её поверхности. В таком состоянии находятся все молекулы поверхностного слоя толщиной в радиус сферы молекулярного действия (приблизительно слой в 1-2 молекулы).

Чтобы молекула 3 оказалась в поверхностном слое жидкости, над ней надо совершить работу против сил, втягивающих её в глубь жидкости. Эта работа совершается за счёт кинетической энергии окружающих её молекул; в результате работы увеличивается потенциальная энергия поверхностного слоя жидкости.

Оказавшись в поверхностном слое, молекула станет обладать большей потенциальной энергией, чем молекулы, расположенные в глубине жидкости. Таким избыточным запасом потенциальной энергии обладают все молекулы поверхностного слоя жидкости. Эта энергия прямо пропорциональна величине поверхности жидкости.

Из курса механики известно, что, начиная от атома всякая система, включая галактики, при равновесии находится в таком состоянии (из всех возможных), при котором запас её потенциальной энергии минимальный. Применительно к поверхности жидкости это означает, что данная поверхность должна сокращаться (если возможно) до минимума, тогда запас потенциальной энергии поверхностного слоя станет наименьшим. Это сокращение вызывается молекулярными силами, действующими вдоль поверхности жидкости. Они называются силами поверхностного натяжения Ковалёв П.Г. Молекулярная физика, электродинамика. - Ростов: Университетское, 2003. Наличием силы поверхностного натяжения и объясняется сокращение плёнки в вышеописанных опытах. Сила поверхностного натяжения, сокращая поверхностный слой, придаёт капле жидкости форму шара, вызывает слипание намоченных водой волос, слипание мокрого песка. Вектор силы поверхностного натяжения F направлен перпендикулярно к любому элементу длины линии, ограничивающей поверхность жидкости, и касательно к этой поверхности (рис. 1, в). В случае, если поверхность жидкости плоская, то вектор силы поверхностного натяжения лежит в плоскости поверхности жидкости.

1.2 Коэффициент поверхностного натяжения

Выясним, как можно измерить силу поверхностного натяжения. Получив мыльную плёнку на проволочной рамке, чтобы она не перемещалась, приложим к ней силу F. Сторона АВ этой рамки подвижна (рис. 1, в). Сила поверхностного натяжения плёнок (одна из которых находится по одну сторону рамки, а другая - по другую) равна весу проволоки АВ и грузика. Если так определять силу натяжения поверхностного слоя, например воды, керосина и т.д., то оказывается, что у разных жидкостей она различна. Для сравнения сил поверхностного натяжения различных жидкостей введена величина, называемая коэффициентом поверхностного натяжения. Величина, характеризующая свойство поверхности жидкости сокращаться и измеряемая силой поверхностного натяжения, действующей на единицу длины линии на поверхности жидкости, называется коэффициентом поверхностного натяжения Евграфова Н.Н., Каган В.Л. Руководство к лабораторным работам по физике. - М.: Высшая школа, 2004. Если обозначить длину границы поверхности жидкости l, силу поверхностного натяжения одной плёнки, действующей на этой границе, - F, то коэффициент поверхностного натяжения будет

. (1)

Коэффициент поверхностного натяжения имеет наименование н/м. С повышением температуры коэффициент поверхностного натяжения чистых жидкостей уменьшается Евграфова Н.Н., Каган В.Л. Руководство к лабораторным работам по физике. - М.: Высшая школа, 2004.

Асимметрия сил взаимодействия молекул переходного слоя Тонкие поверхностные слои конденсированной фазы, толщина которых не превышает радиуса молекулярного действия, имеют, как известно иную структуру и иные физические свойства, чем вещество внутри фазы. с окружающими их (в пределах объёма молекулярного действия) молекулами приводит, как известно, к представлению о наличии тангенциальных и нормальных относительно поверхности раздела фаз сил, действующих на молекулы переходного слоя Ахматов А.С. Молекулярная физика. - М., Знание, 2001. Это - силы поверхностного межфазового натяжения и молекулярного давления.

Обе эти категории сил, действующих на молекулы, которые находятся на различных расстояниях от поверхности раздела фаз, не одинаковы по величине: они монотонно убывают в обоих направлениях по нормали к нормали раздела фаз.

В этом легко разобраться, рассмотрев прохождение молекулы m через поверхность раздела фаз MN (рис. 3). Пусть, например, перемещение молекулы происходит через границу раздела между жидкостью и её насыщенным паром с расстояния радиуса молекулярного действия внутри жидкой фазы на то же расстояние в газообразной фазе Фетисов В.А. Лабораторные работы по физике. - М., 2005.

Молекула переходного слоя, находящаяся на произвольном расстоянии

от фазовой границы (рис. 4), взаимодействует со всеми молекулами, находящимися в пределах шарового объёма её молекулярного действия.

Рис. 4. К расчёту равнодействующей молекулярных сил

Результирующая этого взаимодействия равна, однако, разности суммарных взаимодействий молекулы m с молекулами, находящимися в шаровых сегментах EFG и CHD, так как взаимодействия с молекулами в шаровых поясах ACDB и ABFE уравновешиваются. Если пренебречь притяжением молекул газа, то некомпенсированным остается лишь притяжение молекул, заполняющих сегмент EFG. Величину этого притяжения следует считать пропорциональной числу молекул, находящихся в объёме сегмента, а при постоянной их плотности внутри сегмента - объёму Покровский А.А., Зворыкин Б.С. и др. Демонстрационные опыты по молекулярной физике и теплоте. - М., 2000.

8

25

Рис. 5. Зависимость объёма шарового сегмента от его высоты

При перемещении молекулы через фазовую границу на расстоянии 2 объём возрастает от нуля до , а затем вновь убывает до нуля. Пропорционально этому объёму изменяется и величина силы, действующих на молекулу m. Отсюда можно сделать заключение, что чем ближе молекула жидкости находится к поверхности фазы, тем больше при тепловых соударениях вероятность её выхода в газовую фазу (испарения), и чем ближе молекула пара к фазовой границе, тем больше вероятность её захвата жидкой фазой (конденсации).

Таким образом, во время перехода молекулы через фазовую границу равнодействующая молекулярных сил изменяется пропорционально объёму шарового сегмента

, (2)

где h - высота сегмента. На рис. 5 приведена зависимость =(h); геометрический смысл она имеет в пределах значений h от нуля до 2.

На рис. 6 представлено изменение величины силы, действующей на молекулу при прохождении ею фазовой границы; за начало отчётов принята плоскость ОВ (рис. 3), положение молекулы определяется координатой z. Из рисунка видно, что кривая имеет максимум, соответствующей нахождению молекулы на границе фаз. Зависимость f=(z) в равной мере относится как к поверхностному натяжению, так и к молекулярному давлению. Таким образом, =(z) и pm=(z) Павлов В.И. Механика, молекулярная физика. М., 2002.

До сих пор мы говорили об элементарных силах, действующих на отдельные молекулы. Однако величину поверхностного натяжения , как известно, принято относить к единице длины контура, а молекулярное давление - к единице площади на поверхности фазы. В связи с наличием зависимости =(z), строго говоря, величину поверхностного натяжения (численно равную работе образования элемента поверхности) следует относить к элементарному моноатомному слою поверхностного слоя фазы, находящемуся на определённом расстоянии z от поверхности отсчёта. Обычно поверхностное натяжение относят к самому поверхностному слою фазы (z=), где оно имеет максимальное значение. Учитывая указанные соотношения, можно было бы говорить о «среднем» значении поверхностного натяжения переходного слоя фазы, что соответствовало бы понятию «линейного напряжения переходного слоя» Ахматов А.С. Молекулярная физика. - М., Знание, 2001.

Что касается молекулярного давления, то ввиду наличия зависимости pm=(z) его величину также следует представлять себе как результат суммирования элементарных сил по толщине от переходного слоя Ковалёв П.Г. Молекулярная физика, электродинамика. - Ростов: Университетское, 2003.

До последнего времени не было найдено метода измерения молекулярного давления. Решение этой задачи встречает большие трудности, так как молекулярное давление по его происхождению связано с взаимодействиями молекул переходного слоя чрезвычайно малой толщины (10-7 см) по всей поверхности фазы. Молекулярное давление доступно, однако, вычислению:

, (3)

где pBH - внешнее давление, I - механический эквивалент, Ср и С - молярные теплоёмкости при постоянном давлении и объёме, - термический коэффициент объёма . Величина pm может быть также вычислена на основании уравнения Ван-дер-Ваальса, если известны его константы.

Изменение молекулярного давления для жидкостей и твёрдых тел охватывает три порядка: 10-310-5 атм. Индивидуальные вариации величины pm являются прямым следствием индивидуальных различий атомных и молекулярных структур вещества. Поэтому молекулярное давление может служить надёжным критерием интенсивности молекулярного взаимодействия.

Если известна зависимость f=(z), то можно подсчитать работу выхода молекулы на поверхность фазы. Максимальная работа выхода Яковлев В.Ф. Курс физики. Теплота и молекулярная физика. - М.: Просвещение, 2004:

. (4)

Таким образом, увеличение поверхности связано с затратой работы; при сжатии поверхность сама совершает работу. Из этих термодинамических предпосылок и вытекает представление о поверхностном натяжении как тангенциальных силах, совершающих работу при изменении величины поверхности. Для фазовых поверхностей, имеющих кривизну, ещё Лапласом было введено представление о капиллярном дополнительном давлении р как тангенциальных силах, действующих на поверхностный слой фазы таким образом, что их результирующая направлена к центрам кривизны поверхности Яковлев В.Ф. Курс физики. Теплота и молекулярная физика. - М.: Просвещение, 2004:

. (5)

Действительно, наблюдаемые на опыте поверхностные явления протекают таким образом, как если бы поверхность находилась в состоянии квазиупругого натяжения. Такое представление весьма наглядно и облегчает решение многих задач.

Однако никакой действительной аналогии между поверхностным и упругим натяжением не существует, так как закон Гука по отношению к поверхностному натяжению не выполняется: величина деформации поверхности не зависит от , которое в изометрических условиях изометрической величины поверхности остаётся постоянным.

К сожалению общепринятой теории возникновения поверхностных сил не существует. Имеющиеся точки зрения сводятся к следующим:

1) Выдвигается гипотеза, утверждающая, что межмолекулярные взаимодействия благодаря особой ориентации как самих молекул в поверхностном слое, так и их полей осуществляются преимущественно в направлении, тангенциальном к поверхности. Благодаря такой особой структуре поверхностного слоя возникают силы поверхностного натяжения. Иначе говоря, согласно этой точки зрения существует особая анизотропия молекулярных сил в поверхностном слое, а происхождение этих сил может быть связано с лондоновским (обменным) взаимодействием ван-дер-ваальсового типа.

2) Падение давления в жидкости по толщине поверхностного слоя при постоянном переходе от жидкости к пару, численно равное свободной поверхностной энергии, служит причиной поверхностного натяжения (Беккер) Ахматов А.С. Молекулярная физика. - М., Знание, 2001.

Обе эти точки зрения при их развитии наталкиваются на серьёзные трудности.

3) Н. Адам, наконец, считает, что понятие поверхностного натяжения имеет смысл лишь математического эквивалента поверхностной энергии [2]. Введение понятия поверхностного натяжения он сопоставляет с принципом возможных перемещений в статике, как чисто математическим приёмом. Так как наличие свободной энергии поверхности может быть объяснено молекулярным давлением, то, по Адаму, нет надобности задаваться вопросом, каким образом это приводит к возникновению тангенциальных сил поверхностного натяжения.

Эта точка зрения не даёт, однако, оснований отрицать, как это делает Адам, физическую реальность поверхностного натяжения.

Таким образом, подводя итоги, можно лишь сказать, что ясности в вопросе о происхождении поверхностного натяжения в настоящее время нет и что этот вопрос нуждается в теоретической разработке Павленко Ю.Г. Молекулярная физика. - М., 2002.

Глава 2. Определение коэффициента поверхностного натяжения

2.1 Обнаружение поверхностного натяжения у жидкости с помощью поплавка

Для того, чтобы провести данный эксперимент необходимо следующее оборудование: 1) ареометр с пределами измерений 1,000-0,700; 2) стеклянный цилиндр ёмкостью 1 л (длина 465 мм, диаметр 65 мм); 3) сетка медная диаметром 35 мм (9 клеток на 1 см); 4) два резиновых колечка; 5) глазная пипетка; 6) эфир.

Для обнаружения поверхностного натяжения воды пользуются ареометром как поплавком. На расстоянии 6-7 см от верхнего конца ареометра одевают кружок, вырезанный из мелкой медной сетки, и укрепляют его сверху и снизу двумя резиновыми колечками (рис. 7) Покровский А.А., Зворыкин Б.С. и др. Демонстрационные опыты по молекулярной физике и теплоте. - М., 2000. Затем наливают воду в литровый цилиндр и опускают в него ареометр с таким расчётом, чтобы сетка плавающего ареометра находилась на 1-2 см над поверхностью воды (рис. 8).

Если затем пальцем медленно и неглубоко погрузить сетку ареометра под воду и осторожно отпустить палец, то можно наблюдать, что ареометр не всплывает: сетка задерживается у поверхности воду (рис. 9). Это объясняется тем, что поверхность воды, как бы обладая свойствами упругой плёнки, удерживает сетку, мешая ей вместе с ареометром подняться вверх в своё первоначальное положение.

Если внести теперь с помощью глазной пипетки 2-3 капли эфира на поверхность воды, то сетка сейчас же оторвётся от воды и ареометр опять поднимется вверх. Это объясняется тем, что поверхностное натяжение у эфира примерно в 4 раза меньше, чем у воды.

Для большей наглядности можно проводить демонстрацию с применением плоского зеркала, расположенного над цилиндром под углом 45О к поверхности воды.

В случае отсутствия ареометра поплавок можно сделать из маленького стеклянного пузырька с широким горлом (или из пробирки), вставив предварительно в него стеклянную трубку или проволочку с помощью резиновой пробирки (рис. 10). Пузырёк надо предварительно нагрузить, т.е. насыпать в него песок, гвозди, дробь и т.п., причём величина груза подбирается путём нескольких проб.

2.2 Получение мыльных плёнок на каркасах разной формы

Оборудование: 1) проекционный аппарат; 2) пружинный динамометр на 1 Г с ценой деления 100 мГ; 3) штатив; 4) кристаллизатор или плоскопараллельная кювета на стержне; 5) два проволочных каркаса - кольцо с ниткой и «качели»; 6) П-образный каркас из проволоки с подвижной перекладиной; 7) мыльный раствор.

Подвешивают на штативе «качели», т.е. две прямые проволочки диаметром 0,3 мм и длиной приблизительно 50 мм, предварительно связывают между собой тонкими нитями (рис. 11, а) Покровский А.А., Зворыкин Б.С. и др. Демонстрационные опыты по молекулярной физике и теплоте. - М., 2000. Затем подносят снизу кристаллизатор или плоскопараллельную кювету с мыльным раствором, чтобы проволочка погрузилась в раствор. Медленно опускают вниз кювету и получают между проволоками и нитями сплошную мыльную плёнку. Обращают внимание, что нижняя проволочка «качелей» заметно поднялась вверх, а боковые нити приняли форму дуг (рис. 11, б).

Если слегка потянуть за нижнюю нить, то плёнка растянется и каркас примет вид правильного прямоугольника. Если же нить отпустить, то нижняя проволочная перекладина опять поднимется и поверхность плёнки снова сократится.

Заменяют качели проволочным каркасом в виде кольца, к которому свободно (без натяжения) привязана тонкая (лучше шелковая) нитка с петелькой в средней части (рис. 12, а). Как и в предыдущем опыте, получают на поверхности кольца сплошную мыльную плёнку. Затем прорывают её, например, в правой части кольца и опять обнаруживают значительное уменьшение поверхности плёнки, так как нить принимает форму дуги окружности (рис. 12, б) Плёнка легко разрывается при прикосновении к её поверхности нагретым концом проволоки..

Снова получают сплошную плёнку на проволочном кольце и прорывают её внутри нитяной петельки. Нить растянется и образует правильную окружность (рис. 12, в).

Эти опыты убеждают учащихся в наличии поверхностного натяжения. Кроме того, они показывают, что плёнка изменяется, если ей предоставить возможность, в сторону уменьшения поверхности и, что силы поверхностного натяжения всегда направлены перпендикулярно к любому элементу контура, ограничивающего плёнку.

Демонстрировать описанные опыты удобно в проекции. Для этого рекомендуется установка, схематически изображённая на рис. 13.

Далее надо показать учащимся один из простейших методов определения коэффициента поверхностного натяжения какой-либо жидкости, например мыльного раствора Покровский А.А., Зворыкин Б.С. и др. Демонстрационные опыты по молекулярной физике и теплоте. - М., 2000. Для этого может быть применён самодельный прибор, изображённый на рис. 14, состоящий из чувствительного пружинного динамометра и подвешенной к нему проволочной П-образной петли шириной 50 мм. динамометр снабжён прозрачной шкалой, изготовленной из органического стекла ил целлулоида, с нанесёнными делениями от 0 до 1 Г, с ценой деления 100 мГ.

Для демонстрации опыта поступают так. Сначала устанавливают вблизи конденсора проекционного аппарата динамометр с подвешенным к нему П-образным каркасом и проецируют шкалу динамометра на экран. Схема для проецирования установки показана на рис. 15, а та часть установки, изображение которой должно быть получено на экране, выделена пунктиром на рис. 16.

Чтобы не учитывать в дальнейшем вес петли, нужно перед проецированием прибора отвернуть слегка винт а (рис. 16) и, переместив пружину, установить указатель против нуля шкалы.

Затем подставляют под петлю кристаллизатор с мыльным раствором так, чтобы верхняя сторона петли была погружена в раствор. При опускании кристаллизатора петля затянется сплошной мыльной плёнкой. На пружину будет действовать направленная вниз сила поверхностного натяжения, которую легко определить по показаниям динамометра, заметным для всего класса. А зная силу, например 350 мГ, и длину проволочной перекладины (5 см) легко найти коэффициент поверхностного натяжения:

Полученная таким образом величина, довольно хорошо соответствует истинному значению коэффициента поверхностного натяжения, на что и следует обратить внимание учащихся.

Перед проецированием динамометра полезно нарисовать схему опыта на классной доске и показать сначала без проекции образование плёнки на П-образной рамке.

Для изготовления чувствительного динамометра, применённого в описанном опыте, очень важно выбрать достаточно тонкую и упругую проволоку. Наиболее подходящей оказалась проволока от спирали малой лабораторной электроплитки. Эту проволоку в количестве 16 витков тщательно навивают на круглый стержень (карандаш) диаметром 8 мм, зажатый предварительно в тиски. Затем пружину снимают со стрежня и придают ей форму и размеры.

Далее вставляют пружину через тонкую металлическую трубку в отверстие стержня с зажимным винтом. Трубка, имеющая узкую прорезь на боковой поверхности для указателя, должна быть заранее припаяна к стержню. За указателем, припаянным к пружине, укреплена тонкая пластинка из органического стекла, на которой наносятся штрихи с помощью острой иглы. Чтобы увеличить видимость, в углубление штрихов полезно втереть графит от обычного карандаша или чёрную тушь.

Градуировка шкалы производится с помощью разновеса: 1 Г, 500 мГ, 200 мГ, 200 мГ и 100 мГ. Таким образом, вся шкала, рассчитанная на 1 Г, имеет 10 делений с ценой каждого деления 100 мГ.

Заключение

В процессе проведения физического практикума необходимо научить учащегося творчески подходить к исследовательской работе, правильно выбирать методику эксперимента и измерительные приборы. Ученики должны научиться понимать и применять теорию изучаемого явления Лабораторный практикум по физике / Под ред. Ахматова А.С. - М.: Высшая школа, 2002..

Сознательное выполнение эксперимента, внимательность и сосредоточенность на процессе измерений, бережное отношение к приборам - необходимые условия успешного проведения опыта Агапов Б.Т., Максютин Г.В., Островерхов П.И. Лабораторный практикум по физике. - М.: Высшая школа, 2004..

Учащийся заранее должен ознакомиться с установкой, на которой ему предстоит выполнять лабораторную работу, и сделать ориентировочные измерения.

Многие учителя физики проводят в настоящее время те или иные работы, связанные с физическим экспериментом: организуют практикумы, различные физические кружки, дают домашние экспериментальные задания и т.д. Среди этих разнообразных форм обучения, приводящих к всестороннему развитию учащихся, особенно большое значение имеют классные лабораторные работы Беклемишев А.В. Методика и организация лабораторных занятий по физике в высшей школе. - М.: Советская наука, 2006.

Фронтальный метод постановки лабораторных занятий по физике в средней школе, как известно, имеет ряд весьма важных положительных сторон. Это прежде всего даёт возможность тесно связать лабораторные работы учащихся с изучаемым курсом. Благодаря фронтальному методу лабораторные занятия могут быть поставлены как введение к тому или иному разделу курса, или как иллюстрация к объяснению учителя, или как повторение и обобщение пройденного материала Подгорнова И.И. Молекулярная физика в средней школе. М.: Просвещение, 2001.

Таким образом, лабораторный эксперимент учащихся становится необходимым звеном в процессе обучения, значительно помогающим усвоению материала, как и демонстрационные опыты Покровский А.А., Зворыкин Б.С. Фронтальные лабораторные занятия по физике в средней школе. - М., 2004.

Широкое применение фронтальных лабораторных работ по физике в настоящее время является необходимостью. Оно должно привести, согласно современным методическим взглядам, проверенным практикой, к значительному и резкому повышению качества обучения физике; оно будет служить серьёзной опорой для борьбы не на словах, а на деле с «меловым» методом преподавания физики, насаждающим формализм в знаниях учащихся, т.е. отсутствия глубокого понимания самой сущности многих физических явлений. На фронтальных занятиях учащимся прививают правильные начальные практические навыки, которые в дальнейшем могут нормально развиваться и совершенствоваться.

Существующие экспериментальные методы определения коэффициента поверхностного натяжения для обычных школ недостаточны для школ с углублённым изучением физики. Вышеприведенная разработка работы поможет учителям в с углублённых изучением предмета. Учащиеся таких образовательных учреждений смогут более углублённо ознакомиться с явлением поверхностного натяжения.

Список литературы

Агапов Б.Т., Максютин Г.В., Островерхов П.И. Лабораторный практикум по физике. - М.: Высшая школа, 2004.

Ахматов А.С. Молекулярная физика. - М., Знание, 2001.

Бакушинский В.Н. Организация лабораторных работ по физике в средней школе. - М., 2003.

Беклемишев А.В. Методика и организация лабораторных занятий по физике в высшей школе. - М.: Советская наука, 2006.

Деденко Л.Г., Керженцев В.В. Математическая обработка и оформление результатов эксперимента. - М., 2001.

Евграфова Н.Н., Каган В.Л. Руководство к лабораторным работам по физике. - М.: Высшая школа, 2004.

Зайдель А.Н. Ошибки измерений физических величин. - Л.: Наука, 2004.

Ковалёв П.Г. Молекулярная физика, электродинамика. - Ростов: Университетское, 2003.

Лабораторные занятия по физике / Под ред. Гольдина Л.Л. - М.: Наука, 2005.

Лабораторный практикум по физике / Под ред. Ахматова А.С. - М.: Высшая школа, 2002.

Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. - Л., 2003.

Павленко Ю.Г. Молекулярная физика. - М., 2002.

Павлов В.И. Механика, молекулярная физика. М., 2002.

Подгорнова И.И. Молекулярная физика в средней школе. М.: Просвещение, 2001.

Покровский А.А., Зворыкин Б.С. и др. Демонстрационные опыты по молекулярной физике и теплоте. - М., 2000

Покровский А.А., Зворыкин Б.С. Фронтальные лабораторные занятия по физике в средней школе. - М., 2004.

Стрючков И.А., Краев П.И. Руководство к лабораторным работам по молекулярной физике. - Ашхабад, 2004.

Фетисов В.А. Лабораторные работы по физике. - М., 2005.

Яковлев В.Ф. Курс физики. Теплота и молекулярная физика. - М.: Просвещение, 2004.


Подобные документы

  • Изучение явления поверхностного натяжения и методика его определения. Особенности определения коэффициента поверхностного натяжения с помощью торсионных весов. Расчет коэффициента поверхностного натяжения воды и влияние примесей на его показатель.

    презентация [1,5 M], добавлен 01.04.2016

  • Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения. Метод проволочной рамки. Роль и проявления поверхностного натяжения в жизни.

    реферат [572,8 K], добавлен 23.04.2009

  • Сущность и характерные особенности поверхностного натяжения жидкости. Теоретическое обоснование различных методов измерения коэффициента поверхностного натяжения по методу отрыва капель. Описание устройства, принцип действия и назначение сталагмометра.

    реферат [177,1 K], добавлен 06.03.2010

  • Исследование зависимости поверхностного натяжения жидкости от температуры, природы граничащей среды и растворенных в жидкости примесей. Повышение давления газов над жидкими углеводородами и топливом. Расчет поверхностного натяжения системы "жидкость-пар".

    реферат [17,6 K], добавлен 31.03.2015

  • Физические свойства воды, температура ее кипения, таяние льда. Занимательные опыты с водой, познавательные и интересные факты. Измерение коэффициента поверхностного натяжения воды, удельной теплоты плавления льда, температуры воды при наличии примесей.

    творческая работа [466,5 K], добавлен 12.11.2013

  • Понятие и свойства поверхностного натяжения. Зависимость энергетических параметров поверхности от температуры. Адсорбция. Поверхностная активность. Поверхностно-активные и инактивные вещества. Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра.

    презентация [313,0 K], добавлен 30.11.2015

  • Исследование структурных свойств воды при быстром переохлаждении. Разработка алгоритмов моделирования молекулярной динамики воды на основе модельного mW-потенциала. Расчет температурной зависимости поверхностного натяжения капель воды водяного пара.

    дипломная работа [1,8 M], добавлен 09.06.2013

  • Расчет трехступенчатой выпарной установки поверхностного типа с естественной циркуляцией. Выпаривание каустической соды. Преимущества и недостатки аппаратов с естественной циркуляцией, области их применения. Программа для расчёта коэффициента теплоотдачи.

    курсовая работа [379,5 K], добавлен 01.11.2014

  • Взаимодействие атмосферного пограничного слоя с океаном как важнейший фактор, определяющий динамику тропических ураганов и полярных мезоциклонов над морем. Методика и анализ результатов измерений поля поверхностного волнения в ветро-волновом канале.

    курсовая работа [2,4 M], добавлен 13.07.2012

  • Нахождение тангенциального ускорения камня через секунду после начала движения. Закон сохранения механической энергии. Задача на нахождение силы торможения, натяжения нити. Уравнение второго закона Ньютона. Коэффициент трения соприкасающихся поверхностей.

    контрольная работа [537,9 K], добавлен 29.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.