Великие открытия в физике

Жизненый путь, работы, выдающиеся и малоизвестные открытия великих ученых - физиков с древности до наших дней. Архимед. Демокрит. Аристотель. Птолемей. Коперник. Галилей. Кеплер. Декарт. Гюйгенс. Гук. Ньютон. Леонардо да Винчи. Альберт Эйнштейн.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.07.2008
Размер файла 4,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

47

Архимед

Архимед (?287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия. Его отец, Фидий, был математиком и астрономом. Видимо, он и оказал влияние на научные интересы Архимеда еще в детстве.   Легенды рассказывают, что Архимед забывал о пище, подолгу не бывал в бане и готов был чертить везде: в пыли, пепле, на песке, даже на собственном теле. Однажды, в ванне, его вдруг осенила мысль о выталкивающей силе, действующей на погруженное в жидкость тело и, забыв обо всем, голый, бежал он по улицам Сиракуз с победным кличем: "Эврика!" ("Я нашел!"). Архимед - автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль "Сиракосия". Крылатыми стали произнесенные тогда слова Архимеда: "Дайте мне точку опоры, и я поверну Землю". Архимед погиб от меча римского легионера. Он был поглощен работой и не заметил, что город уже занят римлянами. Когда посыльный солдат явился к нему и потребовал, чтобы он немедленно явился к Марцеллу, Архимед поморщился, лениво, как от надоедливой мухи, отмахнулся от него и, не поднимая глаз от чертежа, пробурчал: "Не мешай, я вычисляю". Солдат выхватил меч и убил его. На своей могильной плите Архимед завещал выгравировать шар и цилиндр - символы его геометрических открытий. Могила заросла травой, и место это было забыто очень скоро. Лишь через 137 лет после его смерти Цицерон разыскал в Сиракузах этот могильный камень, на котором были уже стерты временем часть знаков. А потом могила опять затерялась, уже навсегда.

Достижения в математике.

Задача о трисекции угла.

Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.

Измерение круга.

Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате "Измерение круга" он доказывает следующие три теоремы:

Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.

Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.

Теорема третья: C-3d < d и C-3d > d, где С -длина окружности, а d-ее диаметр. Откуда, d < C-3d < d. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение (архимедово число).

Спираль Архимеда.

Архимедова спираль плоская трансцендентная кривая. Архимедова спираль описывается точкой M, движущейся равномерно по прямой d, которая вращается вокруг точки O, принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой.

Инфинитезимальные методы.

В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой. Дифференциальным методом Архимед находил касательную к спирали.

Демокрит

Демокрит (460-370 до н. э.) - древнегреческий филисоф-материалист, создатель завершенной системы атомистики. Историческое место философии Демокрита определяется переходом древнегреческой натурфилософии к выработке понятия индивидуализма, индивидуального бытия. Это нашло свое отражение в исходном понятии философии Демокрита - понятии «атома», как некоторого неделимого материального индивидуума (греческое atomos, как латинское individuum означает «неделимый», который признается не возникающим и не гибнущим, не разрушимым, не подверженным какому-либо воздействию извне, подлинным бытием, противостоящим пустоте как абсолютному ничто. Атом, таким образом превращался у Демокрита просто в геометрическое тело, которое также неразрушимо, вечно и не имеет каких-либо физических свойств. Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. Демокрит называет атомы также «фигурами» или «видиками», из чего следует, что атомы Демокрита являются максимально малыми, далее неделимыми фигурами или статуэтками. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их «вихря» по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно. Атомы для человека невидимы, а человеческие отношения объясняются истечениями из атомов, «видиками», действующими на наши органы чувств и вызывающими соответствующие ощущения, так что не существует ни сладкого, ни горького, ни белого, ни черного самого по себе, но только атомы и пустота.

Аристотель

Космология Аристотеля (384-322 до н.э.) при всех достижениях (сведение всей суммы видимых небесных явлений и движений светил в стройную теорию) в некоторых частях была отсталой в сравнении с космологией Демокрита и пифагоризма. Влияние геоцентрической космологии Аристотеля сохранялось вплоть до Коперника. Аристотель руководствовался планетной теорией Евдокса Книдского, но приписал планетным сферам реальное физическое существование: Вселенная состоит из ряда концентрических сфер, движущихся с различными скоростями и приводимых в движение крайней сферой неподвижных звезд. «Подлунный» мир, то есть область между орбитой Луны и центром Земли, есть область беспорядочных неравномерных движений, а все тела в этой области состоят из четырех низших элементов: земли, воды, воздуха и огня. Земля, как наиболее тяжелый элемент, занимает центральное место, над ней последовательно располагаются оболочки воды, воздуха и огня. «Надлунный» мир, то есть область между орбитой Луны и крайней сферой неподвижных звезд, есть область вечноравномерных движений, а сами звезды состоят из пятого - совершеннейшего элемента - эфира

Птолемей

Птолемей (2 век до н.э.) - древнегреческий ученый. Разработал так называемую геоцентрическую систему мира, согласно которой все видимые движения небесных светил объяснялись их движением вокруг неподвижной Земли. Основное сочинение Птолемея по астрономии - «Великое материальное построение астрономии в 13 книгах» или «Альмагест» на арабском. В «Альмагесте» впервые законы видимых движений небесных тел были установлены настолько, что стало возможным предвычислять их положение.

Система Аристотеля-Птолемея верно отразила некоторые особенности Земли как небесного тела: то, что Земля - шар, что все тяготеет к ее центру. Таким образом это было учение собственно о Земле. На уровне своего времени она отвечала основным требованиям, которые предъявлялись к научному знанию. Во-первых, она с единой точки зрения объясняла наблюдаемые перемещения небесных тел и, во-вторых, давала возможность предвычислять их будущие положения. В то же время нельзя не отметить, что теоретические построения древних греков носили чисто умозрительный характер - они были совершенно оторваны от эксперимента.

Известно, что геоцентрическая система Аристотеля - Птолемея просуществовала вплоть до ХVI столетия, до появления гелиоцентрического учения Коперника. Это учение явилось величайшей революцией в естествознании, положившей начало развитию науки в ее современном понимании.

Развитие естествознания, труды Коперника, Галилея, Ньютона убедительно показали несостоятельность геоцентризма. Коперник показал, что за видимыми движениями небесных светил скрывается совсем иное явление - обращение Земли вокруг Солнца, то есть мир не таков, каким мы его непосредственно наблюдаем. Коперниковская революция в естествознании утвердила важнейший принцип: необходимо искать подлинную сущность вещей, скрытую за их внешней видимостью.

Коперник

Коперник (1473-1543 до н. э.) - создатель гелиоцентристской системы мира. Начал с попыток усовершенствовать геоцентрическую систему мира, изложенную в «Альмагесте» Птолемея. Многочисленные работы в этом направлении сводились к более точному определению элементов тех диферентов и эпициклов, посредством которых Птолемей представил движения небесных тел.

Коперник, поняв зависимость между видимыми движениями планет и Солнца, хорошо известную еще Птолемею, на этой основе построил гелиоцентрическую систему мира. Благодаря ей правильное объяснение получил ряд непонятных ранее закономерностей движения планет. Таблицы, составленные Коперником, нашли большое значение в развитии мореплавания. Результаты труда были обобщены Коперником в сочинении «Об обращении небесных сфер». Здесь он сохраняет представление о конечной Вселенной, ограниченной сферой неподвижных звезд. Философское значение гелиоцентрической системы состояло в том, что Земля, считавшаяся раньше центром мира, низводилась до положения одной из планет. Возникла новая идея - идея о единстве мира, о том, что «небо» и «земля» подчиняются одним и тем же законам. Революционный характер взглядов Коперника был понят католической церковью лишь после того, как Галилей и другие развили философские следствия его учения. В 1619 году декретом инквизиции книга Коперника «впредь до исправления» была внесена в «Индекс запрещенных книг» и оставалась под запретом до 1828 года.

Гелиоцентрическая система Коперника сама отнюдь не явилась окончательным решением вопроса о мироздании. В процессе дальнейшего развития она в качестве составной части вошла сначала в систему Гершеля о Галактике, а затем в систему о расширяющейся Метагалактикие. Система Коперника явилась описанием Солнечной системы, система Гершеля - нашей Галактики.

Учение Коперника получило свое дальнейшее обоснование в экспериментальной физике Галилея, завершившейся созданием ньютоновской механики, объединившей едиными законами движения перемещение небесных тел и земных объектов.

Галилей

Физика Аристотеля показалась Галилею (1564-1642) неубедительной, и Галилей стал убежденным последователем Коперника. На основании сведений об изобретенной в Голландии зрительной трубе Галилей строит свой первый трехкратный телескоп, затем усовершенствует его до 32-кратного, делает при помощи его ряд открытий (колоссальную удаленность звезд, 4 спутника у Юпитера, вращение Солнца, солнечные пятна, фазы Венеры, распад Млечного пути на звезды, изучает движение спутников Юпитера).

Галилей считал, что мир бесконечен, а материя вечна. Во всех процессах ничто не уничтожается и не порождается - происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, ее движение - единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики.

Галилей написал книгу «Диалог о двух главнейших системах мира», в которой системы Коперника и Птоломея представлены в разговорах трех собеседников. Книга вышла под названием «Диалог о приливах и отливах». По требованию инквизиции он был вынужден отречься от учения Коперника и 9 лет считался узником инквизиции с запретом разговоров о движении Земли и печатания трудов. Но в 1638 году в Голландии появляется перевод его «Диалога».

Кеплер

Вся жизнь Кеплера (1571-1630) была посвящена обоснованию и развитию гелиоцентрического учения Коперника. Важнейшим аргументом в пользу центрального положения Солнца являются три закона Кеплера, положившие конец прежнему представлению о равномерных круговых движениях небесных тел. Солнце, занимая один из фокусов эллиптической орбиты планеты, является, по Кеплеру, источником силы, движущей планеты. Законы Кеплера, навсегда вошедшие в основу теоретической астрономии, получили объяснение в механике Ньютона, в частности в законе всемирного тяготения. Уже сам Кеплер рассуждал о «тяжести», действующей между небесными телами, и объяснил приливы и отливы земных океанов воздействием Луны.

Декарт

Основная черта философского мировоззрения Декарта (1596-1650) - дуализм души и тела, «мыслящей» и «протяженной» субстанции. Отождествляя материю с протяжением, Декарт понимает ее не столько как вещество физики, сколько как пространство стереометрии. В противоположность средневековым представлениям о конечности мира и качественных разнообразий природных явлений Декарт утверждает, что мировая материя (пространство) беспредельна и однородна, она не имеет пустот и делима до бесконечности (это противоречило идеям возрожденной во времена Декарта античной атомистики, которая мыслила мир состоящим из неделимых частиц, разделенных пустотами). Каждую частицу материи Декарт рассматривает как инертную и пассивную массу. Движения, которые Декарт сводил к перемещениям тел, возникает всегда только в результате толчка, сообщаемого данному телу другим телом. Общей же причиной движения в дуалистической концепции Декарта является бог.

Гюйгенс

Гюйгенс (1629-1695) - нидерландский механик, физик и математик проделал цикл оптических работ, который завершил «Трактатом о свете», в которой впервые изложил и применил к объяснению оптических явлений волновую теорию света. К «Трактату о свете» он добавил в виде приложения рассуждение «О причинах тяжести», в котором он близко подошел к открытию закона всемирного тяготения. В своем последнем трактате «Космотеорос» (1698), опубликованном посмертно, Гюйгенс основывается на теории о множественности миров и их обитаемости. В 1717 году трактат был переведен на русский язык по приказанию Петра I.

Гук

Гук (1635-1703) - английский естествоиспытатель, предвосхитил закон всемирного тяготения Ньютона. D 1679 году он высказал мнение, что если сила притяжения обратно пропорциональна квадрату расстояния, то планета должна двигаться по эллипсу. Гук придерживался волновой теории света и оспаривал корпускулярную, теплоту считал результатом движения частиц вещества.

Ньютон

Вершиной научного творчества Ньютона являются «Начала», в которых Ньютон обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий - количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, Ньютон исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность Ньютон понимал как степень заполнения единицы объема тела первичной материей.

Ньютон рассматривал движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола). Он изложил свое учение о всемирном тяготении, сделал заключение, что все планеты притягиваются к Солнцу, а спутники - к планетам с силой, обратно пропорциональной квадрату расстояния и разработал теорию движения небесных тел. Ньютон показал, что из закона всемирного тяготения вытекают законы Кеплера и важнейшие отступления от них. Кеплер, изучая движение планет Солнечной системы, сформулировал свои знаменитые простые законы. Простые потому, что все многообразие движений всех планет свелось к трем арифметическим соотношениям. Но возник вопрос: откуда взялись эти соотношения? Ответ на этот вопрос дал Ньютон созданием ньютоновской механики и формулировкой закона всемирного тяготения. Если бы результатом деятельности Ньютона было только объяснение законов Кеплера, то, по существу, никакого упрощения не произошло бы. Три закона заменились бы одним, из которого они весьма сложно выводятся. Но механика Ньютона объясняла ограниченное количество явлений для механической картины Вселенной. Так он объяснил особенности движения Луны, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли.

Леонардо да Винчи

В середине века в Европе начинается быстрый рост городов, отделение ремесленного (промышленного) производства от натурального хозяйства. Этот период является началом широкого протестантского движения против духовной диктатуры католической церкви.

В этой обстановке рождалось новое естествознание. Ф. Энгельс так охарактеризовал начавшиеся со второй половины века период в истории науки: «Это был величайший прогрессивный переворот из всех пережитых до того времени человечеством, эпоха, которая нуждалась в титанах и породила титанов по силе мысли, страсти и характеру, по многосторонности и учёности...». И среди этих титанов эпохи Возрождения Ф. Энгельс одним из первых называет Леонардо да Винчи (1452-1519г.г.), «которому обязаны важнейшими открытиями самые разнообразные области физики».

«Опыт отец всякой достоверности. Мудрость дочь опыта» -утверждал этот великий учёный.

Леонардо да Винчи родился 15 апреля в небольшом городке Винчи, недалеко от Флоренции.

С 1472 по 1482 год он живёт и работает во Флоренции, с 1482 по 1499 год в Милане, затем снова во Флоренции (14991506 г.г.) и в Милане (15061513 г.г.). В 1516 году Леонардо да Винчи уезжает во Флоренцию по приглашению французского короля и там проводит свои последние годы.

«Механика рай математических наук», говорил Леонардо, много времени и энергии отдавая её изучению. Работы Леонардо в области механики могут быть сгруппированы по следующим разделам: законы падения тел; законы движения тела, брошенного под углом к горизонту; законы движения тела по наклонной плоскости; влияние трения на движение тел; теория простейших машин (рычаг, наклонная плоскость, блок ); вопросы сложения сил; определение центра тяжести тел; вопросы, связанные с сопротивлением материалов. Перечень этих вопросов делается ёщё более значительным, если учесть, что многие из них разбирались вообще впервые. Остальные же, если и рассматривались до него, то базировались в основном на умозаключениях Аристотеля, весьма далёких в большинстве случаев от истинного положения вещей. По Аристотелю, например, тело, брошенное под углом к горизонту, должно лететь по прямой, а в конце подъёма, описав дугу круга, падать вертикально вниз. Леонардо да Винчи рассеял это заблуждение и нашёл, что траекторией движения в этом случае будет парабола.

Он высказывал много ценных мыслей, касающихся сохранения движения, подходя вплотную к закону инерции. «Импульс» (impeto ) есть отпечаток движения, который движущее переносит на движимое. Импульс сила, запечатлённая движущим в движимом. Каждый отпечаток тяготеет к постоянству или желает постоянства… Всякий отпечаток хочет вечности, как показывает нам образ движения, запечатлеваемый в движущимся предмете».

Леонардо знал и использовал в своих работах метод разложения сил. Для движения тел по наклонной плоскости он ввёл понятие о силе трения, связав её с силой давления тела на плоскость и правильно указав направление этих сил.

Ещё до Леонардо да Винчи учёные занимались теорией рычага и блока. Однако выигрыш в силе происходит за счёт потери во времени. Леонардо критиковал тех, кто стремился создать вечный двигатель: «О, искатели вечного движения, сколько пустых проектов создали вы в подобных поисках! Прочь идите с алхимиками искатели золота». Невозможно, чтобы груз, который опускается, мог поднять в течении какого ни было времени другой, ему равный, на ту же высоту, с которой ушёл.

Очень характерно для механики Леонардо да Винчи стремление вникнуть в сущность колебательного движения. Он приблизился к современной трактовке понятия резонанса, говоря о росте колебаний при совпадении собственной частоты системы с частотой извне. «Удар в колокол получает отклик и приводит в движение другой подобный колокол, и тронутая струна лютни находит ответ и приводит в слабое движение другую подобную струну той же высоты на другой лютне».

Леонардо да Винчи впервые и много занимался вопросами полёта. Первые исследования, рисунки и чертежи, посвящённые летательным аппаратам, относятся примерно к 1487 году (первый Миланский период). В первом летательном аппарате применялись металлические части; человек располагался горизонтально, приводя механизм в движение руками и ногами.

В дальнейшем Леонардо заменил металл деревом и тростником, верёвки жёсткими передачами, а человека расположил вертикально. Он стремился освободить руки человека: «Человек в своём летательном аппарате должен сохранять полную свободу движений от пояса и выше… У человека запас силы в ногах больше, чем нужно по его весу».

Однако отсутствие уверенности в том, что этой силы достаточно для успешного полёта в любых условиях, привело его к мысли об использовании пружины как двигателя и о планере, с которым можно осуществить если не полный полёт, то хотя бы парение в воздухе. Он построил модель планера и готовил его испытание. Стремление обезопасить человека в процессе этих испытаний побудило его к изобретению парашюта.

Трудно перечислить все инженерные проблемы, над которыми работал пытливый ум Леонардо.

Анатомические зарисовки.

Анатомией и физиологией Леонардо занимался на протяжении всей своей жизни. В основе анатомических исследований начального периода деятельности Леонардо лежали проблемы искусства: он изучал главным образом скелет и мускулатуру человека.

Основной метод анатомического исследования Леонардо - это наблюдение, производимое в процессе препарирования трупа человека. Сам Леонардо, например, сделал запись в тетрадь: «Старик сидел на кровати в больнице Санта Мариа Нуова во Флоренции без всякого движения, без всяких признаков чего-нибудь особенного и вдруг скончался. И я его анатомировал, чтобы выяснить причину такой спокойной смерти. После этого я вскрыл труп двухлетнего мальчика и в нем я нашел все, совершенно обратное тому, как было в теле старика». Леонардо да Винчи, по-видимому, первый ввел в практику анатомических исследований конечностей поперечные сечения.

Леонардо провёл эти исследования, применяя простой нож и пилу; используемый материал не подвергался специальный обработке. Поэтому результаты, полученные этим методам, оказалось весьма далеким от совершенство.

Во время своего пребывания в Милане Леонардо занимался препарированием трупов лошадей. В одной из его записных книжек отмечено: «Здесь я должен указать, в чем заключается разница между человеком и лошадью, а также между другими животным, я начну с костей, затем возьму все мускулы, которые начинаются и кончаются в костях посредством сухожилии и, наконец, возьмите, которые имеют только одно сухожилие на одном конце.»

В отношении функций мышц Леонардо также применял метод сравнительного анализа. Он говорил: «Ни одно движение руки и пальцев не вызывается мышцами, которые расположены между локтем и плечом: то же самое мы наблюдаем у птиц, полет которых проявляет токую силу благодаря тому, что все мышцы, которые опускают крыло, начинаются на груди птицы.»

Эмбриология. Проблемам изучения зачатия, внутритрубного и первых этапов внутритрубного развития организма Леонардо придавал большое значение. В плане его трактата о строении человеческого тела этим вопросом начинается программа исследования.

Следуя Аристотелю и Галену, Леонардо считал, что первым органом, появляющимся у зародыша в начале его развития, является сердце.

Дальнейший анализ условий существований зародыша привел Леонардо к мысли о том, что в утробе матери сердце зародыша не бьется «поскольку зародыш лежит в мешке, наполненным водой, и следовательно, не может дышать, а сердцебиение невозможно, так как он не может получить свежего, холодного воздуха, который втягивается в легкие.»

Cредневековые анатомы считали общее количество позвонков равным тридцати. Это число показали Гален, Авиценна и после них Мондино. Позвонки разделялись на 7 шейных, 12 грудных, соответственно числу парных ребер, и 5 поясничных; крестец и копчик считались составленными из 3 позвонков каждый. Леонардо исправил ошибку, указав, что крестец состоит не из 3, а из 5 позвонков, и впервые в истории анатомии дал правильное изображение крестца. Он явился также первым, кто показал изгибы позвоночного столба, наклон крестца и выпуклость ребер, создав тем самым основные предпосылки для правильного понимание статики человеческого тела и механизма дыхания.

Особенно удачны у Леонардо рисунки черепа, при изображении которого ему удалось решить весьма трудную задачу; композиционно объединить на одном листе и показать с предельной ясностью форму и внешний рельеф, внутреннее строение и топографию отдельных частей.

На сагиттальном разрезе через середину черепа он четко изобразил 3 черепные ямки, а также фронтальный и сфеноидальный синусы в правильных пространственных соотношениях. Полость верхней челюсти, по его мнению, содержит жидкость для питания корней зубов, В ней находятся вены, проходящие из мозга через пластинку решетчатой кости, по которым излишняя жидкость удаляется из полости черепа через нос.

Изучение скелета конечностей занимало видное место в анатомических работах Леонардо да Винчи. Его рисунки костей верхней и нижней конечностей многочисленны и правильный. Леонардо дал прекрасное изображение лопатки и ключицы; на одном рисунке правая ключица повернута концами, и акромиальный отросток лопатки ошибочно показан как отдельная кость.

Интерес представляют наблюдения Леонардо над особенностями анатомии суставов в различных возрастах. Он писал: «У маленьких детей все суставы тонки, а промежутки от одного до другого - толсты. Это происходит оттого, что кожа на суставах одна, без иной мягкости, кроме жилистой, которая окружает и связывает вместе кости, а влажная мясистость находится между двумя суставами, заключенными между кожей и костью; но так как кости много толще в суставах, чем между суставами, то мясо при росте человека теряет то излишество, которое находилось между кожей и костью; поэтому кожа больше приближается к кости и члены начинают утончаться, на суставах же, так как на них нет ничего, кроме хрящевидной и жилистой кожи, ничто не может худеть, а раз не может худеть, то и не уменьшается. На этих основаниях у маленьких детей тонкие суставы и тонкие промежутки между суставами, как это видно на тонких суставах пальцев, рук и плечей, которые у них тонки и имеют веретенообразные впадины, а мужчина, наоборот,- толст во всех суставах пальцев, рук и ног, и там, где у детей впадинный, - у него выпуклости».

Анатомия мышц конечностей - наиболее совершенный раздел анатомических исследований Леонардо да Винчи. Особенно хороши соответствующие рисунки, многие из которых настолько точны, что могут удовлетворить современного анатома. Мышцы задней поверхности лопатки вместе с большой круглой мышцы и верхней частью широчайшей мышцы спины показаны на ряде рисунков(An. A, 2, 4v b 14v), а на листе An. A, 12 лопатка показана изолированно от позвоночника для демонстрации прикрепления надостной мышцы. На листе An. A, 2 плечевая кость несколько выдвинута из суставной впадины так, что ясно видны прикрепления малой круглой мышцы и над и подостной мышц к большому бугорку и прикрепление подлопаточной мышцы к малому бугорку плечевой кости. Функцией широкой мышцы спины и большой круглой мышцы, по мнению Леонардо, является вращение плеча внутри.

Леонардо утверждал, что сухожилия сгибателей сильнее, чем сухожилия разгибателей.

Анатомия и физиология внутренностей. Большую наблюдательность проявил Леонардо да Винчи при изучении внутренних органов человека, но его работы в этой области оказались на значительно более низком уровне, чем относящиеся к анатомии органов движения. Особенно это выявляется при описаниях функций внутренних органов, в отношении которых им остались незамеченными различия в структуре строения у человека и животных, что и явилось одним из источников его ошибочных представлений.

В отношении зубов Леонардо отметил, что те из них, которые расположены дальше от линии нижнечелюстных суставов, находятся в невыгодном положении по сравнению с теми, которые находятся ближе к ней, что и отражено в самой форме зубов.

Анатомия и физиология сосудистой системы. Особенное внимание Леонардо привлекало сердце, строение и работу которого он стремился рассматривать с точки зрения механики, хотя в ряде вопросов анатомии и физиологии кровообращения следовал средневековой научной традиции. Одной из причин этого, несомненно, было то, что объектом его исследования органов кровообращения был не человек, а животные. Правда, в отличие от представлений средневековых научных авторитетов «чудесное орудие, изобретенное верховным художником», потеряло уже свое значение «седалища души». Он рассматривал сердце как обычный орган и в этом расходился с галеновской традицией. «Сердце,- писал он,- как таковое, не источник жизни, а сосуд, сделанный из плотной мускулатуры, оживляемый и питаемый артериями и венами, подобно прочим мускулам».

Верхушка сердца у трупа, по наблюдениям Леонардо, находится выше, чем у живого человека, так как после смерти «сердце расширяется и укорачивается, потому, что его поперечные мышцы расслабляются, а продольные сокращаются».

Нервная система и органы чувств. Основа жизнедеятельности человека - его нервная система - настойчиво изучалась Леонардо да Винчи, особенно головной и спинной мозг, как по анатомическим препаратам, так и путем проведения экспериментов над животными. Первые его эксперименты как раз и относятся к изучению нервной системы. Кроме экспериментов на животных, он также использовал различные анатомические методы, дающие возможность рассмотреть детали нервных связей в организме и распределение нервов.

Альберт Эйнштейн

Когда посетители знаменитого учёного видели в его домашнем кабинете (небольшой телескоп, они не могли не спросить, для чего он предназначен. Эйнштейн обычно отвечал: «Нет, это не для звёзд. Телескоп принадлежал бакалейщику, ранее жившему здесь. Приятная вещь. Я его берегу, как игрушку». Конечно, Эйнштейну доводилось бывать на крупнейших обсерваториях мира и видеть лучшие телескопы, но его «инструментом» было теоретическое мышление, а не астрономическая труба.

Альберт Эйнштейн - один из величайших мыслителей всех времён. В детские годы будущая гениальность Эйнштейна внешне никак не проявлялась. Альберт рос тихим, замкнутым ребёнком; он редко играл с другими детьми, долго учился говорить и в семилетнем возрасте мог лишь повторять короткие фразы. Но ещё в пятилетнем возрасте на него произвёл неизгладимое впечатление компас, подаренный ему отцом. Способность стрелки показывать направление на север и на юг заворожило его своей загадочностью и необъяснимостью на основе обыденных представлений. В 12 лет он был пленён красотой математической логики, прочитав случайно попавшуюся ему книгу по евклидовой геометрии. Способности к логическому мышлению Альберт унаследовал от отца, а склонность к музыке - от матери. Со временем он научился неплохо играть на рояле и на скрипке.

Магнитострикционный громкоговоритель.

10 января 1934г. Германское патентное ведомство по заявке, поданной 25 апреля 1929г., выдало патент № 590783 на "Устройство, в частности, для звуковоспроизводящей системы, в котором изменения электрического тока вследствие магнитострикции вызывают движение магнитного тела". Одним из двух авторов изобретения значился доктор Рудольф Гольдшмидт из Берлина, а другой был записан так: "доктор Альберт Эйнштейн, ранее проживавший в Берлине; теперешнее местожительство неизвестно".

Магнитострикцией, как известно, называют эффект сокращения размеров магнитных тел (обычно имеются в виду ферромагнетики) при их намагничивании. В преамбуле к патентному описанию изобретатели пишут, что силам магнитного сжатия препятствует жесткость ферромагнетика. Чтобы магнитострикцию "заставить работать" (в данном случае привести в колебательное движение диффузор громкоговорителя), эту жесткость нужно как-то нейтрализовать, скомпенсировать. Эйнштейн и Гольдшмидт предлагают три варианта такой, казалось бы, неразрешимой задачи.

Рис. Три варианта магнитострикционного громкоговорителя

Первый вариант, проиллюстрированный на рис. а, несущий иглу С с диффузором ферромагнитный (железный) стержень В ввинчен в прочное U-образное магнитное ярмо А таким образом, что сжимающие стержень осевые усилия очень близки к критической величине, при которой имеет место эйлеровская потеря устойчивости - выгиб стержня в ту или другую сторону. На ярмо надеты обмотки D, по которым проходит электрический ток, модулированный звуковым сигналом. Таким образом, чем сильнее звук, тем сильнее намагничивается и, следовательно, сжимается железный стержень В. Поскольку стержень поставлен на самую грань неустойчивости, эти малые вариации его длины приводят к сильным колебаниям в вертикальном направлении; при этом прикрепленный к середине стержня диффузор генерирует звук.

Во втором варианте (рис. б) используется неустойчивость системы сжатая пружина Н - шток G, упирающийся острием в лунку S. Модулированный звуковым сигналом ток проходит по обмотке D. Переменная во времени намагниченность железного стержня приводит к небольшим колебаниям его длины, которые усиливаются за счет энергии теряющей устойчивость мощной пружины.

В третьем варианте магнитострикционного громкоговорителя (рис. в) применена схема с двумя железными стержнями B1 и B2, обмотки D которых подключены таким образом, что, когда намагниченность одного стержня увеличивается, намагниченность другого уменьшается. Тягами C1 и С2 стержни соединены с коромыслом G, подвешенным на штанге М и прикрепленным растяжками F к боковинам магнитного ярма А. Коромысло жестко связано с диффузором W. Завинчивая гайку Р на штанге М, систему переводят в состояние неустойчивого равновесия. Благодаря противофазному намагничиванию стержней B1 и B2 током звуковой частоты их деформации также совершаются в противофазе - один сжимается, другой удлиняется (сжатие ослабляется), и коромысло в соответствии со звуковым сигналом перекашивается, поворачиваясь относительно точки R. В этом случае также за счет использования "скрытой" неустойчивости происходит усиление амплитуды магнитострикционных колебаний.

X. Мельхер, знакомившийся с документами семьи Р. Гольдшмидта и беседовавший с его сыном, излагает историю появления этого изобретения следующим образом.

Р. Гольдшмидт (1876-1950) был хорошим знакомым Эйнштейна. Известный специалист в области электротехники, он на заре эры радио руководил работами по установке первой линии беспроволочной телеграфной связи между Европой и Америкой (1914 г.). Им в 1910 г. была сконструирована и построена первая в мире пригодная для целей радиотехники высокочастотная машина на 30 кгц мощностью 12 кВт. Машина для трансатлантических передач имела уже мощность 150 кВт. Гольдшмидт был также автором множества изобретений, направленных на усовершенствование звуковоспроизводящих устройств (главным образом для телефонных аппаратов), высокочастотных резонаторов и т.д.

Общими друзьями Эйнштейна и Гольдшмидта были супруги Ольга и Бруно Айзнер - известная певица и знаменитый в то время пианист. Ольга Айзнер плохо слышала - недостаток особенно досадный, если учесть ее профессию. Гольдшмидт как специалист по звуковоспроизводящей аппаратуре взялся ей помочь. Он решил сконструировать слуховой аппарат (работы по созданию таких аппаратов в то время только начинались). В этой деятельности принял участие и Эйнштейн.

Был ли, в конечном счете, сконструирован действующий слуховой аппарат, неизвестно. Как видно из патентного описания, изобретателей увлекла идея использования, не находившего ранее применения эффекта магнитострикции, и они разработали описанные нами базирующиеся на этом эффекте громкоговорители. Насколько нам известно, это был первый звуковоспроизводящий магнитострикционный прибор. Хотя магнитострикционные слуховые аппараты распространения не получили и их нынешние собратья работают на иных принципах, магнитострикция с большим успехом используется в ультразвуковых излучателях, находящих применение во многих отраслях промышленности и техники.

Для фрау Ольги, как сообщает Мельхер, планировали создать магнитострикционный слуховой аппарат, использующий явление так называемой костной проводимости, т.е. возбуждающий звуковые колебания не воздушного столба в ухе, а непосредственно черепных костей, для чего требовалась большая мощность. Представляется, что устройство Эйнштейна-Гольдшмидта вполне отвечало этому требованию. Возможно, совместная с Гольдшмидтом деятельность не так уж и случайна и, занимаясь ею, Эйнштейн руководствовался не только желанием облегчить судьбу фрау Айзнер. Думается, что его не могла не заинтересовать и сама техническая задача - ведь мы знаем, что он имел определенный опыт в конструировании звуковоспроизводящих устройств.

Автоматическая фотокамера.

Беседуя в начале 30-х годов с Рабиндранатом Тагором, Эйнштейн припомнил свои "счастливые бернские годы" и рассказал, что, работая в патентном бюро, придумал несколько технических устройств, в том числе чувствительный электрометр (о нем уже шла речь выше) и прибор, определяющий время экспозиции при фотосъемке. Теперь такое устройство называется фотоэкспонометром.

Почти нет сомнения, что принцип действия эйнштейновского фотоэкспонометра был основан на фотоэлектрическом эффекте. И как знать, может быть, это изобретение было побочным продуктом размышлений, завершившихся знаменитой статьей 1905г. "Об одной эвристической точке зрения...", в которой было введено представление о световых квантах и с их помощью объяснены закономерности фотоэлектрического эффекта.

Любопытно, что интерес к устройствам подобного рода сохранился у Эйнштейна надолго, хотя, насколько известно, фотолюбителем он никогда не был. Так, его авторитетный биограф Ф. Франк сообщает, что где-то во второй половине 40-х годов Эйнштейн и один из его ближайших друзей, доктор медицины Г. Букки, "изобрели механизм для автоматической регулировки времени экспозиции в зависимости от освещенности" [4, с. 241.

Рис. Схема фотокамеры Букки-Эйнштейна

а, в - камера; б - сегмент переменной прозрачности

Кроме того, оказывается, что 27 октября 1936г. Букки и Эйнштейн получили американский патент №2058562 на фотокамеру, автоматически подстраивающуюся под уровень освещенности. Устроена эта автоматическая камера довольно просто (рис. а). В ее передней стенке 1, помимо объектива 2, имеется еще окно 3, через которое свет попадает на фотоэлемент 4. Электрический ток, вырабатываемый фотоэлементом, поворачивает находящийся между линзами объектива легкий (например, целлулоидный) кольцевой сегмент 5, зачерненный так, что прозрачность его плавно изменяется от максимальной на одном конце до минимальной на другом (рис. б). Как указывают в описании своего изобретения Букки и Эйнштейн, блок с фотоэлементом аналогичен известным конструкциям фотоэкспонометров, с тем отличием, что в данном случае поворачивается кольцевой сегмент 5, а не указывающая экспозицию стрелка. Поворот сегмента тем больше, а, следовательно, затемнение объектива тем сильнее, чем ярче освещен объект. Таким образом, будучи раз отъюстированным, устройство при любой освещенности само регулирует количество света, падающего на фотопленку или пластинку, находящуюся в фокальной плоскости объектива 2.

Но что делать, если фотографу захочется изменить диафрагму? Для этого изобретатели предлагают несколько усложненный вариант своей фотокамеры. В этом варианте на ее передней стенке 1 устанавливается поворотный диск 6 с набором отверстий 7-12 нескольких диаметров. При поворотах диска одно из таких отверстий приходится на объектив, а диаметрально противоположное - на окно фотоэлемента. Поворачивая диск за рычажок 13 на фиксированные углы, фотограф одновременно диафрагмирует и объектив и окно. Таким образом, для различных диафрагм достигается одинаковое пропускание света для объектива и для окна фотоэлемента.

Достоинства изобретения очевидны:

1) автоматически регулируется световой поток, достигающий фотопленки или фотопластинки;

2) поскольку используется фотоэлемент, отсутствует опасность, что по истечении некоторого, пусть длительного, времени регулировочное устройство перестанет работать, как было бы, если бы для его питания использовалась батарейка (впрочем, авторы не исключают возможности использования в качестве светочувствительного элемента селенового фоторезистора, присоединенного к внешнему источнику тока).

Мы не располагаем точными сведениями о дальнейшей судьбе магнитострикционного аппарата Эйнштейна - Гольдшмидта. Зато определенно известно, что экспонометр Букки-Эйнштейна одно время был весьма популярен и даже использовался кинооператорами в Голливуде.

Здесь стоит, наверное, сказать несколько слов о друге Эйнштейна докторе Букки (1880-1965). Он родился в Лейпциге, там же закончил медицинский факультет университета. Сначала в Германии, а потом в США он приобрел известность как крупный рентгенолог. Букки был членом многих национальных и международных обществ, написал ряд книг по медицине. Помимо рентгеновских лучей, Букки проявлял живой интерес к терапевтическому использованию новых достижений физики и техники (он один из пионеров УВЧ-прогрева).

Букки активно трудился и как изобретатель. Еще в 1912 г. им была предложена и сконструирована так называемая диафрагма Букки, повышающая контраст рентгеновских снимков. Это устройство получило распространение во всем мире. На счету Букки множество других изобретений, относящихся к рентгеновской технике, фотоаппаратам, электроизмерительным приборам и звуковоспроизводящим устройствам. Интересно, что многие патенты Букки получены им совместно с женой и сыновьями.

Имеются сведения о том, что Эйнштейн и Букки размышляли над конструкцией высотомера, а также изобретали нечто вроде магнитофона. К сожалению, более детальные сведения об этих работах отсутствуют.

Букки, как писал Эйнштейн Г. Мюзаму в 1942 г, был его самым лучшим другом в США. Они часто проводили вместе летний отпуск и плавали на эйнштейновской яхте, причем Букки приходилось довольствоваться не слишком престижной ролью матроса. Но он был матросом - хотя и единственным - на корабле капитана Эйнштейна!

В последние дни жизни Эйнштейна в апреле 1955г. Букки ежедневно приходил в больницу, где лежал его друг. Он был у него и вечером за несколько часов до смерти великого физика. По воспоминаниям Букки, последнее, что он слышал от Эйнштейна, была грустная шутка. "Почему Вы уже уходите?" - спросил его Эйнштейн. Букки ответил, что не хочет его беспокоить, что он должен отдохнуть и поспать. На это Эйнштейн с улыбкой возразил: "Но ведь в таком случае Ваше присутствие мне не помешает".

Гирокомпасы и индукционная электромагнитная подвеска.

Из переписки Эйнштейна с Бессо, Зоммерфельдом и Планком видно, что в течение 1920-1926 гг. Эйнштейн часто наезжал в Киль. Дел, связанных с теоретическими исследованиями, у творца теории относительности в Киле - этой столице германского судостроения, - казалось бы, не было. Чем же он там занимался?

Первое приближение к ответу на этот вопрос дает письмо Эйнштейна М. Бессо, отправленное в мае 1925г.: "...веду тихую жизнь без внешних событий. Единственные перерывы - мои поездки в Киль, где понемногу освежаю свои технические навыки". В Ноймюлене, близ Киля, находилась фирма "Аншютц и Књ" - ведущее предприятие по разработке и производству морских гирокомпасов и других гироприборов. Имя ее основателя, владельца и руководителя Г. Аншютца (1872-1931) часто встречается в переписке Эйнштейна с Зоммерфельдом. Имеет смысл рассказать об этом интересном человеке, который на протяжении многих лет находился в тесных деловых и дружеских отношениях с Эйнштейном (тем более что речь о нем пойдет еще и в следующем разделе этой главы).

Герман Аншютц родился в известной мюнхенской семье; "искусство и наука стояли у его колыбели": его дед был видным художником, профессором Мюнхенской академии искусств, а отец - профессором физики и математики. Аншютц начал свою деятельность как гуманитарий - степень доктора философии он получил в 1896г. за исследование, посвященное творчеству венецианских художников эпохи Возрождения. Увлекшись затем идеей о достижении Северного полюса, он участвует в двух полярных экспедициях и в начале 190 г. высказывает мысль о том, что добраться до полюса можно на подводной лодке. Возникает проблема: как проложить курс - ведь внутри стальной лодки магнитный компас не действует, да и вблизи полюса - тоже. И гуманитарий Аншютц берется за решение фантастически сложной задачи - за создание гирокомпаса.

Эта работа, чуждая его прежним склонностям и в какой-то мере случайно встретившаяся на пути увлекающегося Аншютца, становится основной в его жизни. От дальнейших полярных путешествий он отказывается (вскоре Северный полюс был покорен Р. Пири), но упорно занимается проблемой гирокомпаса. Уже в октябре 1902г. он создает первую модель. О дальнейших успехах в этом направлении и о первых испытаниях гирокомпаса на кораблях Аншютц докладывает в Морской академии в Киле в 1904г., а в следующем году, будучи человеком не только энергичным, но и состоятельным, основывает в Киле фирму "Аншютц и Књ". Процветание фирмы во многом определялось исключительной одаренностью ее создателя, которого К. Магнус (крупный немецкий механик, специалист по гирокомпасам) называет гениальным изобретателем.

Интересно, что успеха в создании гирокомпаса достиг человек, начинавший работу как дилетант. Это находится и прекрасном соответствии с замечанием Эйнштейна о том, как делаются открытия: все знают, что реализация некоей идеи невозможна, но вот находится человек, который этого не знает, и у него все получается!

В результате энергичных усилий Аншютца - организатора и изобретателя - в середине 10-х годов германский флот, в том числе и подводный, был оснащен гирокомпасами, получившими его имя. Гироприборы Аншютца нашли себе и другие применения, например при прокладке буровых скважин, строительстве шахт; его гирокомпас был установлен на знаменитом дирижабле "Граф Цеппелин". Во время одного из рейсов дирижабль сделал круг почета над домом Аншютца в Мюнхене в знак признания заслуг его хозяина. Кстати сказать, этот дом Зоммерфельд называл "бесподобным храмом искусства": Аншютц был известным коллекционером.

Работы Аншютца и его гирокомпасы получили широкую известность не только на его родине, но и за рубежом, в частности в нашей стране. О них с высокой похвалой отзывался академик А. Н. Крылов.

Фирма Аншютца приносила ее основателю значительный доход, который он использовал для создания многочисленных фондов, призванных оказывать содействие ученым и деятелям искусства. На его средства организовывались выставки, лекции, поездки ученых. В трудные инфляционные времена Германии начала 20-х годов средствами фонда Аншютца пользовался и Эйнштейн.

К 1926г. после многолетних упорных трудов фирмой Аншютца был разработан и запущен в серийное производство весьма сложный и совершенный гироскопический прибор - прецизионный артиллерийско-навигационный гирокомпас, за которым закрепилось название "Новый Аншютц" (поскольку на флоте до этого был популярен другой гирокомпас той же фирмы). Это был поистине замечательный прибор, значительно превосходивший по точности, надежности, устойчивости при качке и сроку службы все другие модели гирокомпасов. Конструкция его была высоко оценена специалистами; он имел и чисто коммерческий успех.

В статьях и книгах по гирокомпасам, хоть сколько-нибудь касающихся истории создания этих замечательных приборов, непременино отмечается тот факт, что в разработке "Нового Аншютца" принял участие Эйнштейн. Пожалуй, с наибольшей определенностью высказался по этому поводу один из основоположников гирокомпасного дела в нашей стране - инженер-контр-адмирал профессор Б. И. Кудревич, отметивший, что "Новый Аншютц" - "результат десятилетней совместной работы (Г. Аншютца. - Авт.) с профессором Эйнштейном". Как рассказал одному из авторов этой книги профессор И. И. Гуревич, в 30-х годах на флоте новый навигационный прибор даже называли компасом Эйнштейна-Аншютца (именно в этом порядке).

Кудревич располагал информацией "из первых рук": в начале 1928 г. он был командирован в Германию, в частности для ознакомления с деятельностью фирмы "Аншютц и Књ".

Таким образом, причина частых визитов Эйнштейна в Киль как будто не вызывает сомнений - он сотрудничал с Аншютцем в разработке чудо-компаса. Но каков был конкретный вклад Эйнштейна в эту работу? К сожалению, об этом мало что известно. Нам встретилось лишь одно прямое указание, исходящее от уже упоминавшегося выше К. Магнуса: "Центрирование шара, по совету А. Эйнштейна, с которым Аншютц был дружен, осуществлялось магнитным способом с помощью катушки, расположенной внутри гиросферы".

Особую достоверность придает этому указанию тот факт, что Магнус был учеником М. Шулера, одного из основоположников гирокомпасного дела, который в период с 1908 по 1922 г. занимал руководящие посты в фирме Апшютца.

О чем тут идет речь, что это за гиросфера? Здесь нужно хоть немного рассказать о конструкции "Нового Аншютца".

Этот гироскопический прибор двухроторный - в нем механически связаны взаимно перпендикулярные оси двух вращающихся со скоростью 20 000 об./мин роторов, по 2,3кг каждый (эти гироскопные роторы являются также роторами двух-, трехфазных асинхронных двигателей переменного тока). Оба гироскопа (ротора) помещены внутрь полой герметичной сферы (поэтому она и называется гиросферой), в которой, помимо них, находится ряд других конструкционных элементов.


Подобные документы

  • Антична механіка. Назва книги Аритотеля "Фізика" стала назвою усієї фізичної науки. Механіка епохи Відродження. Найважливіші відкриття Леонардо да Вінчі. Англійський фізик, механік, астроном і математик Исаак Ньютон.

    реферат [22,2 K], добавлен 15.08.2007

  • Система Аристотеля и механика Архимеда. Европейская механика в эпоху Позднего Средневековья и Возрождения. Инженерные проблемы, над которыми работал Леонардо Да Винчи. Механика XVII века: Галилей, Декарт, Ньютон. Принцип мысленного эксперимента.

    курсовая работа [55,1 K], добавлен 30.06.2013

  • Ученый и инженер Леонардо да Винчи, его открытия. Проектирование аппарата с пусковым пружинным устройством, передающим свою энергию крыльям в момент распрямления пружины. Изобретение ученым боевых машин и механизмов, часовых устройств, вечного двигателя.

    презентация [1,4 M], добавлен 13.09.2015

  • Биографические сведения о Ньютоне - великом английском физике, математике и астрономе, его труды. Исследования и открытия ученого, эксперименты по оптике и теории цвета. Первый вывод Ньютоном скорости звука в газе, основанный на законе Бойля-Мариотта.

    презентация [943,4 K], добавлен 26.08.2015

  • Значение физики в современном мире. Общая характеристика научных открытий ХХ века, самые значительные научные открытия. Вклад современной физики в выработку нового стиля планетарного мышления. Выдающиеся физики столетия и характеристика их открытий.

    реферат [741,3 K], добавлен 08.02.2014

  • Жизненный путь Исаака Ньютона - английского математика, физика и астронома. Получение образования и профессорская деятельность в Кембриджском университете. Эксперименты по оптике, изобретение телескопа-рефлектора. Открытия в области механики и математики.

    презентация [1,7 M], добавлен 02.02.2017

  • Исаак Ньютон как английский математик, астроном и физик. Образование в Кембриджском университете и профессорская деятельность. Открытия в области механики, оптики, математики. Назначение хранителем Монетного двора и президентом Королевского общества.

    презентация [423,5 K], добавлен 04.10.2011

  • Взгляд на ньютоновскую и эйнштейновскую физику. Вторая научная революция. Механистическая картина мира. Оценка вклада Галилео Галилея в науку с современных позиций и его эволюция через Ньютона и до Альберта Эйнштейна, т.е. до физики наших дней.

    реферат [26,4 K], добавлен 13.09.2010

  • Основные сферы деятельности Галилео Галилея, его открытия в области механики и астрономии. Галилей как создатель первого телескопа. Наблюдения ученого в телескоп за крупными спутниками Юпитера. Протекание болезни итальянского физика, механика и астронома.

    презентация [253,0 K], добавлен 23.03.2012

  • История открытия Исааком Ньютоном "Закона всемирного тяготения", события, предшествующие данному открытию. Суть и границы применения закона. Формулировка законов Кеплера и их применение к движению планет, их естественных и искусственных спутников.

    презентация [2,4 M], добавлен 25.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.