Несколько слов о парадоксе Бертрана Рассела
Рассмотрение содержания парадокса Бертрана Рассела, где он пытался найти ошибку в доказательстве Кантора. Анализ парадоксальности "множества всех множеств, не являющихся собственными элементами". Изучение результатов рассмотрения парадокса лжеца.
Рубрика | Философия |
Вид | статья |
Язык | русский |
Дата добавления | 11.03.2019 |
Размер файла | 25,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Университетский колледж ОГУ
University college OGU
Несколько слов о парадоксе Бертрана Рассела
A few words about the paradox of Bertrand Russell
Мясников К. А, Эркинов Н. К-у.
Myasnikov, K. A, Erkinov N. K-y.
Оренбург, Россия
Orenburg, Russia
Парадокс Бертрана Рассела был опубликован в 1903 году. Согласно самому Расселу, он пытался найти ошибку в доказательстве Кантора того парадоксального факта (известного как парадокс Кантора), что не существует максимального кардинального числа (а значит и множества всех множеств). У Рассела данный парадокс получился на много проще.
Рассел рассказал о своем открытии парадокса при переписке с Фреге еще в 1902 году. Он рассказал ему, что нашел явное противоречие в его книге, которая была напечатана в 1879 году. Он изучил книгу Фреге «Исчислении понятий [de]» и логично высказал открытый им парадокс при определении множеств, используя определение функции Фреге.
Позднее его изучал и опубликовал Э. Цермело, который назвал данный парадокс - теоретико-множественная антиномия. И именно он стал демонстрировать противоречие теории множеств Г. Кантора.
Даже сегодня парадокс Бертрана Рассела вызывает много вопросов. И до сих пор не сложилось общего мнения на его открытие.
Парадокс озвучивается с использование различных букв, мы выберем букву М. Тогда парадокс такой:
Пусть М - множество всех множеств, которые не содержат себя в качестве своего элемента. Вопрос: содержит ли М само себя в качестве элемента? Если ответ «да», то, по определению М, оно не должно быть элементом М и мы получили противоречие. Если ответ «нет» - то, по определению М, оно должно быть элементом М - вновь противоречие… [1]
Читая это определение, попытаемся определить суть противоречия. По математической логике сам класс может содержать определенный элемент, который в него входит, и в тоже время содержащий элемент может не принадлежать этому классу.
Приведем пример: в домашнем шкафу находится одежда, будем считать ее классом, но сам шкаф не принадлежит к классу одежды.
Это говорит о том, что парадокс Рассела - это понятие класса всех собственных классов.
Понятие «собственный класс» - это класс, который не является элементом себя самого. «Несобственный класс» - это класс, который содержит в себе все собственные элементы. В математике считается, что это класс всех классов.
Интересен момент, что если рассматривают класс, как содержащий все собственные классы, та сразу возникает вопрос: к какому классу его отнести к собственному или несобственному?
Сам Рассел говорил, что данная ситуация очень похожа на ситуацию брадобрея, который не мог брить себя после указа.
В полушутливой форме Рассел представляет этот парадокс через однотипный, так называемый парадокс «Брадобрея» во «Введении в философию математики» (1919) [1].
Парадокс «Брадобрея» заключается в том, что мужчина, который работает брадобреем, получив указ: «Брить только тех, кто сами не бреются!», попал в неловкую ситуацию. С одной стороны он не имеет права себя брить, с другой - он не имеет права ходить небритым человеком. И в первом и во втором случае он нарушал указ.
Таким образом, можно продемонстрировать и парадоксальность «множества всех множеств, не являющихся собственными элементами».
Поэтому он считает, что принципиально не возможна никакая определенность, как однозначная, так и непротиворечивая при такой совокупности, которая содержит элементы, определенные только в терминах рассматриваемой совокупности, и такие элементы, которые включают в себя данную эту совокупность» [1].
Хотя сам Рассел считал, что «Брадобрей» - не «чистый парадокс». Из него только следует, что такого брадобрея должно существовать.
Устраняется парадокс заключением, что если некоторые предпосылки рождают противоречие, значит, они неверны. Поэтому получается, что в нашей ситуации класс должен быть собственный, но он является несобственным и наоборот. И получается, что можно используя парадокс Рассела опровергнуть понятие «множество всех множеств, не являющихся собственными элементами».
Отсюда можно сделать вывод, что история с брадобреем показывает: «принципиально не может быть найдена никакая однозначная и непротиворечивая определённость для этой совокупности, содержащая элементы, определимые только в терминах этой совокупности, а также элементы, включающие в себя или предполагающие эту совокупность».
И как показывает логика математики, если любое высказывание рождает противоречие, следовательно, оно не может быть верным. Парадокс Рассела можно связать с известным ещё с древних времён «парадоксом лжеца». Данный парадокс заключался в следующем:
Если рассмотреть любое высказывание и допустить, что оно ложно. То сразу возникают вопросы:
Истинно ли это высказывание или нет? Легко показать, что это высказывание не может быть ни истинным, ни ложным.
Рассел про этот парадокс писал:
«Это древняя загадка, к которой никто не относился более, чем как к шутке, пока не было обнаружено, что этот вопрос имеет отношение к таким важным и практическим задачам, как существование наибольшего кардинального или ординального числа» [2].
Рассел предложил следующее рассмотрение парадокса лжеца:
«Чтобы говорить что-нибудь о высказываниях, надо сначала определить само понятие «высказывания», при этом, не используя неопределённых пока понятий».
А также он считает, что здесь мы имеем возможность определить высказывание 1 типа, которые ничего не говорят о высказываниях. Затем можно определить высказывания 2 типа, из которых следует высказывания 1 типа, и т. д.
А выбранное нами высказывание:
«Данное высказывание -- ложно» - не может быть ни одным из данных определений, и следовательно не имеет смысла» [3].
Интересен тот момент, что именно антимония Рассела была очень важной в продвижении и развитии математики. Именно она стала основанием для того, чтобы многие математики, которые занимались проблемами теории множеств в XIX-XX веке, полностью пересмотрели свои труды.
Данный парадокс Рассела не оставил равнодушным многих ученых. Так, Пуанкаре считал, что парадокс Рассела поставил на карту только канторизм и логистику.
Математик С. А. Богомолов, отражая другие мнения, писал в 1913 г.:
«Раз дело идет о понятии класса - основном и неизбежном понятии человеческого мышления, - то не только вся математика, но и всё наше знание заинтересовано в удовлетворительном решении возникающих трудностей; теперь - это один из «проклятых вопросов», связанных с обоснование логики» [4].
Свои сомнения по поводу относительности рассмотрения подобного рода объектов 30-летний Рассел изложил в письме Фреге от 16 июня 1902 г. В момент получения этого письма немецкий математик имел вёрстку второго тома «Основных законов арифметики», которые практически обесценивались открытием Рассела [4].
Так, по существу, и закончилась неудачная попытка обосновать арифметику с помощью теории множеств, задуманная ещё Кантором.
В 1903 г. Рассел обнаружил решение парадокса, но открыто в этом не признался. В своих книгах «Предисловии» к «Принципам математики» он делает возможность глубже исследовать классы и понять их природу. И это явилось основным оправданием его публикаций, в которых находились неразрешенные вопросы. Поэтому в работе «Приложение В» Рассел предполагает следующее решения данного вопроса - это теория типов. Со временем не только он и многие математики придут к выводу, что систематизировав теорию типов можно получить возможность ухода от парадоксов, а так же возможность не приходить к ним вообще» [2].
Удивительно то, что ошибки в парадоксе Рассела не существует - ему удалось найти и доказать всю наивность теории множеств.
Это показывает то, что, только усовершенствовав теорию множеств, можно полностью избавиться с уже существующими противоречиями, так как сама теория полностью исключает расселовское множество.
На сегодняшний день существует несколько таких путей. Самый естественный путь - запрещение тем или иным способом множеств, которые могут содержать себя в качестве элемента.
Значит, произойдет исключение «множеств всех множеств», то есть произойдет то, что любая совокупность множеств, уже не будет являться множеством и значит, множество не может рассматриваться как элемент.
Но следует отметить, что такое исключение не может гарантировать уход от парадоксов и противоречий. Самым ярким подтверждением этого, является изначальная попытка Фреге переделать собственную систему.
Существует еще один путь к усовершенствованию теории множеств - это дать возможность множествам включать себя в качестве элемента в основное множество. Это не создает противоречие. Например, уже существуют множество книг, которые являются каталогом определенного направления книг. В тоже время они сами являются книгами, т.е. элементами множества книг. И еще, например, основа программирования содержит в себе многие разновидности, необходимые для программирования. И в тоже время она является элементом программирования.
Математические антиномии, которые были открыты в начале двадцатого века, стали хорошим стимулом для пересмотра математических оснований. В результате появились теории Цермело -- Френкеля ZF, Неймана -- Бернайса -- Гёделя NBG и Морса -- Келли, в основе которых лежит аксиоматические рассмотрение теорий множеств [3].
И в заключении, следует отметить, что сегодня все известные парадоксы и противоречия (а также парадокс Рассела), открытые в двадцатом веке решены. рассел кантор парадоксальность
Но и сегодня доказать, что новые парадоксы не будут найдены невозможно! Одним из примеров могут служить теоремы о неполноте Гёделя.
Список используемых источников
1. Колесников, А. С. Философия Бертрана Рассела: монография / А. С. Колесников; ред. Я. А. Слинин. - Л.: Издательство Ленинградского университета, 1991. - 232 с.
2. Парадокс Бертрана Рассела. [Электронный ресурс] - Режим доступа: http://vikent.ru/enc/1673/
3. Мирошниченко П. Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. -- СПб., 2000. -- С. 512--514.
4. Катречко С. Л. Расселовский парадокс брадобрея и диалектика Платона -- Аристотеля // Современная логика: проблемы теории, истории и применения в науке. -- СПб., 2002. -- С. 239--242.
Размещено на Allbest.ru
Подобные документы
Жизнь и деятельность английского ученого и общественного деятеля Бертрана Рассела. Создание концепции логического атомизма. История философии глазами Рассела, язык математики в его философии. Литературно-поэтическое выражение в философском тексте.
контрольная работа [24,3 K], добавлен 27.06.2010Формування філософських поглядів Б. Рассела, започаткування методу логічного аналізу. Проблеми використання мови, її дослідження за допомогою логічного аналізу. Сутність теорії пізнання. Внесок в освіту, історію, політичну теорію та релігійне вчення.
курсовая работа [75,5 K], добавлен 13.05.2012История возникновения аналитической философии. Неореализм и лингвистический анализ. Характеристика позиции Бертрана Рассела как научного здравого смысла, логический анализ в философии. От "Логико-философского трактата" к "Философским исследованиям".
реферат [60,3 K], добавлен 26.06.2013Связь понятий парадокса, антиномии, контрадикторности с понятием противоречия. Диалектический процесс познания, его гносеологические трудности. Построение семантической линии. Парадоксы лжеца и Мура. "Парадокс лица", регулирующий механизмы вежливости.
реферат [31,9 K], добавлен 27.01.2010Основные пути возникновения логических парадоксов, их историческое развитие и положительное влияние на развитие логики и философии. Типы парадоксов, их классификация. Конкретные примеры: парадокс "Лжец", парадоксы Рассела, Кантора, Ришара и другие теории.
реферат [457,2 K], добавлен 12.05.2014Биография, творчество до "Левиафана". Основные положения "Левиафана". О человеке. О государстве. О церкви. Анализ "Левиафана" Б. Рассела. Основные интересы всех граждан одинаковы. Отношение между различными государствами.
реферат [29,8 K], добавлен 18.02.2003Формирование разновидности позитивизма – неопозитивизма, его естественнонаучные предпосылки. Программа построения "логически совершенного языка" Б. Рассела. Логический позитивизм и логическая семантика. Философия логического и лингвистического анализа.
реферат [18,9 K], добавлен 19.01.2010Проблемы парадоксальности в истории познания. Парадоксы одноплоскостного мышления в многомерном мире. Восточная философия дзен. Парадоксы в научном познании, основные стратегии избавления от парадоксов в теории множеств. Принцип многомерности мышления.
реферат [43,2 K], добавлен 14.03.2010Общее понятие об анализе рассуждений, особая роль терминов "все" и "некоторые" в логике. Типы суждений в силлогистике Аристотеля и их выражение в терминах E-структур. Понятие и методы построения экзистенциальных суждений, получение коллизии парадокса.
контрольная работа [79,0 K], добавлен 03.09.2010Виникнення поняття раціональність, неповна та обмежена раціональність. Тлумачення Г. Саймона про раціональність: вагомість результату. Актуальність теорії, вплив на роботу С. Рассела та на наукові роботи Г. Саймона.
реферат [18,3 K], добавлен 27.03.2011