Синергетика как научное направление

Понятие и сущность синергетики как нового направления современной научной мысли. Исследование основных идей, научных течений, структуры и проблем синергетики, анализ отношения к ней других наук. Особенности синергетической концепции самоорганизации.

Рубрика Философия
Вид реферат
Язык русский
Дата добавления 30.01.2018
Размер файла 29,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

КАФЕДРА ФИЛОСОФИИ РАН

МОСКВА 2000

План:

Введение

1. Синергетика по Хакену

2. Научные течения в синергетике

3. Основные идеи синергетики

4. Структуры синергетики

5. Междисциплинарность синергетики

6. Синергетическая концепция самоорганизации

7. Критика синергетики и синергетиков

Заключение

Литература

Введение

Термин «синергетика» происходит от греческого «синергос» -- совместно действующий. синергетика научный самоорганизация

Синергетика - научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических и других) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях.

С момента появления синергетики прошло достаточно много времени. Видимо для этого междисциплинарного подхода наступила пора зрелости и самоидентификации. То, что вначале можно было только предвидеть, не смотря на серьезные работы крупных ученых и основателей этой концепции, сегодня стало реальным фактом и дает право считать ее не просто подходом, а своего рода философией пост неклассической науки. Стоит отметить, что значение синергетики в действительности не в ее натурфилософских корнях, не в близости с экспериментальной наукой, не в ее связи с именами известных деятелей науки стоявших у ее основания и уделяющих ей внимание и по сей день, с наличием старых и новых приверженцев из научной среды. Значение ее состоит главным образом в стремлении найти ответы на самые глобальные вопросы устройства Мира. А это, как известно, прерогатива именно философии. То, что синергетика была создана именно учеными, то есть людьми, не испытывающими особо теплых чувств и необходимости в советах отвлеченной от реальности философской схоластики, говорит об острой потребности в формировании своей, близкой к науке философии, которая могла бы решать такие задачи, которые ставит сама научная практика, анализ изучаемых наукой явлений, отдельные черты которых имеют несомненные признаки всеобщности.

Цель данной работы - попытаться на доступном уровне раскрыть существо и понятие синергетики, как нового направления современной научной мысли, а также рассмотреть основные проблемы синергетики и отношение к ней других наук.

1. Синергетика по Хакену

Синергетика возникла в начале 70-х гг. XX века. До этого времени считалось, что существует непреодолимый барьер между неорганической и органической, живой природой. Лишь живой природе присущи эффекты саморегуляции и самоуправления.

Синергетика перекинула мост между неорганической и живой природой. Она пытается ответить на вопрос, как возникли те макросистемы, в которых мы живем. Во многих случаях процесс упорядочения и самоорганизации связан с коллективным поведением подсистем, образующих систему.

Возникновение синергетики связано, в основном, с именами бельгийского физика и химика И. Пригожина, лауреата Нобелевской премии 1977 г, немецкого физика Г. Хакена, другого немецкого ученого М. Эйгена, а также наших отечественных ученых Б. Белоусова и А. Жаботинского.

И. Пригожин, разрабатывая современную термодинамику необратимых процессов (неравновесную термодинамику) открыл явление образования упорядоченных структур из хаотического, неупорядоченного состояния системы, т.е. самоорганизацию и сформулировал теорему о минимуме производства энтропии в стационарном неравновесном состоянии.

Создателем синергетического направления и изобретателем термина «синергетика» является профессор Штутгартского университета и директор Института теоретической физики и синергетики Герман Хакен.

Г. Хакен, изучая процессы самоорганизации, происходящие в лазере, назвал новое направление исследований синергетикой, что в переводе с греческого означает совместное действие, или взаимодействие. Он впервые применил этот термин для обозначения нового научного направления.

Г. Хакен стал использовать его в этих целях на своих лекциях в 1969 г. В интервью Е.Н. Князевой для журнала «Вопросы философии» Г. Хакен так объясняет свой выбор: «Я выбрал тогда слово «синергетика», потому что за многими дисциплинами в науке были закреплены греческие термины. Я искал такое слово, которое выражало бы совместную деятельность, общую энергию что-то сделать … Я преследовал цель привести в движение новую область науки… Уже тогда я видел, что существует поразительное сходство между совершенно различными явлениями, например, между излучением лазера и социологическими процессами или эволюцией, что должно быть только вершиной айсберга. Правда, в то время я не подозревал, что эта область может оказать влияние на столь многие и отдаленные области исследования, как, например, психология и философия». По Хакену, синергетика занимается изучением систем, состоящих из большого (очень большого, «огромного») числа частей, компонентов или подсистем, одним словом, деталей, сложным образом взаимодействующих между собой. Слово «синергетика» и означает «совместное действие», подчеркивая согласованность функционирования частей, отражающуюся в поведении системы как целого.

2. Научные течения в синергетике

В синергетике к настоящему времени сложилось уже несколько научных школ. Эти школы окрашены в те тона, которые привносят их сторонники, идущие к осмыслению идей синергетики с позиции своей исходной дисциплинарной области, будь то математика, физика, биология, химия, философия или даже обществознание.

В числе этих школ - брюссельская школа, основанная лауреатом Нобелевской премии по химии за 1977 г. Ильей Романовичем Пригожиным (из числа потомков русских эмигрантов, покинувших Россию после революционных событий 1917 г.), разрабатывающего теорию диссипативных структур, раскрывающую исторические предпосылки и мировоззренческие основания теории самоорганизации.

Интенсивно работает также школа Г. Хакена. Он объединил большую группу ученых вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет уже более 60 томов.

Классические работы, в которых развивается математический аппарат для описания катастрофических синергетических процессов, принадлежат перу российского математика В.И. Арнольда и французского математика Р. Тома. Эту теорию называют по-разному: теория катастроф, особенностей или бифурикаций.

Среди российских ученых следует упомянуть также академика А.А. Самарского и С.П. Курдюмова. Их школа разрабатывает теорию самоорганизации на базе математических моделей и вычислительного эксперимента на дисплеях компьютеров. Эта школа выдвинула ряд оригинальных идей для понимания механизмов возникновения и эволюции относительно устойчивых структур в открытых (нелинейных) средах (системах).

Широко известны также работы академика Н. Н. Моисеева, разрабатывающего идеи универсального эволюционизма и коэволюции человека и природы, работы биофизиков, членов-корреспондентов РАНМ. В. Волькенштейна и Д. С. Чернавского.

Такое разнообразие научных школ, направлений, идей свидетельствует о том, что синергетика представляет собой скорее парадигму, чем теорию. Это значит, что она олицетворяет определенные достаточно общие концептуальные рамки, немногочисленные фундаментальные идеи, общепринятые в научном сообществе, и методы (образцы) научного исследования.

3. Основные идеи синергетики

«Краеугольным камнем» синергетики являются три основные идеи: неравновесность, открытость и нелинейность.

Состояние равновесия может быть устойчивым (стационарным) и динамическим. О стационарном равновесном состоянии говорят в том случае, если при изменении параметров системы, возникшем под влиянием внешних или внутренних возмущений, система возвращается в прежнее состояние. Состояние динамического (неустойчивого) равновесия имеет место тогда, когда изменение параметров влечет за собой дальнейшие изменения в том же направлении и усиливается с течением времени. Важно подчеркнуть, что такого рода устойчивое состояние может возникнуть в системе, находящейся вдали от стационарного равновесия.

Длительное время в состоянии равновесия могут находиться лишь закрытые системы, не имеющие связей с внешней средой, тогда как для открытых систем равновесие может быть только мигом в процессе непрерывных изменений. Равновесные системы не способны к развитию и самоорганизации, поскольку подавляют отклонения от своего стационарного состояния, тогда как развитие и самоорганизация предполагают качественное его изменение.

Неравновесность можно определить как состояние открытой системы, при котором происходит изменение ее макроскопических параметров, то есть ее состава, структуры и поведения. В своей статье «Философия нестабильности» И. Пригожин пишет: «Наше восприятие природы становится дуалистическим, и стержневым моментом в таком восприятии становится представление о неравновесности. Причем неравновесности, ведущей не только к порядку и беспорядку, но открывающей также возможность для возникновения уникальных событий, ибо спектр возможных способов существования объектов в этом случае значительно расширяется (в сравнении с образом равновесного мира)».

Открытость - способность системы постоянно обмениваться веществом (энергией, информацией) с окружающей средой и обладать как «источниками» - зонами подпитки ее энергией окружающей среды, действие которых способствует наращиванию структурной неоднородности данной системы, так и «стоками» - зонами рассеяния, «сброса» энергии, в результате действия которых происходит сглаживание структурных неоднородностей в системе. Открытость (наличие внешних «источников» («стоков»)) является необходимым условием существования неравновесных состояний, в противоположность замкнутой системе, неизбежно стремящейся, в соответствии со вторым началом термодинамики, к однородному равновесному состоянию.

Нелинейностью называется свойство системы иметь в своей структуре различные стационарные состояния, соответствующие различным допустимым законам поведения этой системы. Всякий раз, когда поведение таких объектов удается выразить системой уравнений, эти уравнения оказываются нелинейными в математическом смысле. Математическим объектам с таким свойством соответствует возникновение спектра решений вместо одного единственного решения системы уравнений, описывающих поведение системы. Каждое решение из этого спектра характеризует возможный способ поведения системы. В отличие от линейных систем, подсистемы которых слабо взаимодействуют между собой и практически независимо входят в систему, то есть обладают свойством аддитивности (целая система сводима к сумме ее составляющих), поведение каждой подсистемы в нелинейной системе определяется в зависимости от координации с другими. Система нелинейна, если в разное время, при разных внешних воздействиях ее поведение определяется различными законами. Это создает феномен сложного и разнообразного поведения, не укладывающегося в единственную теоретическую схему. Из этой поведенческой особенности нелинейных систем следует важнейший вывод по поводу возможности из прогнозирования и управления ими. Эволюция поведения (и развития) данного типа систем сложна и неоднозначна, поэтому внешние или внутренние воздействия могут вызвать отклонения такой системы от ее стационарного состояния в любом направлении. Одно и то же стационарное состояние такой системы при одних условиях устойчиво, а при других - не устойчиво, т.е. возможен переход в другой стационарное состояние.

4. Структуры синергетики

Синергетика изучает два типа структур:

1) Так называемые диссипативные структуры, возникающие в процессе самоорганизации, для осуществления которых необходим рассеивающий (диссипативный) фактор. Здесь более важна роль стоков. Такие структуры тяготеют к стационарному состоянию, они как бы застывают на стоках. Диссипативные структуры появляются в открытых колебательных системах с сильной внешней подпиткой. Запасенная в них энергия способна высвобождаться в частности при поступлении в систему слабых возбуждений (флуктуаций), а отклик системы на это возбуждение может быть непредсказуемо сильным. Диссипативные структуры «живут» (в системном смысле) за счёт использования отторгнутой энергии внешней среды для собственных нужд.

Открытая нелинейная система в ситуации критической неравновесности способна порождать «чудо создания порядка из хаоса», менять сам тип своего поведения. В ней могут формироваться новые динамические состояние, названные И. Пригожиным диссипативными структурами. Если размазывающий процесс диссипации (диффузия, молекулярный хаос) ведет равновесную систему к хаосу, то в неравновесных системах он приводит, напротив, к возникновению новых структур, так как устраняет все нежизненные, неустойчивые состояния. «Диссипативность - фактор «естественного отбора», разрушающий все, что не отвечает тенденциям развития, «молоток скульптора», которым тот отсекает все лишнее от глыбы камня, создавая скульптуру». В диссипативной структуре между частицами устанавливаются дальнодействующие корреляции, меняется тип поведения - частицы начинают вести себя согласованно, когерентно, «как по команде» происходит синхронизация пространственно-разделенных процессов. Порядок в синергетике понимается как макроскопическая упорядоченность при сохранении микроскопической молекулярной разупорядоченности, то есть порядок на макроуровне вполне мирно уживается с хаосом на микроуровне.

Другой тип структур - нестационарные (эволюционирующие) структуры, возникающие за счет активности нелинейных источников энергии. Здесь структура - это локализованный в определенных участках среды процесс, имеющий определенную геометрическую форму и способный развиваться, трансформироваться или же переноситься в среде с сохранением формы.

Подобные структуры изучаются российской синергетической школой. Следует отметить, что фактически эти два типа структур являются различными этапами развития процессов в открытых нелинейных средах.

Объектом синергетики являются системы, которые удовлетворяют, по меньшей мере, двум условиям:

· они должны быть открытыми;

· они должны быть существенно-неравновесными.

Но именно такими являются большинство известных нам систем. Изолированные системы классической термодинамики - это определенная идеализация, в реальности такие системы исключение, а не правило. Сложнее со всей Вселенной в целом: если считать её открытой системой, то что может служить её внешней средой? Современная физика полагает, что такой средой для нашей вещественной Вселенной является вакуум.

5. Междисциплинарность синергетики

Системы, составляющие объект изучения синергетики, могут быть самой различной природы и содержательно и специально изучаться различными науками, например, физикой, химией, биологией, математикой, нейрофизиологией, экономикой, социологией, лингвистикой (перечень наук легко можно было бы продолжить). Каждая из наук изучает «свои» системы своими, только ей присущими, методами и формулирует результаты на «своем» языке. При существующей далеко зашедшей дифференциации науки это приводит к тому, что достижения одной науки зачастую становятся недоступными вниманию и тем более пониманию представителей других наук.

В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву.

Следует особо подчеркнуть, что синергетика отнюдь не является одной из пограничных наук типа физической химии или математической биологии, возникающих на стыке двух наук (наука, в чью предметную область происходит вторжение, в названии пограничной науки представлена существительным; наука, чьими средствами производится «вторжение», представлена прилагательным; например, математическая биология занимается изучением традиционных объектов биологии математическими методами). По замыслу своего создателя профессора Хакена , синергетика призвана играть роль своего рода метанауки , подмечающей и изучающей общий характер тех закономерностей и зависимостей, которые частные науки считали «своими». Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий («интернациональный») характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики.

Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика возникла не на пустом месте. Ее можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее «интернациональным языком», а впоследствии и «нелинейным мышление» (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.

7. Синергетическая концепция самоорганизации

В определенной части своего смысла синергетика и такие понятия как самоорганизация, саморазвитие и эволюция имеют общность, которая позволяет указать их все в качестве результатов синергетического процесса. В особенности самоорганизация устойчиво ассоциируются сегодня с синергетикой. Однако такие ассоциации имеют двоякое значение. С одной стороны, эффект самоорганизации является существенным, но, тем не менее, одним из компонентов, характеризующих синергетику, с другой -- именно этот компонент придает выделенный смысл всему понятию синергетики и, как правило, является наиболее существенным и представляющим наибольший интерес.

1) Объектами исследования являются открытые системы в неравновесном состоянии, характеризуемые интенсивным (потоковым, множественно-дискретным) обменом веществом и энергией между подсистемами и между системой с ее окружением.

Конкретная система погружена в среду, которая является также ее субстратом.

2) Среда -- совокупность составляющих ее (среду) объектов, находящихся в динамике. Взаимодействие исследуемых объектов в среде характеризуется как близкодействие -- контактное взаимодействие. Среда объектов может быть реализована в физической, биологической и другой среде более низкого уровня, характеризуемой как газо-подобная, однородная или сплошная. (В составе системы реализуется дальнодействие -- полевое и опосредствованное (информационное взаимодействие.))

3) Различаются процессы организации и самоорганизации Общим признаком для них является возрастание порядка вследствие протекания процессов, противоположных установлению термодинамического равновесия независимо взаимодействующих элементов среды (также удаления от хаоса по другим критериям). Организация, в отличие от самоорганизации, может характеризоваться, например, образованием однородных стабильных статических структур.

4) Результатом самоорганизации становится возникновение, взаимодействие и, возможно, регенерация динамических объектов (подсистем) более сложных в информационном смысле, чем элементы (объекты) среды, из которых они возникают. Система и ее составляющие являются существенно-динамическими образованиями.

5) Направленность процессов самоорганизации обусловлена внутренними свойствами объектов (подсистем) в их индивидуальном и коллективном проявлении, а также воздействиями со стороны среды, в которую «погружена» система.

6) Поведение элементов (подсистем) и системы в целом, существенным образом характеризуется спонтанностью -- акты поведения не являются строго детерминированными.

7) Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникшей ранее в результате процесса организации.

Приведенное развернутое определение является если и не вполне совершенным, то все-таки необходимым шагом на пути конкретизации содержания, которое относится к синергетике, и выработки критериев для создания моделирующей самоорганизующейся среды.

О соотношении синергетики и самоорганизации следует вполне определенно сказать, что содержание, на которое они распространяются, и заложенные в них идеи неотрывны друг от друга. Они, однако, имеют и различия. Поэтому синергетику как концепцию самоорганизации следует рассматривать в смысле взаимного сужения этих понятий на области их пересечения.

7. Критика синергетики и синергетиков

Хакена и его последователей иногда обвиняют в честолюбивых замыслах, в умышленном введении легковерных в заблуждение. Кроме прочего утверждается, будто кроме названия, синергетика напрочь лишена элементов новизны.

Даже если бы новацией было только название, появление синергетики было бы оправдано. Предложенное Хакеном выразительное название нового междисциплинарного направления привлекало к этому новому направлению гораздо больше внимания, чем любое “правильное” и понятное лишь узкому кругу специалистов, название.

Уже нет необходимости доказывать полезность синергетического подхода и неправильно настаивать на непременном использовании названия "синергетика" всеми, чьи достижения, текущие результаты или методы сторонники синергетики склонны считать синергетическими. Явления самоорганизации, излучение сложности, богатство режимов, порождаемых необязательно сложными системами, оставляют простор для всех желающих. Каждый может найти свою рабочую площадку и спокойно трудиться в меру желания, сил и возможностей. Однако нельзя не отметить, что перенос синергетических методов из области точного естествознания в области, традиционно считавшиеся безраздельными владениями далеких от математики гуманитариев, вскрыли один из наиболее плодотворных аспектов синергетики и существенно углубили её понимание.

Вопрос о том, что такое синергетика, является одновременно продуктивным и некорректным. Он инициирует переосмысление понятия с учетом новых результатов и веяний. Вместе с тем, говоря о «синергетике» можно иметь в виду: терминологический аспект -- происхождение и смысл термина; физическую реальность (аспект и содержание), обозначаемую термином; содержание научного знания, относимое исключительно или частично к синергетике, включая ее методы исследования; и, наконец, интуитивный смысл, следующий из разнообразных сведений и дискуссий, руководствуясь которым, исследователь упорядочивает материал и представляет его научной аудитории. Некорректность состоит в том, что дискутирующие стороны нередко имеют в виду разное.

Выявление методов и предмета исследований, характерных для синергетики, кроме того, что это представляет самостоятельный научный интерес, способствует более продуктивному применению синергетической концепции для решения конкретных проблемных задач в различных областях знания.

Поводя итог сказанному, можно констатировать, что путь становления синергетики является противоречивым, однако именно противоречивость и даже парадоксальность является движущим началом как для содержания, исследуемого синергетикой, так и для самой синергетики.

Заключение

Общие закономерности поведения систем, порождающих сложные режимы, позволяют рассматривать на содержательном, а иногда и на количественном уровне, такие вопросы, как уровень сложности восприятия окружающего мира как функции словарного запаса воспринимающего субъекта, роль хаотических режимов, их иерархий и особенностей в формировании смысла, грамматические категории как носители семантического содержания, проблемы ностратического языкознания (реконструкция праязыка) как восстановление «фазового портрета» семейства языков и выделения аттракторов, и многое другое. Можно предположить, что в связи с существующими и грядущими результатами в кинетической химии, нейробиологии, нейрокомпьютинге и в других областях сформируется более определенный теоретический и аксиоматический базис синергетики, благодаря чему, в частности, и критика в ее адрес станет более конструктивной и продуктивной. Несомненно, при всем том, что синергетика полноценно «работает» сегодня как категория научного знания.

Является ли синергетика междисциплинарным подходом, совершенно новой наукой или просто каким-то философским взглядом - это еще предстоит доказать. Однако, новые идеи и неожиданные подходы к известным проблемам составляет несомненный интерес к этой отрасли знания.

Синергетика позволяет современной науке выйти на принципиально новые рубежи в миропонимании, нетрадиционном объяснении многих явлений и парадоксов развития.

Отсюда становится понятным, почему сегодня так важно, чтобы синергетика изучалась каждым образованным человеком и прежде всего теми, кто в силу своих профессиональных обязанностей ученого, руководителя, инженера, экономиста, предпринимателя, педагога не может оставаться в стороне от современной революции в естествознании и обществознании, новых тенденций в научном познании.

Литература

1. Аршинов В.И.. Синергетика как феномен постнеоклассической науки, М. ИФ РАН, 1999

2. Блинков А.В., Киселев А.Н. Решение всех проблем. Неординарное мышление и поведение. Екатеринбург: Баско, 1994

3. Малинецкий Г.Г. Синергетика. Король умер. Да здравствует король! Нечипоренко Ю. Куда ни кинь - всюду Ян и Инь.

4. Данилов Ю.А., Кадомцев Б.Б. Что такое синергетика? // В кн. Нелинейные волны. Самоорганизация. М., Наука, 1983.

5. Большой энциклопедический словарь. М.: Советская энциклопедия, 1991.

Размещено на Allbest.ru


Подобные документы

  • Характеристика междисциплинарного направления научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем. Основное понятие синергетики. Ее история развития, основные направления.

    презентация [832,1 K], добавлен 19.12.2013

  • Создание полного образа синергетической картины мира. Синергетика по Хакену, основные представления синергетики. Понятие нестабильности, нелинейности, динамические системы. Категориальное синергетическое осмысление идей самоорганизации структуры.

    реферат [31,2 K], добавлен 20.02.2012

  • Сущность и назначение теории кольцевого детерминизма. Известные подвижники синергетики в современной отечественной науке и их вклад в ее развитие. Порядок и закономерности создания единой общенаучной картины мира на основе теорий и методов синергетики.

    научная работа [13,5 K], добавлен 04.10.2010

  • Проблема синергетики: скачкообразное возникновение нового макроскопического состояния порядка в определенных обстоятельствах. Наука - открытая система с точки зрения синергетики. Подчинение системы параметрами порядка. Конкуренция среди научных журналов.

    реферат [112,7 K], добавлен 26.09.2009

  • Синергетика как основа междисциплинарного синтеза знания, её основные представления. Общенаучные теории, выражающие методологию синергетики и позволяющие формулировать принципы. Четыре принципа частных теорий синергетики. Уровни синергетического знания.

    реферат [29,1 K], добавлен 20.02.2012

  • Предметы и направления исследования философии, синергетики и кибернетики, история и обстоятельства их становления, современные достижения и тенденции. Апостериори-пассивные и априори-активные кибернетические системы. Познавательная когнитивность.

    реферат [22,7 K], добавлен 17.02.2015

  • Сущность и содержание классической ньютоновской идеи времени и тенденции ее изменения на современном этапе, роль и место исследования данной проблематики в теории синергетики. Причины смены знаков традиционного времени "по кругу" с плюсов на минусы.

    реферат [28,9 K], добавлен 05.08.2013

  • Синергетическая модель динамики политического сознания. Синергетика и методология системных исследований. Синергетические стратегии в образовании. Самоорганизация в физико-химических системах. Синергетика и Интернет. Роль и место синергетики в науке.

    книга [288,0 K], добавлен 03.05.2008

  • Синергетика как направление и научная программа исследований, изучающих процесс самоорганизации и становления упорядоченных структур в сложных динамических системах, закономерности и принципы; бифуркации и флуктуации, конструктивное переосмысление хаоса.

    реферат [46,3 K], добавлен 25.11.2010

  • Дослідження ролі синергетичної парадигми в юриспруденції. Визначення синергетики як загального (філософського) підходу до вивчення держави і права. Загальна характеристика та особливості застосування синергетики для пізнання правових явищ і феноменів.

    контрольная работа [21,7 K], добавлен 18.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.