Философия техники

Этапы развития технического знания и технических наук. Возникновение и начало развития инженерного образования в России. Соотношение науки и техники в исторических культурах. Основные направления развития философии техники. Проблема технической этики.

Рубрика Философия
Вид курс лекций
Язык русский
Дата добавления 25.09.2017
Размер файла 191,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Технические науки прошли следующие этапы развития:

- в качестве приложения различных областей естествознания к определенным классам инженерных задач;

- как особый класс научных дисциплин, отличающихся от естественных наук как по объекту, так и по внутренней структуре, но также обладающих дисциплинарной организацией (к сер. ХХ в.);

- в качестве системотехники как попытки комплексного теоретического обобщения всех отраслей современной техники и технических наук при ориентации не только на естественнонаучное, но и гуманитарное образование инженеров, т.е. при ориентации на системную картину мира (по наст. время).

Системотехника представляет собой особую деятельность по созданию сложных технических систем и в этом смысле является прежде всего современным видом инженерной, технической деятельности, но в то же время включает в себя особую научную деятельность, поскольку является не только сферой приложения научных знаний. В ней происходит также и выработка новых знаний. Таким образом, в системотехнике научное знание проходит полный цикл функционирования - от его получения до использования в инженерной практике.

ТЕМА 3. Специфика технического знания

1. Проблема соотношения науки и техники

В современной литературе по философии техники можно выделить следующие основные подходы к решению проблемы соотношения науки и техники:

1) Линейная модель: техника рассматривается как прикладная наука;

2) Эволюционная модель: процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы;

3) Инструментальная модель: наука развивалась, ориентируясь на развитие технических аппаратов и инструментов, техника «ведет» науку;

4) Опережающая модель: техника науки во все времена обгоняла технику повседневной жизни;

5) Сциентификация техники и технизация науки: до конца XIX в. регулярного применения научных знаний в технической практике не было, но оно характерно для современных технических наук.

1) Линейная модель.

Долгое время (особенно в 50-60-е гг. нашего столетия) одной из наиболее распространенных была так называемая линейная модель, рассматривающая технику в качестве простого приложения науки или даже - как прикладную науку. Однако эта точка зрения в последние годы подверглась серьезной критике как слишком упрощенная. Такая модель взаимоотношения науки и техники, когда за наукой признается функция производства знания, а за техникой - лишь его применение, вводит в заблуждение, так как утверждает, что наука и техника представляют различные функции, выполняемые одним и тем же сообществом.

Например, О. Майер считает, что границы между наукой и техникой произвольны. В термодинамике, аэродинамике, физике полупроводников, медицине невозможно отделить практику от теории, они сплетены здесь в единый предмет. И ученый, и техник "применяют одну и ту же математику, могут работать в одинакового вида лабораториях, у обоих можно видеть руки грязными от ручного труда". Многие ученые сделали вклад в технику (Архимед, Галилей, Кеплер, Гюйгенс, Гук, Лейбниц, Кельвин), а многие инженеры стали признанными и знаменитыми авторитетами в науке (Герон Александрйский, Леонардо да Винчи, Уатт, Карно).

Иногда считают, что главное различие между наукой и техникой - лишь в широте кругозора и в степени общности проблем: технические проблемы более узки и более специфичны. Однако в действительности наука и техника составляют различные сообщества, каждое из которых различно осознает свои цели и систему ценностей.

Такая упрощенная линейная модель технологии как прикладной науки, т.е. модель, постулирующая линейную, последовательную траекторию - от научного знания к техническому открытию и инновации - большинством специалистов признана сегодня неадекватной.

2) Эволюционная модель.

Процессы развития науки и техники часто рассматриваются как автономные, независимые друг от друга, но скоординированные. Тогда вопрос их соотношения решается так:

а) полагают, что наука на некоторых стадиях своего развития использует технику инструментально для получения собственных результатов, и наоборот - бывает так, что техника использует научные результаты в качестве инструмента для достижения своих целей;

б) высказывается мнение, что техника задает условия для выбора научных вариантов, а наука в свою очередь - технических. Последнее называют эволюционной моделью.

Рассмотрим последовательно каждую из этих точек зрения.

Первая точка зрения подчеркивает, что представление о технике просто как о прикладной науке должно быть отброшено, так как роль науки в технических инновациях имеет относительное, а не абсолютное значение. Согласно этой точке зрения, технический прогресс руководствуется прежде всего эмпирическим знанием, полученным в процессе имманентного развития самой техники, а не теоретическим знанием, привнесенным в нее извне научным исследованием.

В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство (или - более широко - практическое использование). Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме.

В 1972 году британский философ науки Стефан Тулмин (Stephen Toulmin 1922-2009) опубликовал свою работу «Человеческое понимание», в которой он утверждает, что развитие науки есть эволюционный процесс. По мнению С. Тулмина, для описания взаимодействия трех автономных эволюционных процессов справедлива та схема, которую он создал для описания процессов развития науки, а именно:

фаза мутаций - создание новых вариантов;

фаза селекции - создание новых вариантов для практического использования;

фаза диффузии и доминирования - распространение успешных вариантов внутри каждой сферы на более широкую сферу науки и техники.

Подобным же образом связаны техника и производство.

Тулмин также отрицает, что технику можно рассматривать просто как прикладную науку. Во-первых, неясно само понятие "приложение". В этом плане законы Кеплера вполне могут рассматриваться как специальное "приложение" теории Ньютона. Во-вторых, между наукой и техникой существуют перекрестные связи и часто бывает трудно определить, находится "источник" какой-то научной или технической идеи в области науки или в сфере техники.

Аналогичным образом объяснял взаимодействие науки и техники другой известный философ науки - Дерек де Солла Прайс, который пытался разделить развитие науки и техники на основе выделения различий в интенциях и поведении тех, кто занимается научным техническим творчеством. Ученый - это тот, кто хочет публиковать статьи, для техника же опубликованная статья не является конечным продуктом. Прайс определяет технику как исследование, главным продуктом которого является не публикация (как в науке), а - машина, лекарство, продукт или процесс определенного типа и пытается применить модели роста публикаций в науке к объяснению развития техники.

3) Инструментальная модель.

Согласно третьей точке зрения, наука развивалась, ориентируясь на развитие технических аппаратов и инструментов, и представляет собой ряд попыток исследовать способ функционирования этих инструментов иными словами техника «ведет» науку.

Германский философ Гернот Беме приводит в качестве примера теорию магнита английского ученого Вильяма Гильберта, которая базировалась на использовании компаса. Аналогичным образом можно рассмотреть и возникновение термодинамики на основе технического развития парового двигателя. Другими примерами являются открытие Галилея и Торичелли, к которым они были приведены практикой инженеров, строивших водяные насосы. По мнению Беме, техника ни в коем случае не является применением научных законов, скорее, в технике идет речь о моделировании природы сообразно социальным функциям.

Прогресс науки зависел в значительной степени от изобретения соответствующих научных инструментов. Причем многие технические изобретения были сделаны до возникновения экспериментального естествознания, например, телескоп и микроскоп, а также можно утверждать, что без всякой помощи науки были реализованы крупные архитектурные проекты. Без сомнения, прогресс техники сильно ускоряется наукой; верно также и то, что "чистая" наука пользуется техникой, т.е. инструментами, а наука была дальнейшим расширением техники. Но это еще не означает, что развитие науки определяется развитием техники. К современной науке, скорее, применимо противоположное утверждение.

4) Опережающая модель.

Четвертая точка зрения оспаривает предыдущую, утверждая, что техника науки, т.е. измерение и эксперимент, во все времена обгоняет технику повседневной жизни.

Этой точки зрения придерживался, например, А. Койре, который оспаривал тезис, что наука Галилея представляет собой не что иное, как продукт деятельности ремесленника или инженера. Он подчеркивал, что Галилей и Декарт никогда не были людьми ремесленных или механических искусств и не создали ничего, кроме мыслительных конструкций. Не Галилей учился у ремесленников на венецианских верфях, напротив, он научил их многому. Он был первым, кто создал первые действительно точные научные инструменты - телескоп и маятник, которые были результатом физической теории. При создании своего собственного телескопа Галилей не просто усовершенствовал голландскую подзорную трубу, а исходил из оптической теории, стремясь сделать невидимое наблюдаемым, из математического расчета, стремясь достичь точности в наблюдениях и измерениях. Измерительные инструменты, которыми пользовались его предшественники, были по сравнению с приборами Галилея еще ремесленными орудиями. Новая наука заменила расплывчатые и качественные понятия аристотелевской физики системой надежных и строго количественных понятий. Заслуга великого ученого в том, что он заменил обыкновенный опыт основанным на математике и технически совершенным экспериментом.

Декартовская и галилеевская наука имела огромное значение для техников и инженеров. То, что на смену миру "приблизительности" и "почти" в создании ремесленниками различных технических сооружений и машин приходит мир новой науки - мир точности и расчета, - заслуга не инженеров и техников, а теоретиков и философов.

Примерно такую же точку зрения высказывал Льюис Мэмфорд: "Сначала инициатива исходила не от инженеров-изобретателей, а от ученых... Телеграф, в сущности, открыл Генри, а не Морзе; динамо - Фарадей, а не Сименс; электромотор - Эрстед, а не Якоби; радиотелеграф - Максвелл и Герц, а не Маркони и Де Форест..." Преобразование научных знаний в практические инструменты, с точки зрения Мэмфорда, было простым эпизодом в процессе открытия. Из этого выросло новое явление: обдуманное и систематическое изобретение. Например, телефон на большие дистанции стал возможен только благодаря систематическим исследованиям в лабораториях Белла.

Эта точка зрения также является односторонней. Хорошо известно, что ни Максвелл, ни Герц не имели в виду технических приложений развитой ими электромагнитной теории. Герц ставил естественнонаучные эксперименты, подтвердившие теорию Максвелла, а не конструировал радиоприемную или радиопередающую аппаратуру, изобретенную позже. Потребовались еще значительные усилия многих ученых и инженеров, прежде чем подобная аппаратура приобрела современный вид. Верно, однако, что эта работа была связана с серьезными систематическими научными (точнее, научно-техническими) исследованиями. В то же время технологические инновации вовсе не обязательно являются результатом движения, начинающегося с научного открытия.

5) Модель сциентификации техники и технизации науки.

Наиболее реалистической и исторически обоснованной точкой зрения является та, которая утверждает, что вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, но это характерно для технических наук сегодня.

В течение XIX века отношения науки и техники частично переворачиваются в связи со «сциентификацией» техники. Этот переход к научной технике не был, однако, однонаправленной трансформацией техники наукой, а их взаимосвязанной модификацией. Другими словами, «сциентификация техники» сопровождалась «технизацией науки».

Техника большую часть своей истории была мало связана с наукой; люди могли делать и делали устройства, не понимая, почему они так работают. В то же время естествознание до XIX века решало в основном свои собственные задачи, хотя часто отталкивалось от техники. Инженеры, провозглашая ориентацию на науку, в своей непосредственной практической деятельности руководствовались ею незначительно. После многих веков такой "автономии" наука и техника соединились в XVII веке, в начале научной революции. Однако лишь к XIX веку это единство приносит свои первые плоды, и только в XX веке наука становится главным источником новых видов техники и технологии.

2. Специфика естественных и технических наук.

Технические науки так или иначе связаны со всеми, но наиболее близки естественным, и в первую очередь, физическим. Технические и естественные науки имеют одну и ту же предметную область инструментально измеримых явлений. Хотя они могут исследовать одни и те же объекты, но проводят исследование этих объектов различным образом.

Сравним разные точки зрения на соотношение технических и естественных наук:

1. Технические науки тесно связаны с естественными и могут рассматриваться в качестве прикладных по отношению к последним. Тогда выделяется следующая последовательность исследований: теоретические (фундаментальные) - прикладные - исследования-разработки (переводящие результаты прикладных наук в форму технологических процессов и конструкций). Технические знания могут тяготеть как в сторону теоретических знаний, так и в сторону разработок (Алексеев И.С.).

2. Техническое знание существенно отличается от естественнонаучного, так как оно всегда связано с «целевой направленностью» технических объектов: технический объект является не естественным, а искусственным, созданным для определенной цели, его строение и функционирование служит этой цели (Л.И. Иванов; В.В. Чешев). Задача различных разделов естествознания (физика, химия, биология) - получить информацию о свойствах, причинных связей, структурных образований и законах движения материальных объектов. Структура же технических устройств и их функции должны быть известны до их реализации в виде материальных объектов. Рост технических знаний заключается в расширении конструктивных возможностей человека, техническое творчество в отличие от научного состоит не в открытии того, что существует, а в конструировании того, чего еще не было

3. В современных условиях технические явления в экспериментальном оборудовании естественных наук играют решающую роль, а большинство физических экспериментов является искусственно созданными ситуациями. Объекты технических наук представляют собой своеобразный синтез "естественного" и "искусственного". Искусственность объектов технических наук заключается в том, что они являются продуктами сознательной целенаправленной человеческой деятельности. Их естественность обнаруживается прежде всего в том, что все искусственные объекты в конечном итоге создаются из естественного (природного) материала. С этой точки зрения естественнонаучные эксперименты являются артефактами, а технические процессы - фактически видоизмененными природными процессами. Осуществление эксперимента - это деятельность по производству технических эффектов и может быть отчасти квалифицирована как инженерная, т.е. как конструирование машин, как попытка создать искусственные процессы и состояния, однако с целью получения новых научных знаний о природе или подтверждения научных законов, а не исследования закономерностей функционирования и создания самих технических устройств (Горохов В.Г.).

В целом, соединяя разные точки зрения можно констатировать факт, что физический эксперимент часто имеет инженерный характер, а современная инженерная деятельность была в значительной степени видоизменена под влиянием развитого в науке Нового времени мысленного эксперимента. Физические науки открыты для применения в инженерии, а технические устройства могут быть использованы для экспериментов в физике. Характерной особенностью технических знаний является то, что они связаны с процессом интеллектуального конструирования, обслуживают нужды материальной конструктивной деятельности человека, выявляя методы решения конструктивных задач, приемы, процедуры создания технических объектов.

Технические науки к началу ХХ столетия составили сложную иерархическую систему знаний - от весьма систематических наук до собрания правил в инженерных руководствах. Некоторые из них строились непосредственно на естествознании (например, сопротивление материалов и гидравлика) и часто рассматривались в качестве особой отрасли физики, другие (как кинематика механизмов) развивались из непосредственной инженерной практики. И в одном, и в другом случае инженеры заимствовали как теоретические и экспериментальные методы науки, так и многие ценности и институты, связанными с их использованием. К началу ХХ столетия технические науки, выросшие из практики, приняли качество подлинной науки, признаками которой являются:

ѕ систематическая организация знаний,

ѕ выделение классов фундаментальных и прикладных исследований.

ѕ опора на эксперимент

ѕ построение математизированных теорий

Таким образом, естественные и технические науки - равноправные партнеры. Они тесно связаны как в генетическом аспекте, так и в процессах своего функционирования. Именно из естественных наук в технические были транслированы первые исходные теоретические положения, способы представления объектов исследования и проектирования, основные понятия, а также был заимствован самый идеал научности, установка на теоретическую организацию научно-технических знаний, на построение идеальных моделей, математизацию. В то же время нельзя не видеть, что в технических науках все заимствованные из естествознания элементы претерпели существенную трансформацию, в результате чего и возник новый тип организации теоретического знания. Кроме того, технические науки со своей стороны в значительной степени стимулируют развитие естественных наук, оказывая на них обратное воздействие. В настоящее время технические науки тесно связаны не только с естественными, но и с гуманитарными общественными (например, экономикой, социологией, психологией и т.п.).

3. Фундаментальные и прикладные исследования в технических науках

В технических науках выделяют два вида исследований: прикладные и фундаментальные.

Прикладное исследование - это такое исследование, результаты которого адресованы производителям и заказчикам и которое направляется нуждами или желаниями этих клиентов, фундаментальное - адресовано другим членам научного сообщества. В современной технике велика роль как теоретической, так и прикладной компоненты, в союзе с творчеством. Для современной инженерной деятельности требуются не только краткосрочные исследования, направленные на решение специальных задач, но и широкая долговременная программа фундаментальных исследований в лабораториях и институтах, специально предназначенных для развития технических наук. Вполне правомерно сегодня говорить и о фундаментальном промышленном исследовании.

Поэтому наряду с естественнонаучными теориями ныне существует и техническая теория, которая не только объясняет реальность, но и способствует ее созданию, расширению бытия за счет нового технического мира. В сферу технической теории входит: прогнозирование развития техники и связанных с ней наук; научные законы, технические правила и нормы. Но техническая теория отличается от физической тем, что не может использовать идеализацию, в той степени, как это делается в физике. Таким образом, техническая теория имеет дело с более сложной реальностью, поскольку не может не учитывать сложное взаимодействие физических факторов, имеющих место в машине. Техническая теория является менее абстрактной и идеализированной, она более тесно связана с реальным миром инженерии.

Технические теории в свою очередь оказывают большое обратное влияние на физическую науку и даже в определенном смысле на всю физическую картину мира. Например, (по сути, - техническая) теория упругости была генетической основой модели эфира, а гидродинамика - вихревых теорий материи.

Специфика технической теории состоит в том, что она ориентирована на конструирование технических систем. Научные знания и законы, полученные естественнонаучной теорией, требуют еще длительной "доводки" для применения их к решению практических инженерных задач, в чем и состоит одна из функций технической теории.

Теоретические знания в технических науках должны быть обязательно доведены до уровня практических инженерных рекомендаций. Поэтому в технической теории важную роль играет разработка особых операций перенесения теоретических результатов в область инженерной практики, установление четкого соответствия между сферой абстрактных объектов технической теории и конструктивными элементами реальных технических систем, что соответствует фактически теоретическому и эмпирическому уровням знания.

В технической теории выделяют эмпирический и теоретический уровни:

Эмпирический уровень технической теории образуют знания, являющиеся результатом обобщения практического опыта при проектировании, изготовлении, отладке и т.д. технических систем. Это - эвристические методы и приемы, разработанные в самой инженерной практике, но рассмотренные в качестве эмпирического базиса технической теории.

Конструктивно-технические знания преимущественно ориентированы на описание строения (или конструкции) технических систем, представляющих собой совокупность элементов, имеющих определенную форму, свойства и способ соединения. Они включают также знания о технических процессах и параметрах функционирования этих систем.

Технологические знания фиксируют методы создания технических систем и принципы их использования.

Теоретический уровень научно-технического знания включает в себя три основные уровня, или слоя, теоретических схем: функциональные, поточные и структурные.

Функциональная схема фиксирует общее представление о технической системе, независимо от способа ее реализации, и является результатом идеализации технической системы на основе принципов определенной технической теории. Функциональные схемы совпадают для целого класса технических систем. Блоки этой схемы фиксируют только те свойства элементов технической системы, ради которых они включены в нее для выполнения общей цели.

Поточная схема, или схема функционирования, описывает естественные процессы, протекающие в технической системе и связывающие ее элементы в единое целое. Блоки таких схем отражают различные действия, выполняемые над естественным процессом элементами технической системы в ходе ее функционирования. Такие схемы строятся исходя из естественнонаучных (например, физических) представлений.

Структурная схема технической системы фиксирует те узловые точки, на которые замыкаются потоки (процессы функционирования). Это могут быть единицы оборудования, детали или даже целые технические комплексы, представляющие собой конструктивные элементы различного уровня, входящие в данную техническую систему, которые могут отличаться по принципу действия, техническому исполнению и ряду других характеристик.

Таким образом современное техническое знание представляет собой сложную систему взаимодействующих элементов теоретического, эмпирического и прикладного уровней, тесно связанную с системами знаний других наук, а также с широкой сферой социального, гуманитарного, обыденного знания.

ТЕМА 4. Историческое развитие техники и технических знаний

1. Соотношение науки и техники в исторических культурах

Философия науки и философия техники настолько же тесно связаны между собой, как сами наука и техника. Соотношение науки и техники в исторически существовавших культурах различно.

Первые этапы исторического развития человечества характеризуются синкретизмом знания, когда еще нет четкого разграничения научного и технического знания. В Древнем мире техническое знание и действие были тесно связаны с магическим действием и мифологическим миропониманием. Искусство живописца, литейщика и скульптора оценивается прежде всего как принадлежность культа, т.е. в рамках религиозного миросозерцания. Первые механизмы были связаны с культом, например служили для возжигания священного огня, прежде чем стали употребляться для других общественно полезных целей. Вся техника этой эпохи была религиозной, традиционной и местной, а наука -- еще неспециализированной, недисциплинарной и неотделимой от практики.

В античной культуре математика и физика не заботились о каких-либо приложениях в технике, развитие науки и техники шло практически независимо друг от друга, а технэ античного ремесленника ближе искусству, чем науке. Античная наука была комплексной по своему стремлению достичь максимально полного охвата осмысляемого теоретически и обсуждаемого философски предмета научного исследования. Специализация еще только намечалась и, во всяком случае, не принимала организованных форм дисциплинарности. Понятие технэ охватывает и технику, и техническое знание, и искусство, но оно лишено теории -- это практическое знание, которое необходимо для осуществления конкретного дела и неразрывно связано с ним. Античная техника всегда была склонна к рутине, сноровке, навыку, поэтому у древнегреческих философов, например Аристотеля, нет специальных трудов о технэ. В античной культуре наука (эпистеме) и техника (технэ) рассматривались как принципиально различные виды деятельности, теоретическое знание и практическое ремесло четко разграничивались.

Техника и ремесло, в конечном счете, намного старше, чем естествознание. В древнекитайском обществе, несмотря на слабое развитие математической и физической теорий, ремесленная техника была весьма плодотворна. Многие тысячелетия, например, обработка металла и врачебное искусство развивались без какой-либо связи с наукой.

В Средние века архитекторы и ремесленники полагались в основном на традиционное знание, которое держалось в секрете и лишь незначительно изменялось со временем. Вопрос соотношения между теорией и практикой решался в моральном аспекте -- например, какой стиль в архитектуре является более предпочтительным с божественной точки зрения. Наука переосмысляется под влиянием христианского мировоззрения. Знания (наука) - это теперь не просто то, что удовлетворяет логике и онтологии, что описывает существующее, а то, что отвечает Божественному провидению и замыслу. Разум человека, его мышление должны стараться уподобиться ему. В целом наука теперь понимается не только как описывающая природу, но и как выявляющая в природе Божественную сущность. Средневековая наука в этом смысле является в отношении к природе не только описательной, но и предписывающей, нормативной.

Отчасти возвращаясь к языческим (древним) воззрениям, человек рассматривает свое действие как эффективное только в том случае, если оно поддерживается Богом. Но в силу сохраняющихся античных представлений это понимание приводит к идее сродства, подобия человеческого и божественного действия. Последнее, однако, предполагает настройку, проникновение в божественный замысел, куда входит и познание природы.

В эпоху Ренессанса и Новое время наука все более опирается на технический эксперимент, а затем и сама техника -- на науку. Именно инженеры, художники и практические математики Возрождения сыграли решающую роль в принятии нового типа теории, ориентированной на практику. Изменился и сам социальный статус ремесленников, которые достигли высших уровней ренессансной культуры, много сделали для пользы общества и науки. В эпоху Возрождения тенденция к всеохватывающему рассмотрению предмета выразилась в идеале энциклопедически развитой личности ученого и инженера. В науке Нового времени наблюдается стремление к специализации и вычленению отдельных аспектов и сторон предмета, как подлежащих систематическому исследованию экспериментальными и математическими средствами. Одновременно выдвигается идеал новой науки, способной решать теоретическими средствами инженерные задачи, и новой, основанной на науке техники. И хотя они существуют сначала лишь как идеал, именно этот идеал привел к формированию дисциплинарной организации науки и техники. В социальной сфере это было связано со становлением профессий ученого и инженера и с повышением их статуса в обществе.

Таким образом, техническое знание и действие постепенно отделяются от мифа и магического действия, но первоначально еще опираются не на научное, а лишь на обыденное сознание. Это видно из описания технической рецептуры в многочисленных пособиях по ремесленной технике, направленных на закрепление и передачу технических знаний новому поколению мастеров. В рецептах этого времени уже нет ничего мистически-мифологического, хотя это еще не научное описание, да и техническая терминология еще не устоялась.

Сначала наука многое взяла у мастеров-инженеров эпохи Возрождения, затем в XIX-XX веках профессиональная организация инженерной деятельности стала строиться по образцам действия научного сообщества. Специализация и профессионализация науки и техники с одновременной технизацией науки и сциентификацией техники имели результатом появление множества научных и технических дисциплин, сложившихся в XIX-XX веках в более или менее стройное здание дисциплинарно организованных науки и техники. Этот процесс был также тесно связан со становлением и развитием специально-научного и основанного на науке инженерного образования.

В связи с усложнением техники возникает настоятельная необходимость подготовки военных, морских, путейских инженеров в технических школах, которые почти одновременно возникают в России, Германии и Франции. Это уже не просто передача накопленных предыдущими поколениями навыков от мастера к ученику, а налаженная и социально закрепленная система передачи технических знаний и опыта через систему профессионального образования.

Положение коренным образом изменилось в XX столетии, когда техника и промышленность действительно были революционизированы наукой. Для современного этапа характерны возрастающая гуманизация, гуманитаризация и экологизация техники, поэтому для ее создания и использования необходимы не только естественно-научные и математические, но во все большей мере социально-гуманитарные знания. Именно в это время становится очевидной необходимость тесной связи между философией науки и философией техники, что является условием проведения плодотворного методологического анализа. Философия науки предоставляет философии техники выработанные в ней на материале естественно-научного, прежде всего физического, познания, средства методологического анализа, а философия техники дает новый материал технические науки -- для такого анализа и дальнейшего развития этих методологических средств. Философия техники имеет в данном случае сходные задачи по отношению к технике, что и философия науки по отношению к науке, причем роль философии техники возрастает при переходе от простых систем к сложным, от специализированных видов технической деятельности к системным, от практических к теоретическим исследованиям и видам проектирования. Это и есть пункт пересечения философии техники и философии науки.

2. Основные этапы развития техники и технических знаний

Техника как один из существенных аспектов культуры, а, следовательно, и как одна из важнейших разновидностей творческой человеческой деятельности прошла в своем развитии долгий исторический путь, включающий в себя ряд этапов, среди которых российский философ техники Н.М. Аль-Ани выделил четыре основных, а именно:

1) этап зарождения техники или техники случая (от начала человеческой истории до появления древних цивилизаций в Месопотамии, Египте, Индии и Китае);

2) этап ремесленной техники (от эпохи Древних царств до эпохи Нового времени в Европе);

3) этап машинной техники (от эпохи Возрождения до и ХХ века);

4) этап современной (информационной) техники (с 60-х годов ХХ века).

Остановимся вкратце на основных характеристиках каждого из этих этапов.

Этап зарождения техники.

Для первого этапа развития техники характерна случайность, как писал X. Ортега-и-Гассет, это «техника случая». Исторически первые средства или орудия случайно находились, а не изобретались преднамеренно. Следовательно, на самом раннем этапе своего существования первобытный человек еще не знал изготовления орудий в собственном смысле слова. Он тогда ограничивался лишь тем, что использовал случайные, преднаходимые естественные предметы в качестве средств для достижения своих целей. Так, например, осколок яичной скорлупы мог заменить ладони для утоления жажды; камень, привязанный к палке, мог увеличить силу удара и т.п.

Творческий потенциал первобытного дикаря проявился и реализовался скорее в применении его естественных органов (а соответственно, и естественных, еще не обтесанных предметов в качестве их прямого продолжения), нежели в создании и применении искусственных. И только по истечении огромного отрезка исторического времени, исчисляемого тысячелетиями, употребление случайно находимых естественных предметов в качестве орудий, становилось настолько постоянным, привычным, укоренившимся и автоматизированным актом, что древнейшие люди по аналогии и путем подражания научились приготовлять орудия для целесообразного пользования ими.

Роль орудия в становлении человека и его развитии детально была исследована немецким ученым Людвигом Нуаре (1827-1897), который в своих работах «Происхождение языка» (1877) и «Орудие и его значение в историческом развитии человечества» (1880) твердо придерживался того убеждения, что только с появлением орудий начинается подлинно человеческая история. Л. Нуаре в этом процессе выделяет три обстоятельства:

Во-первых, примитивный инструмент служил для дополнения и усиления физиологической деятельности;

во-вторых, инструменты создавались методом проб и ошибок: скорее, они находили человека, чем наоборот;

в-третьих, в силу простоты и скудости первобытная техника была массово доступна: все могли разводить огонь, мастерить луки и стрелы и т.д.

Техника не выделяется из всевозможных занятий. Естественное разделение технического труда существовало разве только по признаку возрастных и половых различий. На исходном этапе существования техники человек еще не осознавал себя в качестве субъекта своей собственной деятельности, а, следовательно, и в качестве творца техники. И, в самом деле, дикарь, как известно, не выделяет себя из окружающей его действительности, он не противопоставляет себя природе, а, наоборот, его сознание как бы еще «слито» с миром. Он, как говорил Х.Ортега-и-Гассет, «еще не ощущает себя как homo faber», поэтому техника принимается им как часть природы, с которой он пребывает в полном единстве.

Следует особо подчеркнуть и тот факт, что на первом историческом этапе существования техники, где и в процессе изобретения нового орудия безраздельно господствовал случай, темпы ее развития были крайне низкими. Именно поэтому этап зарождения и становления техники был самым длительным и продолжался, по-видимому, сотнями тысячелетий. Он охватывал собой весь доисторический период существования человечества и завершился только с появления древних цивилизаций в Месопотамии, Египте, Индии и Китае, где впервые начинает складываться новый этап в историческом развитии техники - этап так называемой ремесленной техники.

Этап ремесленной техники.

На втором историческом этапе развития техники технические изделия становятся сравнительно многочисленными и намного более разнообразными, а технология их изготовления -- достаточно сложной. Именно поэтому уже не всякий человек может, как это было раньше, сам изготавливать необходимые для своей работы орудия. Более того, само использование некоторых особенно сложных орудий требует теперь соответствующей, более или менее серьезной, подготовки. Еще более серьезной подготовки и длительной выучки требует теперь занятие собственно ремеслом, т.е. изготовлением самих орудий и производством утвари и услуг.

Следовательно, можно определенно сказать, что развитие техники шло по пути дифференциации и узкой специализации технической деятельности, которые привели к образованию отдельной социальной прослойки, специально занимающейся этой деятельностью -- прослойки ремесленников. Ремесленник, как справедливо заметил Х. Ортега-и-Гассет, соединяет в себе и техника, и рабочего. Он не только проектирует, т.е. идеально создает предмет своей деятельности, но и сам осуществляет свой проект, превращая его в материальный объект.

В связи с этим стоит одна из важнейших особенностей ремесла, отличающая его от других, более развитых форм технической деятельности, и заключающаяся в том, что при нем орудие труда еще выступает простым дополнением или придатком к человеку, который поэтому продолжает оставаться главным действующим лицом или «движущей силой» (К.Маркс) всего технического процесса. Данное отношение «человек - орудие» коренным образом изменится только впоследствии, при так называемой машинной технике.

Другое существенное отличие ремесла как особой формы технической деятельности состоит в том, что оно основывается не на науке, не на теоретическом расчете, а на традиционных знаниях, на передаваемых от поколения к поколению (от отца к сыну и т.д.) практических навыках и умениях. Это значит, что ремеслом можно было овладевать только эмпирическим путем, и именно поэтому оно и оставалось во власти традиции. Данное обстоятельство наложило сильные ограничения на всю изобретательскую деятельность. И, в самом деле, изобретение или техническое открытие на протяжении всего второго исторического этапа существования и развития техники оставалось редким событием и носило, как правило, тот же случайный непреднамеренный характер, что и раньше. Оно, как и прежде, осуществлялось главным образом методом «проб и ошибок», что, несомненно, явилось одной из причин низких темпов технического прогресса на этапе ремесленной техники. И хотя эти темпы существенно ускорились по сравнению с темпами развития «техники случая», но, тем не менее, они оставались настолько медленными, что второй исторический этап в развитии техники продолжался тысячелетиями и в историческом плане завершился лишь с наступлением эпохи Возрождения, а еще точнее -- с началом эпохи Нового времени в Европе. Следовательно, только с наступлением Нового времени ремесленная техника исторически исчерпывает свои возможности и уступает место новому этапу в развитии техники - машинной технике.

Этап машинной техники.

В основе машинной техники лежит уже инженерная деятельность, которая, как более развитая форма технической деятельности, ориентируется на науку, на теоретическое и прикладное естествознание. Вот, собственно, почему она как историческая альтернатива ремесленной технике, в принципе, не могла сложиться раньше, чем начало формироваться и свободно развиваться естествознание. Тем более, что инженерная деятельность, как и само естествознание, были вызваны к жизни, именно потребностями в развитии производительных сил, которые общество стало особо остро испытывать в Новое время вместе с завершением эпохи первоначального накопления капитала и началом эпохи буржуазных революций в странах Западной Европы.

Вместе с тем не следует, однако, забывать и того, что инженерная деятельность не могла появиться из «вакуума» и что она, как любое другое явление, должна была иметь свою предысторию. Поэтому «ростки» этой деятельности, ее исторические прообразы, можно найти не только в эпохе Возрождения, но и в античности. Правда, эти прообразы оставались тогда лишь чем-то эпизодическим, нетипичным, случайно существующим на фоне безраздельного господства ремесленной деятельности. Именно так следует оценивать, например, техническую мысль и вообще техническую деятельность Архимеда (ок. 287-212 до н.э.). Как повествуют исторические источники, он прославился, в частности, своими хитроумными техническими решениями и изобретениями при обороне осажденных римлянами родных Сиракуз. Именно благодаря использованию этих решений и изобретений и их практическому воплощению в оборонительных сооружениях и метательных машинах город смог оказать достойное сопротивление неприятелю. А поскольку Архимед сочетает технические дарования с практическими и большинство своих технических проектов производит на основе точных математических расчетов, постольку его деятельность можно охарактеризовать как инженерную. Однако сам Архимед не считал себя техником или инженером. Он, наоборот, презрительно смотрел на то, что мы называли бы сегодня инженерным делом, как, впрочем, и на всякое другое практическое занятие, считая его грубым и недостойным свободных мужей.

Причина столь нелестного отношения к практической деятельности и ее негативной оценки заключается в том, что она, якобы, не имеет никакого отношения к мудрости и поиску истины, которые превыше всего ставились античными мыслителями.

Традиция столь резкого противопоставления теоретической деятельности практической оказалась настолько сильной и живучей, что отход от нее в научно-познавательном творчестве всерьез наметился только в эпохе Возрождения. Нет, конечно, сомнений в том, что с формированием протестантизма в качестве одного из основных течений в христианстве отношение к физическому труду в Европе начинает постепенно меняться. Однако, несмотря на это, указанная традиция продолжала все же действовать в виде сохранившего свое значение вплоть до XVII столетия противопоставления так называемых семи «механических искусств» семи «свободным искусствам». Дело в том, что к «механическим искусствам» относили земледелие, охоту, мореходство, ткацкое дело, оружейное дело, врачевание, театральное искусство, т.е. главным образом различные виды практической, технической деятельности, тогда как к «свободным искусствам» причисляли: грамматику, логику, геометрию, арифметику, астрономию и музыку, которые, по сути дела, отождествлялись с науками, теоретическими знаниями и теоретической деятельностью вообще.

Характерной чертой Ренессанса стала реабилитация роли опытного знания, символом которого стало творчество великого Леонардо да Винчи (1452--1519). Его изречение «Наука -- капитан, а практика -- солдаты» стало своеобразным лозунгом новой эпохи. В те времена церковь все еще властвовал над душами и умами людей, и ученому приходилось защищаться. В частности, свои труды Леонардо писал как бы в обратном порядке, в зеркальном отражении, чтобы кроме него их никто не мог прочитать. Внедрение в практику его идей было затруднено.

Гонениям со стороны церкви подвергся и Галилео Галилей (1564-1642). Его лабораторию сравняли с землей, учение запретили, а сам он умер в нищете. Галилей подвел в основание науки математическое начало, ввел мыслительный эксперимент на основе рациональной индукции, заложил фундамент науки о природе. Он стал основоположником научного естествознания, основал принцип новоевропейского мышления, способствовал забвению принципа антропоцентризма. Его труды «О движении», «Беседы и математические доказательства» долгое время служили методологией науки.

С философской точки зрения опытное познание и вся практическая деятельность человека были реабилитированы одним из основоположников философии Нового времени Френсисом Бэконом (1561-1626). Этому он посвятил свой главный труд «Новый Органон».

Бэкон расчленил процесс познания на ряд составляющих: объект познания; задача познания; цель познания; метод познания. Главным и кратчайшим путем к познанию он объявил индукцию. Задачей науки, согласно Бэкону, является опыт, его изучение на основе апелляции к возможностям дедуктивного метода, однако уже после того, как первые, исходные аксиомы выведены из опыта посредством индукции. Бэкон настоятельно требовал, чтобы теория и практика соединялись более прочными узами. Он считал, что три великих открытия, которые не были известны древним, а именно искусство книгопечатания, применение пороха и мореходная игла (т.е. компас), изменили облик и состояние всего мира. Они способствовали делу просвещения, военному делу и мореплаванию. Основополагающая идея в учении Бэкона состоит в том, что наука должна дать человеку власть над природой, увеличить его могущество и улучшить жизнь. Причиной заблуждений разума философ считал ложные идеи, которые он называл «призраками» или «идолами». Он выделял четыре вида таких призраков:

ѕ призраки рода -- это искаженные отражения всех вещей, бытующие в силу того что человек примешивает к их природе свою собственную;

ѕ призраки пещеры -- они вытекают из индивидуальных особенностей субъекта познания;

ѕ призраки рынка -- это заблуждения, вытекающие из неверного использования слов;

ѕ призраки театра -- ложные учения, завлекающие человека подобно пышным театральным представлениям.

Другой основоположник философии и науки Нового времени, французский философ Рене Декарт (1596-1650) не просто внес крупный вклад в развитие научного знания, но и разработал альтернативную методологию научного познания, основанную, в отличие от бэконовской, на дедукции и рационалистической интуиции. Принципиальное расхождение Р.Декарта в методологических вопросах с Ф.Бэконом не помещало ему, однако, полностью согласиться с ним в оценке и признании практического значения науки как двигателя технического прогресса.

В своих трудах «Рассуждения о методе», «Начала философии» он выступил как один из родоначальников «новой» философии и «новой» науки, предложив пересмотреть все старые философские традиции. Концепцию Бэкона о необходимости свести философские исследования к опыту и наблюдению Декарт дополнил предложением положить в основу философского мышления принципы очевидности, достоверности и тождественности. Традиционным формам приобретения знаний Декарт противопоставил познание на основе принципа сомнения. Научное знание в его трактовке представало не как случайность, но как единая достоверная система. Абсолютно несомненным он считал принцип cogito ergo sum («мыслю, следовательно, существую»). Этот аргумент несет его убеждение в онтологическом превосходстве умопостигаемого над чувственным опытом. Однако окончательное установление истины он все же «предоставил» Богу. Вслед за Бэконом Декарт считал, что повелителем природы можно стать, лишь прислушиваясь к ней.

Вклад Декарта в науку огромен. В математике он явился одним из творцов аналитической геометрии, в которой владел новым понятием о функции; разработал аналитический способ выражения геометрических объектов и их отношений посредством уравнений алгебры. Современные алгебраические уравнения во многом обязаны своим происхождением Декарту. В механике он разработал принципы относительности движения и покоя, действия и противодействия; в оптике обосновал закон постоянного отношения синусов при преломлении света, развил математическую теорию радуги и разгадал причину ее возникновения; разработал идею естественного развития солнечной системы, обусловленного свойствами материи и движения ее разнородных частей.

В познании природы и ее закономерностей значительно продвинулся Исаак Ньютон (1643-1727), ставший продолжателем и борцом за окончательное утверждение галилеевских традиций в науке. Основоположник классической и небесной механики, создатель системы дифференциальных и интегральных исчислений, автор исследования «Математические начала натуральной философии», он сформулировал законы и понятия классической механики, закон всемирного тяготения, теоретически обосновал законы Кеплера, научную теорию дедуктивного типа. Сформулированный им тезис «Гипотез не измышляю» лег в основу критики натурфилософии. Своими трудами Ньютон заложил основы механистической картины мира и механистического мировоззрения. В работе «Математические начала натуральной философии» он писал: «Было бы желательно вывести из начал механики и остальные явления природы». Ньютон выступал с идеями о независимом существовании материи, пространства и времени, в чем проявился его метафизический образ мышления. Недостатки механистического объяснения мира он пытался восполнить посредничеством Бога. Ньютон не был кабинетным ученым. В своих натурфилософских исследованиях он стремился решать некоторые практические задачи. В этой связи интересно отметить, что ряд своих научных открытий он делал именно в ходе решения подобных задач, например в области кораблестроения и гидромеханики.

Широко известны в этот период были труды по механике старшего современника Ньютона Христиана Гюйгенса (1629-- 1695), изобретателя маятниковых часов с пусковым механизмом, а также автора ряда произведений по теории механического маятника, хотя, заметим, в те времена речь о создании отдельных технических наук идти еще не могла.

В переходе к машинной технике значительную роль сыграло изобретение Джеймсом Уаттом (1736--1819) первой в мире паровой машины. Европа вступала в эпоху машинного производства. Этот период ознаменовался, как писал Маркс, превращением средств производства из орудия в машину. «В качестве машины средства труда приобретают такую материальную форму существования, которая обусловливает замену человеческой силы силами природы и эмпирических рутинных приемов -- сознательным применением естествознания» (К. Маркс). Негативный аспект этого процесса Маркс видел в том, что машина вступала в конкуренцию с рабочими, которые подлежали сокращениям и увольнениям как не выдержавшие соперничества с ней. Тем самым была порождена тенденция разрушения машин - луддизм, по имени легендарного подмастерья Лудда, первым, якобы, разрушившим свой станок. В конце XVIII -- начале ХIХ в. были зафиксированы первые стихийные выступления против применения машин в ходе промышленного переворота в Великобритании.

Повысился спрос на инженерную деятельность, которая раньше еще могла удовлетворяться случайными предложениями. Теперь же эпоха требовала массовой подготовки инженерно-технических специалистов. В 1746 г. в Париже открывается политехническая школа с новой организацией учебного процесса, сочетающего теоретическую подготовку с технической. Позже такие вузы, действующие на новой основе обучения -- на базе теоретического и прикладного естествознания, открываются в США и во многих странах Европы.

Итак, машинная техника, как более высокий этап в историческом развитии техники, не могла складываться иначе, чем на строго научной основе, на базе теоретического и прикладного естествознания. Другой существенный признак машинной техники, отличающий ее от техники ремесленной, состоит в том, что мускульная сила человека как движущее начало всего технического процесса заменяется какой-либо из сил природы (например, силой животного, ветра, воды, пара, электричества и т.д.).


Подобные документы

  • Философствующие инженеры и первые философы техники. Распространение технических знаний в России в XIX - начале XX вв. как предпосылка развития философии техники. Сущность и природа техники. Технико-производящая деятельность, ее влияние на природу.

    реферат [46,2 K], добавлен 27.11.2009

  • Цели и функции техники. Инженерное и гуманитарное направления философии техники. Концепция техники Э. Каппа как проекции органов человека. Манганизм и натуризм как направления в культурном развитии техники. Ф. Бон - основоположник философии техники.

    презентация [216,9 K], добавлен 10.10.2013

  • Философствующие инженеры и первые философы техники. Распространение технических знаний в России в XIX – начале XX вв. как предпосылка развития данной философии в России. Рассмотрение сущностных характеристик техники, природы производящей деятельности.

    реферат [39,6 K], добавлен 08.06.2015

  • Соотношение философии науки и техники. Различия естественного и искусственного в философии. Хронология технических устройств (XVIII—XXI века). Производительность, надёжность и долговечность как главные показатели. Физическая, конструктивная форма техники.

    реферат [439,7 K], добавлен 20.12.2014

  • Определение и основные этапы истории развития техники. Ознакомление с основами философии техники в классических трудах современных философов. Изучение проблемы повышения общей ответственности инженеров и техников за результаты своего творчества.

    реферат [39,1 K], добавлен 10.01.2015

  • Понятие и сущность техники, закономерности и проблемы развития, роль в жизни. Связь технического знания с мифологическим миропониманием в древнем мире. Этапы формирования ремесленной и инженерной деятельности. Возникновение современного технического мира.

    реферат [53,2 K], добавлен 15.05.2014

  • История формирования техники в архаической культуре. Особенности развития науки и инженерии в античные, Средние века и в Новое время. Исследование связи техники и социального развития общества. Концепция информатизации интеллектуальной деятельности.

    реферат [36,0 K], добавлен 02.10.2011

  • Развитие техники в древности. Становление экспериментальной науки и динамика развития техники. Причины, побуждающие развитие техники. Сопоставление духовной и материальной культур. Теория-основа технического развития. Гипотеза-предшественник теории.

    реферат [77,6 K], добавлен 11.09.2008

  • Теория прогресса как родоначальница философии науки, этапы и специфика ее становления. Происхождение и природа техники, взаимосвязь науки с ее совершенствованием. Основные проблемы формирования философии науки. Обзор спорных вопросов философии техники.

    реферат [20,2 K], добавлен 03.05.2014

  • Возникновение науки, стадии ее исторической эволюции. Структура научного знания. Наука как социальный институт. Современные философские проблемы техники и технических наук. Разработка систем управления судов с колесным двигательно-рулевым комплексом.

    реферат [84,7 K], добавлен 13.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.