Объективные отношения между предметами
Виды несовместимых отношений между понятиями. Роль умозаключений в учебном процессе. Правила доказательного рассуждения по отношению к аргументам. Закон исключенного третьего. Применение индуктивного и дедуктивного метода. Полная и неполная дизъюнкция.
Рубрика | Философия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 24.05.2013 |
Размер файла | 268,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Вопрос 1. Виды несовместимых отношений между понятиями
умозаключение аргумент дедуктивный дизъюнкция доказательный
Объективные отношения между самими предметами находят свое отражение в отношениях между понятиями. Все многообразие этих отношений также можно классифицировать на основе содержания и объема понятий.
Сравнимые и несравнимые понятия. Сравнимыми называют понятия, в содержании которых имеется хотя бы один общий признак. Почти все понятия являются сравнимыми. В данном случае опровергается известная пословица «Нельзя сравнивать Божий дар с яичницей». С точки зрения логики, это также сравнимые понятия, так как о них, по крайней мере, можно сказать, что и то, и другое - предмет. Это и будет их общий признак. Несравнимыми называют понятия, в содержании которых нет ни одного общего признака. Некоторые авторы в качестве примера несравнимых понятий приводят понятия «предмет» и «свойство». Сравнимые понятия могут быть совместимыми или несовместимыми.
Совместимые и несовместимые понятия. Понятия называются совместимыми, если их объемы имеют хотя бы один общий элемент. Несовместимые - это понятия, в объемах которых нет ни одного общего элемента. Обычно отношения между понятиями изображают с помощью так называемых кругов Эйлера (рис. 1, 2).
Виды совместимых понятий. Совместимые понятия могут быть равнозначными (тождественными), перекрещивающимися, а также подчиненным и подчиняющим.
Равнозначные (тождественные) - это понятия, объемы которых полностью совпадают (рис. 1, а).
Пример. А - понятие «автор романа «Анна Каренина»»; В - понятие «автор романа «Война и мир»».
Рис. 1. Виды совместимых понятий
Перекрещивающиеся - это понятия, объемы которых частично совпадают (рис. 1, б).
Пример. А - понятие «студент»; В - понятие «спортсмен».
Подчиняющее и подчиненное понятия. Объем подчиненного понятия полностью входит в объем подчиняющего, не исчерпывая его (рис. 1, в).
Пример. А - понятие «деревья»; В - понятие «береза».
Виды несовместимых понятий. Несовместимые понятия бывают соподчиненными, противоположными (контрарными) и противоречащими (контрадикторными).
Соподчиненные - это понятия, объемы которых различны и входят в объем общего для них понятия, не исчерпывая его (рис. 2, а).
Пример. А - понятие «фиалка»; В - понятие «роза»; С - понятие «цветы».
Рис. 2. Виды несовместимых понятий
Противоположными (контрарными) понятиями являются такие, которые соподчинены третьему понятию и представляют собой крайние степени выраженности некоторого качества. Можно сказать, что их объемы занимают полярные места в объеме общего для них понятия (рис. 2, б).
Пример. А - «черный»; В - «белый»; С - «цвет».
Противоречивые (контрадикторные) понятия подчиняются общему для них понятию, и при этом в общем понятии не существует такого элемента, который не был бы элементом одного из этих понятий. Их объемы делят объем общего для них понятия на две части (рис. 2, в).
Пример. А - «монархия»; В - «республика». Общим для этих понятий является понятие «форма правления». Причем «монархия» и «республика» - несовместимые формы правления, и в то же время других форм правления не существует.
С помощью кругов Эйлера можно получать достаточно сложные схемы. Например, можно изобразить отношение между понятиями А - «студент», В - «спортсмен», С - «мастер спорта», D - «кандидат в мастера спорта» (рис. 3).
Рис. 3. Отношение между понятиями «студент» (А), «спортсмен» (В), «мастер спорта» (С), «кандидат в мастера спорта» (D)
Изучение отношений между понятиями имеет огромное значение для правильного употребления понятий в устной и письменной речи. И наоборот, незнание этих отношений способно повлечь за собой искаженное отражение действительности - отношений между самими вещами.
Вопрос 2. Виды сложных суждений
Сложным называют суждение, состоящее из нескольких простых, связанных логическими связками. Различают следующие виды сложных суждений: 1) соединительные, 2) разделительные, 3) условные, 4) эквивалентные. Истинность таких сложных суждений определяется истинностью составляющих их простых.
1. Соединительные (конъюнктивные) суждения.
Соединительным, или конъюнктивным называют суждение, состоящее из нескольких простых, связанных логической связкой «и».
В естественном языке конъюнктивная связка может быть представлена и такими выражениями, как: «а», «но», «а также», «как и», «хотя», «однако», «несмотря на», «одновременно» и другими.
Соединительное суждение может быть как двух-, так и многосоставным; в символической записи: р Щ q Щ r Щ… n. Приведем пример соединительного суждения, включающего более 20 конъюнктов:
В языке соединительное суждение может быть выражено одной из трех логико-грамматических структур.
1. Соединительная связка представлена в сложном субъекте по схеме: S и S1 есть Р.
2) Связка представлена в сложном предикате по схеме: S есть P1 и Р2.
3) Связка представлена сочетанием первых двух способов по схеме: S и S1 есть Р1 и Р2.
Соединительное суждение истинно при истинности всех составляющих его конъюнктов и ложно при ложности хотя бы одного из них.
2. Разделительные (дизъюнктивные) суждения.
Разделительным, или дизъюнктивным, называют суждение, состоящее из нескольких простых, связанных логической связкой «или».
Разделительное суждение может быть как двух-, так и многосоставным: р Ъ q Ъ r Ъ… n.
В языке разделительное суждение может быть выражено одной из трех логико-грамматических структур.
1) Разделительная связка представлена в сложном субъекте по схеме: S1 или S2 есть Р.
2) Разделительная связка представлена в сложном предикате по схеме: S есть P1 или P2.
3) Разделительная связка представлена сочетанием первых двух способов по схеме: S1 или S2 есть P1 или P2.
Нестрогая и строгая дизъюнкция. Поскольку связка «или» употребляется в естественном языке в двух значениях -- соединительно-разделительном и исключающе-разделительном, то следует различать два типа разделительных суждений: 1) нестрогую (слабую) дизъюнкцию и 2) строгую (сильную) дизъюнкцию.
1) Нестрогая дизъюнкция -- суждение, в котором связка «или» употребляется в соединительно-разделительном значении (символ v).
2) Строгая дизъюнкция -- суждение, в котором связка «или» употребляется в разделительном значении (символ).
Члены строгой дизъюнкции, называемые альтернативами, не могут быть одновременно истинными.
Разделительная связка в языке обычно выражается с помощью союзов «или», «либо». С целью усиления дизъюнкции до альтернативного значения нередко употребляют удвоенные союзы: вместо выражения «р или q» употребляют «или р, или q», а вместе «р либо q» -- «либо р, либо q». Поскольку в грамматике отсутствуют однозначные союзы для нестрогого и строгого разделения, то вопрос о типе дизъюнкции в юридических и других текстах должен решаться содержательным анализом соответствующих суждений.
Полная и неполная дизъюнкция. Среди дизъюнктивных суждений следует различать полную и неполную дизъюнкцию.
Полным или закрытым называют дизъюнктивное суждение, в котором перечислены все признаки или все виды определенного рода.
Символически это суждение можно записать следующим образом:
<р v q v r>.
Например: «Леса бывают лиственные, хвойные или смешанные». Полнота этого разделения (в символической записи обозначается знаком <...>) определяется тем, что не существует, помимо указанных, других видов лесов.
Неполным или открытым называют дизъюнктивное суждение, в котором перечислены не все признаки или не все виды определенного рода. В символической записи неполнота дизъюнкции может быть выражена многоточием:
р v q v r v...
В естественном языке неполнота дизъюнкции выражается словами: «и т.д.», «и др.», «и тому подобное», «иные» и другими.
3. Условные (импликативные) суждения.
Условным, или импликативным, называют суждение, состоящее из двух простых, связанных логической связкой «если.., то...». Например: «Если предохранитель плавится, то электролампа гаснет». Первое суждение -- «Предохранитель плавится» называют антецедентом (предшествующим), второе -- «Электролампа гаснет» -- консеквентом (последующим). Если антецедент обозначить р, консеквент -- q, а связку «если..., то...» знаком «®», то импликативное суждение символически можно выразить как р®q.
В естественном языке для выражения условных суждений используется не только союз «если..., то...», но и другие союзы: «там..., где», «тогда..., когда...», «постольку..., поскольку...» и т.п. В форме условных суждений в языке могут быть представлены такие виды объективных связей, как причинные, функциональные, пространственные, временные, правовые, а также семантические, логические и другие зависимости. Примером причинного суждения может служить следующее высказывание: «Если воду нагреть при нормальном атмосферном давлении до 100°С, то она закипит». Пример семантической зависимости: «Если число делится на 2 без остатка, то оно четное».
В форме условных суждений нередко выражают логические зависимости между высказываниями. Например: «Если верно, что некоторые птицы улетают зимой в теплые края, то неверно, что ни одна птица не улетает в теплые края».
В условном суждении антецедент выполняет функцию фактического или логического основания, обусловливающего принятие в консеквенте соответствующего следствия. Зависимость между антецедентом-основанием и консеквентом-следствием характеризуется свойством достаточности. Это означает, что истинность основания обусловливает истинность следствия, т.е. при истинности основания следствие всегда будет истинным. При этом основание не характеризуется свойством необходимости для следствия, ибо при его ложности следствие может быть как истинным, так и ложным .
4. Эквивалентные суждения (двойная импликация). Эквивалентным, называют суждение, включающее в качестве составных два суждения, связанных двойной (прямой и обратной) условной зависимостью, выражаемой логической связкой «если и только если..., то...». Например: «Если и только если человек награжден орденами и медалями (р), то он имеет право на ношение соответствующих орденских планок (q)».
Логическая характеристика этого суждения состоит в том, что истинность утверждения о награждении (р) рассматривается как необходимое и достаточное условие истинности утверждения о наличии права на ношение орденских планок (q). Точно так же истинность утверждения о наличии права на ношение орденских планок (q) является необходимым и достаточным условием истинности утверждения о том, что данное лицо награждено соответствующими орденом или медалью (р).
В естественном языке для выражения эквивалентных суждений используют союзы: «лишь при условии что..., то...», «в том и только в том случае когда..., тогда...», «только тогда когда..., то...» и другие.
Вопрос 3. Закон исключенного третьего; его отличия от закона непротиворечия
Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом суждении, и никакой третьей возможности нет. Сущность закона такова: два противоречащих высказывания об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении, не могут быть вместе истинными или ложными. Записывается этот закон следующим образом:
А, или не-А
Например: Этот фильм интересный
Этот фильм неинтересный
Такие суждения не могут быть сразу оба ложными, а из ложности одного обязательно следует истинность другого.
Данный закон требует выбирать одно из двух противоречащих высказываний. Одно из них есть искомая истина. Третьего, промежуточного суждения, которое оказалось бы истинным, не существует. Но закон исключенного третьего не указывает, какое из двух противоречивых суждений будет истинным по своему содержанию. Значение закона состоит в том, что он указывает направление в поисках истины: возможно только два решения вопроса «или-или».
И закон противоречия и закон исключенного третьего были известны еще до Аристотеля. Но он первым дал их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия. Несмотря на важность данного закона, он неоднократно подвергался критике со стороны ученых. А.А. Ивин в своем учебнике «Логика» видит некоторые примеры такой критики. Аристотель сомневался в приложимости закона исключенного третьего к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь», -- это высказывание сейчас скорее всего ни истинно, ни ложно. Таким же является его отрицание. Ведь сейчас нет причины ни для того, чтобы через сто лет пошел дождь, ни для того, чтобы его через сто лет не было. Но закон исключенного третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем. В XIX в. Гегель весьма иронично отзывался о законе противоречия и законе исключенного третьего. Последний он представлял, в частности, в такой форме: «Дух является зеленым или не является зеленым», и задавал «каверзный» вопрос: какое из этих двух утверждений истинно? Резкой, но хорошо обоснованной критике подверг закон исключенного третьего голландский математик Л.Брауэр. Возражая против закона исключенного третьего, он настаивал на том, что между утверждением и его отрицанием имеется еще третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов. Допустим, что утверждается существование объекта с определенным свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же: «В этом множестве нет такого объекта». Закон исключенного третьего здесь справедлив. Но когда множество бесконечно, то объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведен до конца. Закон исключенного третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не являются истинными. Критика Брауэром закона исключенного третьего привела к созданию нового направления в логике -- интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Интересно отметить, что еще до Брауэра сомнения в универсальной приложимости закона исключенного третьего высказывал русский философ и логик Н.А. Васильев. Он ставил своей задачей построение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и закона противоречия. По мысли Васильева, логика, ограниченная подобным образом, не способна действовать в мире обычных вещей, но она необходима для более глубокого понимания логического учения Аристотеля.
Закон исключенного третьего, как и закон противоречия, не указывает, какое из двух противоречащих суждений будет истинным по своему содержанию. Этот вопрос решается практикой, устанавливающей соответствие или несоответствие суждений объективной действительности. Он только ограничивает круг исследования истины двумя взаимно исключающими альтернативами. Когда вопрос поставлен верно, логика требует вполне определенного ответа «да» или «нет».
Таким образом, закон исключенного третьего, не рассматривая самих противоречий объективного мира, не допускает признания одновременно истинными или одновременно ложными два противоречащих друг другу суждения.
Закон непротиворечия от закона исключения третьего отличается тем что непротиворечие стремится к логическому заключению, в состав которого не входят взаимоисключающие понятия. В отличие от исключения третьего во втором случае, в законе непротиворечия то самое третье, с помощью той самой логики может стать частью целого. А во втором случае это невозможно.
Вопрос 4. Роль умозаключений в учебном процессе
УМОЗАКЛЮЧЕНИЕ - логическая форма, в рамках которой из одного или нескольких суждений (посылок) выводится новое суждение (заключение, вывод). Умозаключения выполняются с помощью индукции, дедукции, аналогии, абдукции и т.п.
Как в любом процессе мышления (научного или обыденного), так и в процессе обучения дедукция и индукция взаимосвязаны. «Индукция и дедукция связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться применять каждую на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг друга»7.В индукции мы идем от посылок, выражающих знания меньшей степени общности, к новому суждению большей степени общности, от отдельных конкретных явлений к обобщению. В дедукдии ход рассуждения противоположный, т. е. от обобщений, выводов мы идем к отдельным конкретным фактам или суждениям меньшей степени общности.
В процессе обучения индуктивный и дедуктивный методы используются в единстве. Индуктивный метод используется тогда, когда изучается новый материал, трудный для учащихся, и когда в результате беседы они смогут сделать сами определенное заключение, обобщение, сформулировать правило, теорему или некоторую закономерность. Индуктивный метод в большей мере активизирует учащихся, однако требует от учителя творческого подхода и гибкости в преподавании. При этом затрачивается больше времени на подведение учащихся к самостоятельному заключению.
Дедуктивный метод состоит в том, что учитель сам формулирует общее суждение, выражающее какое-то правило, закон, теорему и т. д., а затем применяет его, иллюстрирует частными примерами, случаями, фактами, событиями и т. д. Соединение дедукции и индукции в процессе обучения дает два пути объяснения материала: «Индуктивно-дедуктивный путь объяснения материала, когда последнее начинается с индукции и переходит затем в дедукцию (возможно, при значительном перевесе индукции), и путь дедуктивно-индуктивный, когда сообщение учащимся нового осуществляется самим учителем в виде готового, сформулированного им правила или положения с последующими комментариями».
К.Д. Ушинский высоко ценил применение индукции при изучении грамматики. На специально подобранных примерах он развивал у детей умение подмечать закономерности языка и делать самостоятельные обобщения, формулировать правила, что имело огромное значение для развития мышления младших школьников. Дедукцию Ушинский ценил не меньше индукции и большую роль в обучении языку отводил последующим упражнениям, направленным на подыскание самими учащимися примеров на только что сформулированное правило. Известный советский методист А. В. Текучев, обобщив данные экспериментальной проверки применения этих двух способов изучения материала, сделал вывод о том, что в работе над темой «Однородные члены предложения» (общее понятие, союзы при однородных членах, обобщающие слова) с одинаковым успехом могут быть использованы оба пути; изучение же правил постановки знаков препинания при однородных членах предпочтительнее проводить дедуктивно-индуктивным способом. Эти же приемы используются не только на уроках родного языка, но и на уроках математики, истории, физики и др. Соответствующая методика преподавания школьного предмета рекомендует учителям более конкретное использование этих методов в работе над отдельными темами учебной программы.
В математике имеется много приверженцев как индуктивного, гак и дедуктивного метода. Например, Л.Д. Кудрявцев полагает, что «на первых этапах обучения надо отдавать предпочтение индуктивному методу, постепенно подготавливая и используя дедуктивный подход», ибо индуктивные методы изложения материала, при которых происходит последовательное обобщение понятий, способствуют более активному усвоению материала. Далее он отмечает: «В последние годы наблюдается стремление заменять по возможности индуктивный подход дедуктивным, целесообразность этого часто представляется сомнительной».
Однако как при индуктивном, так и при дедуктивном методе при изложении новых понятий или новых общих теорий необходимо отводить значительное время на конкретные иллюстрации, на разбор примеров, анализ частных ситуаций. От самого учителя зависит оптимальный выбор методов, позволяющий на высоком уровне самостоятельности организовать познавательную деятельность учащихся.
В математике используются различные виды индукции: полная, неполная и математическая. Применение математической индукции покажем на следующем примере. Надо определить сумму л первых нечетных чисел:
1+3 + 5 + 7 + ... + (2n-1).
Обозначив эту сумму через S (n), положим n = 1, 2, 3, 4, 5; тогда будем иметь:
S(1)=1,
S (2)= 1+3=4,
S (3)=1+3 + 5 = 9,
S (4)=1+3 + 5 + 7 = 16,
S (5)=1 + 3 + 5+ 7 + 9=25.
Мы наблюдаем интересную закономерность: при n = 1, 2, 3, 4, 5 сумма л последовательных нечетных чисел равна n2. Но заключение по аналогии, что это имеет место при любом n, сделать нельзя, ибо оно может оказаться ошибочным. Применим метод математической индукции, т. е. предположим, что для какого-то числа л наша формула верна, и попытаемся доказать, что Тогда она верна и для следующего числа n +1. Итак, мы полагаем, что S(n)-1 + 3 + 5 + ... + (2n-1)=n2. Вычислим S(n+1)=1+3 + 4+ 5 + ... +(2n- 1) + (2n +1). Но по предположению сумма n первых слагаемых равна л2, следовательно, S(n+1) = n2 + (2n + 1) = (n+1)2.Итак, предположив, что S(n) -- n2, мы доказали, чтo S (n+ 1) = (n +1)2. Но мы выше проверили, что эта формула верна для n = 1, 2, 3, 4, 5, следовательно, она будет верна и для n=6) и для n=7 и т. д. Формула считается доказанной для любого числа слагаемых.
Этим же методом доказывается, что сумма n первых натуральных чисел, обозначенная S1 (n), равнат. е.
В математическом мышлении присутствуют не только логические рассуждения, но и математическая интуиция, фантазия и чувство гармонии, позволяющие предвидеть ход решения задачи или доказательства теоремы. Однако в математике, пишет Л.Д. Кудрявцев, «интуитивные соображения и правдоподобные рассуждения отдаются на суд холодного рассудка для их изучения, доказательства или опровержения». Истинность суждения там доказывается «не проверкой его на ряде примеров, не проведением ряда экспериментов, что не имеет для математики доказательной силы, а чисто логическим путем, по законам формальной логики». В ходе обучения математике предполагается, что «использование знаний, математического аппарата, интуиции, чувства гармонии, фантазии, умения думать, логики, эксперимента происходит не последовательно по этапам -- все это взаимодействует между собой в течение всего процесса...». В результате этого взаимодействия у учащихся вузов и средних учебных заведений формируется, воспитывается математическая культура. Итак, единство дедукции и индукции в обучении и в научном творчестве своеобразно и ярко проявляется в математике -- науке, значительно отличающейся от естественных и от общественных наук, как по методам доказательства, так и по методике передачи знаний учащимся.
Выше мы приводили типы и примеры сокращенных умозаключений (категорического силлогизма, условных, разделительных и др.).
В ходе обучения математике учащиеся приобретают способность к свертыванию процесса математического рассуждения при решении задач знакомого типа -- об этом писали еще известные русские методисты С.И. Шохо-Троцкий (в 1916 г.) и Ф. А. Эрн (в 1915 г.). Они отмечали, что «при многократном решении однотипных задач учащимися отдельные этапы мыслительного процесса сокращаются и перестают осознаваться, но когда нужно, учащийся может вернуться к полному развернутому рассуждению». Методисты-математики П.А. Шеварев и Н.А. Менчинская в начале 40-х годов также установили соответственно на алгебраическом и арифметическом материале, что «наряду с развернутыми умозаключениями в умственной деятельности школьников при решении задач занимают определенное место и свернутые умозаключения, когда ученик не осознает правила общего положения, в соответствии с которыми он фактически действует... не выполняет всей той цепи соображений и умозаключений, которые образуют полную, развернутую систему решения». Сокращение процесса рассуждения возникает благодаря упражнениям, причем способные к математике учащиеся переходят к свернутым рассуждениям быстро, средние -- медленнее, у неспособных же не замечалось сколько-нибудь заметного свертывания даже в результате многих упражнений. В.А. Крутецкий высказывает такую гипотезу: «Вообще никогда и нигде, вероятно, человек не мыслит до конца развернутыми структурами». Однако способные ученики мыслят свернутыми структурами, сокращенными умозаключениями при решении не только однотипных, но и новых задач; при этом по просьбе экспериментатора эти учащиеся восстанавливали свернутые структуры до полной (с их точки зрения) структуры. «Свернутые» мыслительные структуры способствуют более быстрой переработке информации, ускорению процесса решения задач, упрощают выполнение сложных операций.
Изучая компоненты структуры математических способностей школьников, В.А. Крутецкий проанализировал высказывания ряда ученых-математиков и преподавателей математики средних школ по этому вопросу. Приблизительно 38% опрошенных товарищей обратили внимание на свертывание процесса рассуждения у способных учащихся. Приведем эти высказывания. «Процесс рассуждения у способных учащихся сокращен и никогда не развернут до полной логической структуры. Это очень экономно, и в этом его значение»; «Я часто наблюдал, как мыслят способные ученики, -- для учителя и класса это развернутый и последовательный во всех звеньях процесс, а для себя -- это отрывочный, беглый, сокращенный, прямо стенограмма мысли».
Перечисляя качества ума этих учащихся, почти все опрошенные учителя математики и математики-ученые (98%) отмечали способность к обобщению. «Способный ученик быстро обобщает не только математический материал, но и метод рассуждения, доказательства»; некоторые из опрошенных указывали на способность и даже своеобразную «страсть» к обобщению, способность «видеть общее в разных явлениях», «способность прийти от частного к общему».
Если проанализировать знания, умения и навыки учащихся, относящиеся к использованию дедукции и индукции в процессе обучения по дисциплинам нематематического профиля, то наряду с положительными моментами можно выделить и ряд недостатков. Прежде всего недостаточно развито умение использовать дедуктивный ход рассуждений: дав верное определение учащийся не всегда справляется с анализом конкретного произведения под углом зрения этого определения, у некоторых yчащихся отсутствуют выводы по теме сочинения, в сознании учащихся иногда имеет место разрыв между фактологическими и теоретическими знаниями и т. д.
Отмеченные положительные моменты и недостатки в знаниях учащихся свидетельствуют о важном значении умелого сочетания индукции и дедукции в ходе изложения, закрепления и проверки усвоения школьного материала. Общих рецептов по поводу того, как, в какой мере использовать дедуктивный или индуктивные метод в обучении, дать нельзя. В связи с этим можно отметить высказывание Л.Д. Кудрявцева о методических принципах преподавания математики: «К сожалению, не существует точных рецептов, как надо преподавать различные разделы математики. Методика преподавания математики не наука, а искусство, Правда, это вовсе не означает, что методике преподавания математики не надо учить. Всякому искусству можно и должно учить: учатся и художники, и музыканты, и артисты, и писатели».
На основе разбора ошибок, допускаемых в педагогическом процессе, можно еще раз сделать вывод о творческом характере применения различных методов обучения и воспитания, о недопустимости шаблонного подхода в процессе обучения.
Вопрос 5. Правила доказательного рассуждения по отношению к аргументам. Типичные ошибки
Если будет нарушено хотя бы одно из перечисленных ниже правил, то могут произойти ошибки относительно доказываемого тезиса, ошибки по отношению к аргументам и ошибки в форме доказательства.
Правила по отношению к тезису
1. Тезис должен быть логически определенным, ясны” и точным. Иногда люди в своем выступлении, письменном заявлении, научной статье, докладе, лекции не могут четко, ясно однозначно сформулировать тезис. Так, выступающий на собрании не может четко сформулировать основные положения своего выступления и потому веско аргументировать их перед слушателями. И слушатели недоумевают, зачем он выступал в прениях и что хотел им доказать.
2. Тезис должен оставаться тождественным, т. е. одним и тем же, на протяжении всего доказательства или опровержения. Нарушение этого правила ведет к логической ошибке - “подмене тезиса”.
Ошибки относительно доказываемого тезиса
1. “Подмена тезиса”. Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения - так гласят правила по отношению к тезису. При нарушении их возникает ошибка, называемая “подменой тезиса”. Суть ее в том, что один тезис умышленно или неумышленно подменяют другим и начинают этот новый тезис доказывать или опровергать. Это часто случается во время спора, дискуссии, когда тезис оппонента сначала упрощаю или расширяют его содержание, а затем начинают критиковать Тогда тот, кого критикуют, заявляет, что оппонент “передергивает” его мысли (или слова), приписывает ему то, чего он не говорил. Ситуация эта весьма распространена, она встречается и при защите диссертаций, и при обсуждении опубликованных научных работ, и на различного рода собраниях и заседаниях, и при редактировании научных и литературных статей.
Здесь происходит нарушение закона тождества, так как нетождественные тезисы пытаются отождествлять, что и приводит к логической ошибке.
2. “Довод к человеку”. Ошибка состоит в подмене доказательства самого тезиса ссылками на личные качества того, кто выдвинул этот тезис. Например, вместо того чтобы доказывать ценность и новизну диссертационной работы, говорят, что диссертант - заслуженный человек, он много потрудился над диссертацией и т. д. Разговор классного руководителя с учителем, например русского языка, об оценке, поставленной ученику, иногда сводится не к аргументации, что данный ученик заслужил эту оценку своими знаниями, а к ссылкам на личные качества ученика: добросовестен в учебе, много болел в этой четверти, по всем другим предметам он успевает и т. д.
В научных работах иногда вместо конкретного анализа материала, изучения современных научных данных и результатов практики в подтверждение приводят цитаты из высказываний крупных ученых, видных деятелей и этим ограничиваются, полагая, что одной ссылки на авторитет достаточно. Причем цитаты могут вырываться из контекста и иногда произвольно трактоваться. “Довод к человеку” часто представляет собой просто софистический прием, а не ошибку, допущенную непреднамеренно.
Разновидностью “довода к человеку” является ошибка, называемая “довод к публике”, состоящая в попытке повлиять на чувства людей, чтобы те поверили в истинность выдвинутого тезиса, хотя его и нельзя доказать.
3. .“Переход в другой род”. Имеются две разновидности этой ошибки: а) “кто слишком много доказывает, тот ничего не доказывает”; б) “кто слишком мало доказывает, тот ничего не доказывает”.
В первом случае ошибка возникает тогда, когда вместо одного истинного тезиса пытаются доказать другой, более сильный тезис, и при этом второй тезис может оказаться ложным. Если из а следует b, но из b не следует а, то тезис а является более сильным, чем тезис b. Например, если вместо того чтобы доказывать, что этот человек не начинал первым драку, начинают доказывать что он и не участвовал в драке, то этим ничего не смогут доказать, если этот человек действительно дрался и это видели свидетели.
Ошибка “кто слишком мало доказывает, тот ничего не доказывает” возникает тогда, когда вместо тезиса а мы докажем более слабый тезис b. Например, если, пытаясь доказать, что это животное - зебра, мы доказываем, что оно полосатое, то ничего не докажем, ибо и тигр - тоже полосатое животное.
Правила по отношению к аргументам
1). Аргументы, приводимые для доказательства тезиса, должны быть истинными и не противоречащими друг другу.
2). Аргументы должны быть достаточным основанием для доказательства тезиса.
3). Аргументы должны быть суждениями, истинность которых доказана самостоятельно, независимо от тезиса.
Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований (“основное заблуждение”). В качестве аргументов берутся не истинные, а ложные суждение которые выдают или пытаются выдать за истинные. Ошибка может быть непреднамеренной. Например, до Коперника ученые считали, что Солнце вращается вокруг Земли и, исходя из этого ложного аргумента, строили свои теории. Ошибка может быть и преднамеренной (софизмом) с целью запутать, ввести заблуждение других людей (например, дача ложных показаний свидетелями или обвиняемыми в ходе судебного расследования, неправильное опознание вещей или людей и т. п., из чего затем делаются ложные заключения).
2. “Предвосхищение оснований”. Аргументы не доказаны, а тезис опирается на них. Недоказанные аргументы только предвосхищают, но не доказывают тезис.
3. “Порочный круг”. Ошибка состоит в том, что тезис обосновывается аргументами, а аргументы обосновываются этим жетезисом. Например, К. Маркс вскрыл эту ошибку в рассуждениях
Д. Уэстона, одного из деятелей английского рабочего движения. Маркс пишет: “Итак, мы начинаем с заявления, что стоимость товаров определяется стоимостью труда, а кончаем заявлением, что стоимость труда определяется стоимостью товаров. Таким образом, мы поистине вращаемся в порочном кругу и не приходим ни к какому выводу”'.
Правило по отношению формы обоснования тезиса (демонстрации)
Тезис должен быть заключением, логически следующим из аргументов по общим правилам умозаключений или полученным в соответствии с правилами косвенного доказательства.
Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводимых в его подтверждение аргументов, то возникает ошибка, называемая “не вытекает”, “не следует”. Люди иногда вместо правильного доказательства соединяют аргументы с тезисом посредством слов “следовательно”, “итак”, “таким образом”, “в итоге имеем” и т. п., полагая, что они установили логическую связь между аргументами и тезисом. Эту логическую ошибку часто неосознанно допускает тот, кто не знаком с правилами логики и полагается только на свой здравый смысл и интуицию. В результате возникает словесная видимость доказательства.
В качестве примера логической ошибки мнимого следования Б.А. Воронцов-Вельяминов в своем учебнике “Астрономия” указал на широко распространенное мнение, что шарообразность Земли якобы доказывается следующими аргументами: 1) при приближении корабля к берегу сначала из-за горизонта показываются верхушки мачт, а потом уже корпус корабля; 2) возможны и осуществлялись кругосветные путешествия и др. Но из этих аргументов следует не то, что Земля имеет форму шара (или, точнее, геоида), а только то, что Земля имеет кривизну поверхности, замкнутость формы. Для доказательства шарообразной формы Земли Б.А. Воронцов-Вельяминов предлагает другие аргументы: а) в любом месте Земли горизонт представляется окружностью, и дальность горизонта всюду одинакова;
6) во время лунного затмения тень Земли, падающая на Луну, всегда имеет округлые очертания, что может быть только в том случае, если Земля шарообразна.
2. От сказанного с условием к сказанному безусловно. Аргумент, истинный только с учетом определенного времени, отношения, меры, нельзя приводить в качестве безусловного, верного во всех случаях. Так, если кофе полезен в небольших дозах (для поднятия артериального давления, например), то в больших дозах он вреден. Аналогично, если мышьяк в небольших дозах добавляют в некоторые лекарства, то в больших дозах он - яд. Лекарства врачи должны подбирать для больных индивидуально. Педагогика требует индивидуального подхода к учащимся. Этика определяет нормы поведения людей, и в различных условиях они могут несколько варьироваться (например, правдивость - положительная черта человека, но если он выдаст тайну врагу, то это будет преступлением).
3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключение от утверждения следствия к утверждению основания. Так, из посылок “Если число оканчивается на 0, то оно делится на 5” и “Это число делится на 5” не следует вывод: “Это число оканчивается на 0”. Ошибки в дедуктивных умозаключениях были подробно освещены ранее.
б). Ошибки в индуктивных умозаключениях. “Поспешное обобщение”, например, утверждение, что “все свидетели дают необъективные показания”. Другой ошибкой является “после этого - значит, по причине этого” (например, пропажа вещи обнаружена после пребывания в доме этого человека, значит, он ее унес).
в). Ошибки в умозаключениях по аналогии. Например, африканские пигмеи неправомерно умозаключают по аналогии между чучелом слона и живым слоном. Перед охотой на слона они устраивают ритуальные танцы, изображая эту охоту, копьями протыкают чучело слона, считая (по аналогии), что и охота на живого слона будет удачной, т. е. что им удастся пронзить его копьем.
Этот ритуал ярко описан в книге “Страны и материки”. Приведем отрывки из этого описания: “Охота на слонов требует особых приготовлений. Нужно умилостивить злых духов, получить моральную поддержку всех обитателей деревни... Накануне охоты в деревне разыгрывают настоящий спектакль, в котором охотники, сделав чучело слона и поставив его на поляне, показывают своим сородичам, как они будут охотиться. “Артисты” сначала осторожно двигаются, внимательно прислушиваясь и вглядываясь вперед. Знаками они поддерживают связь друг с другом... Тут вступают в игру барабаны. Они громко бьют, предупреждая, что охотники нашли след...
Внезапно всех как будто пронизывает электрическим током; я вздрагиваю и почти перестаю крутить ручку киноаппарата. Барабаны громыхают: “Бум!” Предводитель резко выпрямляется, машет рукой товарищам и со страхом и ликованием взор устремляет в чучело слона, которое в этот момент всем присутствующим кажется настоящим, живым гигантом... Охотники замирают и несколько секунд, показавшихся мне бесконечно долгими, смотрят на слона. Затем охотники отходят на семь или восемь шагов и начинают взволнованно обсуждать план атаки... Предводитель должен первым поразить слона копьем. Он подкрадывается к слону сзади, но вдруг его глаза расширяются от страха, как будто слон стал поворачиваться, и он стремглав бросается к лесу... Три раза предводитель подкрадывается к слону и три раза убегает прочь... Затем охотники, изобразив преследование раненого слона, бросаются на него, яростно обрушивают копья в чучело и опрокидывают его... Охотники исполняют вокруг поверженного чучела свой победный танец... Через 5 минут под аккомпанемент барабанов пляшут уже все зрители - энергично и весело”'.
Практическое задание 1
Определите вид операции с понятием (обобщение или ограничение) и оцените правильность ее проведения.
A. Гипотенуза, гипотенуза прямоугольного треугольника. (ограничение)
Б. Юрист, прокурор. (обобщение)
B. Опера, увертюра к опере. (ограничение)
Г. Строение, комната. (ограничение)
Д. Строение, беседка. (ограничение)
Е. Секунда, минута, час. (обобщение)
Ж. Одиночный выстрел, выстрел. (обобщение)
З. Кабельтов, одна десятая мили. (обобщение)
И. Високосный год, год. (обобщение)
К. Цех, завод. (обобщение)
Л. Офицер, майор. (ограничение)
М. Компенсация, возмещение. (псевдоограничение)
Н. Одиночный выстрел, залп. (ограничение)
О. Високосный год, столетие. (обобщение)
П. Завод; предприятие. (обобщение)
Р. Офицер, сержант. (ограничение)
Практическое задание 2
Изменится ли содержание следующих понятий? Обоснуйте ответ.
А. Содержание понятия «первокурсник», если первокурсники этого года перейдут на второй курс. (Да, так как понятие уже меняется в связи с тем что, если первокурсник этого года перейдут на второй курс, то он уже не будет первокурсником, а будет второкурсником).
Б. Содержание понятия «зима», если она в этом году запоздает. (Нет, так как понятие о зиме не меняется, она по календарю наступила, просто погодные условия в начале зимы не соответствуют этой поре года).
Практическое задание 3
Проверьте правильность вывода. Обоснуйте ответ.
А. Некоторые мероприятия Наполеона были прогрессивными (истина). - Некоторые мероприятия Наполеона не были прогрессивными (истина). (Эти суждения находятся в отношениях подпротивности, поэтому могут быть вместе истинными).
Б. Ни один из друзей его не забыл (ложь). - Некоторые друзья его забыли (ложь). (противоречие, они не могут быть одновременно ложными (обязательно одно суждение истинное, а другое - ложное)).
В. Некоторые книги не интересны (истина). - Все книги интересны (ложь). (противоречие).
Г. Все жидкости упруги (истина). - Есть неупругие жидкости (ложь). (противоположность).
Практическое задание 4
Какой закон логики нарушен? Проанализируйте причину нарушения.
1. Художник Камиль Каро создал всего 700 картин, из которых 100 тысяч ныне находятся в Соединенных Штатах. - (ЗАКОН НЕПРОТИВОРЕЧИЯ, два несовместимых суждения об одном и том же предмете не могут быть).
2. Я слушал Собинова уже в престарелом возрасте. - (ЗАКОН ТОЖДЕСТВА, так как наблюдается неправильное использование размытых понятий ("престарелый возраст ")).
3. В результате автопроисшествия он получил телесные повреждения, чем нарушил статьи 17, 18, 125 Правил Дорожного движения. (ЗАКОН ТОЖДЕСТВА, неправильный порядок слов в предложении).
Практическое задание 5
Можно ли получить данные выводы с помощью полной индукции?
* A. Всю неделю стоит жаркая погода.
Ответ. Да, можно, если производить наблюдения за погодными условиями ежедневно на протяжении недели и констатировать жаркую погоду непрерывно в течение всего периода, что и будет доказывать индуктивный по сути факт.
* Б. Все футболисты сборной команды явились на тренировку.
Ответ. Класс предметов, мыслимых в субъекте суждения «футболисты сборной команды».
Указываем, к какому множеству относится класс предметов «футболисты сборной команды»: конечное, т.к. имеет границы, и обозримое, т.к. элементы множества можно пересчитать.
Определяем, по какому индуктивному умозаключению можно получить вывод: по полной индукции, т.к. можно получить знание о каждом элементе класса.
* B. Все планеты Солнечной системы вращаются вокруг Солнца.
Ответ. В данной ситуации это подтверждение следствий, используется полная индукция, в которой общее заключение делается на основе изучения всех предметов и явлений данного класса.
* Г. Все рыбы дышат жабрами.
Ответ. Нельзя, так как чтобы доказать полной индукцией, что все рыбы дышат жабрами, пришлось бы выловить всех рыб, а это в принципе невозможно.
* Д. Вся продукция данного консервного завода доброкачественная.
Ответ. Да, можно.
* Е. Все автобусы маршрута 511 всегда ходят строго но расписанию.
Ответ. Да, можно.
Практическое задание 6
Найдите ошибки в рассуждениях. Определите нарушенное правило.
Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит надо принимать как можно больше лекарства.
Ответ. В данном рассуждении присутствует софизм. Софизм - (от греческого sophisma, «мастерство, умение, хитрая выдумка, уловка») - умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Софизм основан на преднамеренном, сознательном нарушении правил логики, т. е. это утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки.
То есть, во-первых, далеко не все лекарства полезны; во-вторых, даже нужные лекарства обладают рядом побочных эффектов, т.е. они полезны относительно; в-третьих, передозировка биологически-активным веществом опасна для здоровья; в-четвертых, лекарства должны принимать только больные люди, соответственно акт принятия лекарства не есть норма, не говоря уже о благе. Также, производство лекарственных препаратов направлено на получение прибыли, поэтому многие лекарства купируют симптомы, а не устраняют причину заболевания.
Список использованной литературы
1. Гетманова А.Д. Логика: Учебник для вузов. М.: Омега, 2010.
2. Кириллов В.И., Старченко А.А. Логика. - М.: Юристъ. - 2009.
3. Ивин А.А. Логика. Учебник для вузов. М: Гардарики, 2009.
4. Демидов И.В. Логика. - М.: Дашков и К, 2009.
5. Кузина Е.Б. Практическая логика, Упражнения и задачи с объяснением способов решения, ИМПЭ, М., 1996.
Размещено на Allbest.ru
Подобные документы
Закон тождества, (не) противоречия, исключенного третьего, достаточного основания. Формы познания. Понятие как форма мышления. Структура и виды понятия. Логические отношения между сравнимыми понятиями. Логические операции с понятиями. Классификация.
реферат [16,7 K], добавлен 22.02.2009Понятия по объему и по содержанию. Правила определения и деления понятий в логике. Логические отношения между совместимыми и несовместимыми понятиями. Виды сложных суждений: конъюнкция, дизъюнкция, импликация, эквиваленция. Виды фигур силлогизма.
контрольная работа [175,6 K], добавлен 01.02.2016Основные формы и особенности абстрактного мышления. Виды понятий и отношения между ними. Функции естественных и искусственных языков. Изучение дедуктивного умозаключения, элементов доказательства рассуждения. Гипотезы, их построение и этапы проверки.
контрольная работа [19,7 K], добавлен 21.10.2013Понятие как форма мышления, отражающая предметы в их существенных признаках, его общая характеристика, логические приемы формирования, классификация и разновидности: совместимые и несовместимые. Отличительные особенности отношения между понятиями.
реферат [24,3 K], добавлен 29.01.2014Метафизика Аристотеля, учение о четырех первоначалах. Логические идеи философа. Закон исключенного противоречия. Закон исключенного третьего. Этические, социальные и политические идеи Аристотеля. Два типа хозяйства: "экономика" и "хрематистика".
реферат [24,8 K], добавлен 22.07.2015Виды отношений между понятиями. Примеры обобщения и ограничения понятий. Суждения в виде символов. Формулы сложного суждения. Простые категорические силлогизмы. Разделительно-категорическое умозаключение. Степень вероятности индуктивного заключения.
контрольная работа [116,8 K], добавлен 09.04.2009Смысл и значение логических законов. Характеристика типичных ситуаций нарушения закона тождества. Определение несуразных, ложных и истинных высказываний. Сущность единичных, общих и нулевых понятий. Виды отношений между понятиями и подбор однозначных.
контрольная работа [13,5 K], добавлен 17.03.2009Учение о силлогизме как исторически первый законченный фрагмент логической теории умозаключений. Логика высказываний и категорические высказывания. Взаимная зависимость предложений. Фигуры и модусы силлогизма. Отношения между терминами рассуждения.
контрольная работа [53,4 K], добавлен 07.01.2011Математическое выражение закона тождества (определенности мышления). Логические ошибки в результате его нарушения. Описание закона логического непротиворечия. Закон исключенного третьего. Четвертый базовый логический закон – закон достаточного основания.
реферат [28,7 K], добавлен 02.07.2013Поиск кругов Эйлера, соответствующих перечню понятий. Отношения между понятиями по объему при помощи кругов Эйлера. Понятие логического суждения, правила логического квадрата. Противоречия между суждениями. Средний и большой термин в силлогизме.
контрольная работа [40,9 K], добавлен 11.08.2009