Логические основы теории аргументации
Структура доказательства: тезис, аргументы, демонстрация. Выявление несостоятельности демонстрации. Основные правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях. Понятие о логических парадоксах.
Рубрика | Философия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.10.2012 |
Размер файла | 300,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
КОНТРОЛЬНАЯ РАБОТА
ПО ДИСЦИПЛИНЕ: ЛОГИКА
Логические основы теории аргументации
ОГЛАВЛЕНИЕ
1. /1.1 Понятие доказательства
1.2 Структура доказательства: тезис, аргументы, демонстрация
1.3 Виды аргументов
2. Прямое и непрямое (косвенное) доказательства
3. Понятие опровержения
3.1 Опровержение тезиса
3.2 Критика аргументов
3.3 Выявление несостоятельности демонстрации
4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
4.1 Правила по отношению к тезису
4.2 Ошибки относительно доказываемого тезиса
4.3 Правила по отношению к аргументам
4.4 Ошибки в основаниях (аргументах) доказательства
4.5 Правило по отношению формы обоснования тезиса (демонстрации).
4.6 Ошибки в форме доказательства
5. Понятие о софизмах и логических парадоксах
5.1 Понятие о логических парадоксах
5.2 Парадоксы теории множеств
6. Искусство ведения дискуссии
Литература
1. Понятие доказательства
1.1 Понятие доказательства
Познание отдельных предметов, их свойств начинается с чувственных форм (ощущений и восприятий). Мы видим, что этот дом еще не достроен, ощущаем вкус горького лекарства и т.д. Открываемые этими формами истины не подлежат особому доказательству, они очевидны. Однако во многих случаях, например, на лекции, в сочинении, в научной работе, в докладе, в ходе полемики, на судебных заседаниях, на защите диссертации и во многих других, нам приходится доказывать, обосновывать высказываемые нами суждения.
Доказательность -- важное качество правильного мышления. Доказательство связано с аргументацией, но они не тождественны.
Аргументация -- способ рассуждения, включающий доказательство и опровержение, в процессе которого создается убеждение в истинности тезиса и ложности антитезиса как у самого доказывающего, так и у оппонентов; обосновывается целесообразность принятия тезиса с целью выработки активной жизненной позиции и реализации определенных программ действий, вытекающих из доказываемого положения. Понятие «аргументация» богаче по содержанию, чем понятие «доказательство»: целью доказательства является установление истинности тезиса, а целью аргументации -- еще и обоснование целесообразности принятия этого тезиса, показ его важного значения в данной жизненной ситуации и т.п. В теории аргументации «аргумент» также понимается шире, чем в теории доказательства, ибо в первой имеются в виду не только аргументы, подтверждающие истинность тезиса, но и аргументы, обосновывающие целесообразность его принятия, демонстрирующие его преимущества по сравнению с другими подобными утверждениями (предложениями). Аргументы в процессе аргументации гораздо разнообразнее, чем в процессе доказательства.
Форма аргументации и форма доказательства также не совпадают полностью. Первая, как и последняя, включает в себя различные виды умозаключений (дедуктивные, индуктивные, по аналогии) или их цепь, но, кроме того, сочетая доказательство и опровержение, предусматривает обоснование. Форма аргументации чаще всего носит характер диалога, ибо аргументирующий не только доказывает свой тезис, но и опровергает антитезис оппонента, убеждая его и/или являющуюся свидетелем дискуссии аудиторию в правильности своего тезиса, стремится сделать их своими единомышленниками.
Диалог как наиболее аргументированная форма ведения беседы пришел к нам из древности (так, Древняя Греция -- родина диалогов Платона, техники спора в форме вопросов и ответов Сократа и т.п.). Но диалог -- это внешняя форма аргументации: оппонент может только мыслиться (что особенно наглядно проявляется в письменной аргументации). Внутренняя форма аргументации представляет собой цепь доказательств и опровержений аргументирующего в процессе доказательства им тезиса и осуществления убеждения. В процессе аргументации выработка убеждений у собеседника или аудитории часто связана с их переубеждением. Поэтому в аргументации велика роль риторики в ее традиционном понимании как искусства красноречия. В этом смысле до сих пор представляет интерес «Риторика» Аристотеля, в которой наука о красноречии рассматривается как теория и практика убеждения в процессе доказательства истинности тезиса. «Слово есть великий властелин, который, обладая весьма малым и совершенно незаметным телом, совершает чудеснейшие дела. Ибо оно может и страх изгнать, и печаль уничтожить, и радость вселить, и сострадание пробудить», -- писал древнегреческий ученый Горгий об искусстве аргументации. Не было периода в истории, когда бы люди не аргументировали.
Без аргументации высказываний невозможно интеллектуальное общение, ибо она -- необходимый инструмент познания истины.
Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных убеждений. В науке ученым приходится доказывать самые различные суждения, например, суждения о том, что существовало до нашей эры, к какому периоду относятся предметы, обнаруженные при археологических раскопках, об атмосфере планет Солнечной системы, о звездах и галактиках Вселенной, теоремы математики, суждения о направлениях развития электронной техники, о возможности долгосрочных прогнозов погоды, о тайнах Мирового океана и космоса. Все эти суждения должны быть научно обоснованы.
Доказательство -- это совокупность логических приемов обоснования истинности тезиса. Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данных науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере, на предрассудках, на неосведомленности людей в вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах. Поэтому убедить -- еще, не значит доказать.
1.2 Структура доказательства: тезис, аргументы, демонстрация
доказательство аргумент логический парадокс
Тезис -- это суждение, истинность которого надо доказать. Аргументы - это те истинные суждения, которыми пользуются при доказательстве тезиса. Формой доказательства, или демонстрацией, называется способ логической связи между тезисом и аргументами.
Приведем пример доказательства. Поль С. Брэгг высказал такой тезис: «Купить здоровье нельзя, его можно только заработать своими собственными постоянными усилиями». Этот тезис он обосновывает так: «Только упорная и настойчивая работа над собой позволит каждому сделать себя энергичным долгожителем, наслаждающимся бесконечным здоровьем. Я сам заработал здоровье своей жизнью. Я здоров 365 дней в году, у меня не бывает никаких болей, усталости, дряхлости тела. И вы можете добиться таких же результатов!»
1.3 Виды аргументов
Различают несколько видов аргументов:
1. Удостоверенные единичные факты. К такого рода аргументам относится так называемый фактический материал, т.е. статистические данные о населении, территории государства, выполнении плана, количестве вооружения, свидетельские показания, подписи на документах, научные данные, научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, велика.
Факты -- воздух ученого. Без них вы никогда не сможете взлететь. Без них ваши «теории» -- пустые потуги.
2. Определения как аргументы доказательства. Определения понятий обычно даются в каждой науке. Правила определения и виды определений понятий были рассмотрены в теме «Понятие», и там же были приведены многочисленные примеры определений понятий различных наук: математики, химии, биологии, географии и пр.
3. Аксиомы. В математике, механике, теоретической физике, математической логике и других науках, кроме определений, вводят аксиомы. Аксиомы -- это суждения, которые принимаются в качестве аргументов без доказательства.
4. Ранее доказанные законы науки и теоремы как аргументы доказательства. В качестве аргументов доказательства могут выступать ранее доказанные законы физики, химии, биологии и других наук, теоремы математики (как классической, так и конструктивной). Юридические законы являются аргументами в ходе судебного доказательства.
В ходе доказательства какого-либо тезиса может использоваться не один, а несколько из перечисленных видов аргументов.
2. Прямое и непрямое (косвенное) доказательства
Доказательства по форме делятся на прямые и непрямые (косвенные). Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, т.е. истинность тезиса непосредственно обосновывается аргументами. Схема этого доказательства такая: из данных аргументов (а, b, с, ...) необходимо следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем и т.д.
Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях, в художественной и другой литературе.
Учитель на уроке при прямом доказательстве тезиса «Народ -- творец истории» показывает, во-первых, что народ является создателем материальных благ, во-вторых, обосновывает огромную роль народных масс в политике, разъясняет, как в современную эпоху народ ведет активную борьбу за мир и демократию, в-третьих, раскрывает его большую роль в создании духовной культуры.
В современном журнале мод «Бурда» тезис «Зависть -- корень всех зол» обосновывается с помощью прямого доказательства следующими аргументами: «Зависть не только отравляет людям повседневную жизнь, но может привести и к более серьезным последствиям, поэтому наряду с ревностью, злобой и ненавистью, несомненно, относится к самым плохим чертам характера.
Подкравшись незаметно, зависть ранит больно и глубоко. Человек завидует благополучию других, мучается от сознания того, что кому-то более повезло».
Непрямое (косвенное) доказательство -- это доказательство, в котором истинность выдвинутого тезиса обосновывается путем доказательства ложности антитезиса. Если тезис обозначить буквой а, то его отрицание (в) будет антитезисом, т.е. противоречащим тезису суждением.
Апагогическое косвенное доказательство (или доказательство «от противного») осуществляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике.
Пусть а -- тезис или теорема, которую надо доказать. Предполагаем от противного, что а ложно, т.е. истинно не-а (или в). Из допущения в выводим следствия, которые противоречат действительности или ранее доказанным теоремам. Имеем а V в, при этом в -- ложно, значит, истинно его отрицание, т/е. в, которое по закону двузначной классической логики (в > а) дает а. Значит, истинно а, что и требовалось доказать.
Следует заметить, что в конструктивной логике формула в ? а не является выводимой, поэтому в этой логике и в конструктивной математике ею пользоваться в доказательствах нельзя. Закон исключенного третьего здесь также «отвергается» (не является выводимой формулой), поэтому косвенные доказательства здесь не применяются. Примеров доказательства «от противного» очень много в школьном курсе математики. Так, например, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом «от противного» доказывается и следующая теорема: «Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны». Доказательство этой теоремы прямо начинается словами: «Предположим противное, т.е. что прямые АВ и CD не параллельны».
Разделительное доказательство (методом исключения). Антитезис является одним из членов разделительного суждения, в котором должны быть обязательно перечислены все возможные альтернативы, например:
Преступление мог совершить либо А, либо В, либо С.
Доказано, что не совершали преступление ни А, ни В.
Преступление совершил С.
Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения, кроме одного.
Здесь применяется структура отрицающе-утверждающего модуса разделительно-категорического силлогизма. Заключение будет истинным, если в разделительном суждении предусмотрены все возможные случаи (альтернативы), т.е. если оно является закрытым (полным) дизъюнктивным суждением:
Как отмечалось ранее, в этом модусе союз «или» может употребляться и как строгая дизъюнкция (), и как нестрогая дизъюнкция (v), поэтому ему отвечает также схема:
3. Понятие опровержения
Опровержение -- логическая операция установления ложности или необоснованности ранее выдвинутого тезиса.
Опровержение должно показать, что: 1) неправильно построено само доказательство (аргументы или демонстрация); 2) выдвинутый тезис ложен или не доказан.
Суждение, которое надо опровергнуть, называется тезисом опровержения. Суждения, с помощью которых опровергается тезис, называются аргументами опровержения.
Существуют три способа опровержения: I) опровержение тезиса (прямое и косвенное); II) критика аргументов; Ш) выявление несостоятельности демонстрации.
3.1 Опровержение тезиса
Опровержение тезиса осуществляется с помощью следующих трех способов (первый -- прямой способ, второй и третий -- косвенные способы).
1. Опровержение фактами -- самый верный и успешный способ опровержения. Ранее говорилось о роли подбора фактов, о методике оперирования ими; все это должно учитываться и в процессе опровержения фактами, противоречащими тезису. Должны быть приведены действительные события, явления, статистические данные, которые противоречат тезису, т.е. опровергаемому суждению. Например, чтобы опровергнуть тезис «На Венере возможна органическая жизнь», достаточно привести такие данные: температура на поверхности Венеры 470-480°С, а давление -- 95-97 атмосфер. Эти данные свидетельствуют о том, что жизнь на Венере невозможна.
2. Устанавливается ложность (или противоречивость) следствий, вытекающих из тезиса. Доказывается, что из данного тезиса вытекают следствия, противоречащие истине. Этот прием называется «сведение к абсурду» (reductio ad absurdum). Поступают так: опровергаемый тезис временно признается истинным, но затем из него выводятся такие следствия, которые противоречат истине.
В классической двузначной логике (как уже отмечалось) метод «сведения к абсурду» выражается в виде формулы:
в = а > F
Df
где F -- противоречие или ложь.
В более общей форме принцип «сведения (приведения) к абсурду» выражается такой формулой: (а > b) > ((а >) > в).
3. Опровержение тезиса через доказательство антитезиса. По отношению к опровергаемому тезису (суждению а) выдвигается противоречащее ему суждение (т.е. не-а), и суждение не-а (антитезис) доказывается. Если антитезис истинен, то тезис ложен, и третьего не дано по закону исключенного третьего.
Например, надо опровергнуть широко распространенный тезис «Все собаки лают» (суждение А, общеутвердительное). Для суждения А противоречащим будет суждение О -- частноотрицательное: «Некоторые собаки не лают». Для доказательства последнего достаточно привести несколько примеров или хотя бы один пример: «Собаки у пигмеев никогда не лают». Итак, доказано суждение О. В силу закона исключенного третьего, если О -- истинно, то А -- ложно. Следовательно, тезис опровергнут.
3.2 Критика аргументов
Подвергаются критике аргументы, которые были выдвинуты оппонентом в обоснование его тезиса. Доказывается ложность или несостоятельность этих аргументов.
Ложность аргументов не означает ложности тезиса: тезис может оставаться истинным.
Нельзя достоверно умозаключать от отрицания основания к отрицанию следствия, Но бывает достаточно показать, что тезис не доказан. Иногда бывает, что тезис истинен, но человек не может подобрать для его доказательства истинные аргументы. Случается и так, что человек не виновен, но не имеет достаточных аргументов для доказательства этого. В ходе опровержения аргументов следует об этих случаях помнить.
3.3 Выявление несостоятельности демонстрации
Этот способ опровержения состоит в том, что показываются. ошибки в форме доказательства. Наиболее распространенной ошибкой является та, что истинность опровергаемого тезиса не вытекает, не следует из аргументов, приведенных в подтверждение тезиса. Доказательство может быть неправильно построенным, если нарушено какое-либо правило дедуктивного умозаключения или сделано «поспешное обобщение», т.е. неправильное умозаключение от истинности суждения I к истинности суждения А (аналогично, от истинности суждения О к истинности суждения Е).
Но обнаружив ошибки в ходе демонстрации, мы опровергаем ее ход, но не опровергаем сам тезис. Задача же доказательства истинности тезиса лежит на том, кто его выдвинул.
Часто все перечисленные способы опровержения тезиса, аргументов, хода доказательства применяются не изолированно, а в сочетании друг с другом.
4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
Если будет нарушено хотя бы одно из перечисленных ниже правил, то могут произойти ошибки относительно доказываемого тезиса, ошибки по отношению к аргументам и ошибки в форме доказательства.
4.1 Правила по отношению к тезису
1. Тезис должен быль логически определенным, ясным и точным. Иногда люди в своем выступлении, письменном заявлении, научной статье, докладе, лекции не могут четко, ясно, однозначно сформулировать тезис. Так, выступающий на собрании не может четко сформулировать основные положения своего выступления и потому веско аргументировать их перед слушателями. И слушатели недоумевают, зачем он выступал в прениях и что хотел им доказать.
2. Тезис должен оставаться тождественным, т.е. одним и тем же, на протяжении всего доказательства или опровержения. Нарушение этого правила ведет к логической ошибке -- «подмене тезиса».
4.2 Ошибки относительно доказываемого тезиса
l. «Подмена тезиса». Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения -- так гласят правила по отношению к тезису. При нарушении их возникает ошибка, называемая «подменой тезиса». Суть ее в том, что один тезис умышленно или неумышленно подменяют другим и начинают этот новый тезис доказывать или опровергать. Это часто случается во время спора, дискуссии, когда тезис оппонента сначала упрощают или расширяют его содержание, а затем начинают критиковать. Тогда тот, кого критикуют, заявляет, что оппонент «передергивает» его мысли (или слова), приписывает ему то, чего он не говорил. Ситуация эта весьма распространена, она встречается и при защите диссертаций, и при обсуждении опубликованных научных работ, и на различного рода собраниях и заседаниях, и при редактировании научных и литературных статей.
Здесь происходит нарушение закона тождества, так как нетождественные тезисы пытаются отождествлять, что и приводит к логической ошибке.
2. «Довод к человеку». Ошибка состоит в подмене доказательства самого тезиса ссылками на личные качества того, кто выдвинул этот тезис. Например, вместо того чтобы доказывать ценность и новизну диссертационной работы, говорят, что диссертант -- заслуженный человек, он много потрудился над диссертацией и т.д. Разговор классного руководителя с учителем, например русского языка, об оценке, поставленной ученику, иногда сводится не к аргументации, что данный ученик заслужил эту оценку своими знаниями, а к ссылкам на личные качества ученика: добросовестен в учебе, много болел в этой четверти, по всем другим предметам он успевает и т.д.
В научных работах иногда вместо конкретного анализа материала, изучения современных научных данных и результатов практики в подтверждение приводят цитаты из высказываний крупных ученых, видных деятелей и этим ограничиваются, полагая, что одной ссылки на авторитет достаточно. Причем цитаты могут вырываться из контекста и иногда произвольно трактоваться. «Довод к человеку» часто представляет собой просто софистический прием, а не ошибку, допущенную непреднамеренно.
Разновидностью «довода к человеку» является ошибка, называемая «довод к публике», состоящая в попытке повлиять на чувства людей, чтобы те поверили в истинность выдвинутого тезиса, хотя его и нельзя доказать.
3. «Переход в другой род». Имеются две разновидности этой ошибки:
а) «кто слишком много доказывает, тот ничего не доказывает»; б) «кто слишком мало доказывает, тот ничего не доказывает».
В первом случае ошибка возникает тогда, когда вместо одного истинного тезиса пытаются доказать другой, более сильный тезис, и при этом второй тезис может оказаться ложным. Если из а следует b, но из b не следует а, то тезис а является более сильным, чем тезис b. Например, если вместо того чтобы доказывать, что этот человек не начинал первым драку, начинают доказывать, что он и не участвовал в драке, то этим ничего не смогут доказать, если этот человек действительно дрался и это видели свидетели.
Ошибка «кто слишком мало доказывает, тот ничего не доказывает» возникает тогда, когда вместо тезиса а мы докажем более слабый тезис b. Например, если, пытаясь доказать, что это животное -- зебра, мы доказываем, что оно полосатое, то ничего не докажем, ибо и тигр -- тоже полосатое животное.
4.3 Правила по отношению к аргументам
1) Аргументы, приводимые для доказательства тезиса, должны быть истинными и не противоречащими друг другу.
2) Аргументы должны быть достаточным основанием для доказательства тезиса.
3) Аргументы должны быть суждениями, истинность которых доказана самостоятельно, независимо от тезиса.
4.4 Ошибки в основаниях (аргументах) доказательства
1. Ложность оснований («основное заблуждение»). В качестве аргументов берутся не истинные, а ложные суждения, которые выдают или пытаются выдать за истинные. Ошибка может быть непреднамеренной. Например, до Коперника ученые считали, что Солнце вращается вокруг Земли и, исходя из этого ложного аргумента, строили свои теории. Ошибка может быть и преднамеренной (софизмом) с целью запутать, ввести в заблуждение других людей (например, дача ложных показаний свидетелями или обвиняемыми в ходе судебного расследования, неправильное опознание вещей или людей и т.п., из чего затем делаются ложные заключения).
2. «Предвосхищение оснований». Аргументы не доказаны, а тезис опирается на них. Недоказанные аргументы только предвосхищают, но не доказывают тезис.
3. «Порочный круг». Ошибка состоит в том, что тезис обосновывается аргументами, а аргументы обосновываются этим же тезисом. Например, К. Маркс вскрыл эту ошибку в рассуждениях Д. Уэстона, одного из деятелей английского рабочего движения. Маркс пишет: «Итак, мы начинаем с заявления, что стоимость товаров определяется стоимостью труда, а кончаем заявлением, что стоимость труда определяется стоимостью товаров. Таким образом, мы поистине вращаемся в порочном кругу и не приходим ни к какому выводу».
4.5 Правило по отношению формы обоснования тезиса (демонстрации)
Тезис должен быть заключением, логически следующим из аргументов по общим правилам умозаключений или полученным в соответствии с правилами косвенного доказательства.
4.6 Ошибки в форме доказательства
1. Мнимое следование. Если тезис не следует из приводимых в его подтверждение аргументов, то возникает ошибка, называемая «не вытекает», «не следует». Люди иногда вместо правильного доказательства соединяют аргументы с тезисом посредством слов «следовательно», «итак», «таким образом», «в итоге имеем» и т.п., полагая, что они установили логическую связь между аргументами и тезисом. Эту логическую ошибку часто неосознанно допускает тот, кто не знаком с правилами логики и полагается только на свой здравый смысл и интуицию. В результате возникает словесная видимость доказательства.
2. От сказанного с условием к сказанному безусловно. Аргумент, истинный только с учетом определенного времени, отношения, меры, нельзя приводить в качестве безусловного, верного во всех случаях. Так, если кофе полезен в небольших дозах (для поднятия артериального давления, например), то в больших дозах он вреден. Аналогично, если мышьяк в небольших дозах добавляют в некоторые лекарства, то в больших дозах он -- яд. Лекарства врачи должны подбирать для больных индивидуально. Педагогика требует индивидуального подхода к учащимся. Этика определяет нормы поведения людей, и в различных условиях они могут несколько варьироваться (например, правдивость -- положительная черта человека, но если он выдаст тайну врагу, то это будет преступлением).
3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии):
а). Ошибки в дедуктивных умозаключениях. Например, в условно-категорическом умозаключении нельзя вывести заключение от утверждения следствия к утверждению основания. Так, из посылок «Если число оканчивается на 0, то оно делится на 5» и «Это число. делится на 5» не следует вывод: «Это число оканчивается на 0». Ошибки в дедуктивных умозаключениях были подробно освещены ранее.
б). Ошибки в индуктивных умозаключениях. «Поспешное обобщение», например, утверждение, что «все свидетели дают необъективные показания». Другой ошибкой является «после этого -- значит, по причине этого» (например, пропажа вещи обнаружена после пребывания в доме этого человека, значит, он ее унес).
в). Ошибки в умозаключениях по аналогии. Например, африканские пигмеи неправомерно умозаключают по аналогии между чучелом слона и живым слоном. Перед охотой на слона они устраивают ритуальные танцы, изображая эту охоту, копьями протыкают чучело слона, считая (по аналогии), что и охота на живого слона будет удачной, т.е. что им удастся пронзить его копьем.
5. Понятие о софизмах и логических парадоксах
Непреднамеренная ошибка, допущенная человеком в мышлении, называется ларалогизмом. Паралогизмы допускают многие люди, Преднамеренная ошибка с целью запутать своего противника и выдать ложное суждение за истинное называется софизмом. Софистами называют людей, которые ложь пытаются выдать за истину путем различных ухищрений.
В математике имеются математические софизмы. В конце XIX -- начале XX в. большой популярностью среди учащихся пользовалась книга В.И. Обреимова «Математические софизмы», в которой собраны многие софизмы. И в ряде современных книг собраны интересные математические софизмы. Например, Ф.Ф. Нагибин формулирует следующие математические софизмы:
1) «5=6»;
2) «2•2=5»;
3) «2=3»;
4) «Все числа равны между собой»;
5) «Любое число равно половине eгo»;
6) «Отрицательное число равно положительному»;
7) «Любое число равно нулю»;
8) «Из точки на прямую можно опустить два перпендикуляра»;
9) «Прямой угол равен тупому»;
10) «Всякая окружность имеет два центра»;
11) «Длины всех окружностей равны» и многие другие.
2 • 2 = 5. Требуется найти ошибку в следующих рассуждениях. Имеем числовое тождество: 4 : 4 = 5 : 5. Вынесем за скобки в каждой части этого тождества общий множитель. Получим 4 (1 : 1) = 5 (1 : 1). Числа в скобках равны. Поэтому 4=5, или 2 • 2=5.
5 = 1. Желая доказать, что 5 = 1, будем рассуждать так. Из чисел 5 и 1 по отдельности вычтем одно и то же число 3. Получим числа 2 и -- 2. При возведении в квадрат этих чисел получаются равные числа 4 и 4. Значит, должны быть равны и исходные числа 5 и 1. Где ошибка?
5.1 Понятие о логических парадоксах
Парадокс -- это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) доказывающее как это суждение, так и его отрицание. Парадоксы были известны еще в древности. Их примерами являются: «Куча», «Лысый», «Каталог всех нормальных каталогов», «Мэр города», «Генерал и брадобрей» и др. Рассмотрим некоторые из них.
Парадокс «Куча». Разница между кучей и не-кучей -- не в одной песчинке. Пусть у нас есть куча (например, песка). Начинаем из нее брать каждый раз по одной песчинке, и куча остается кучей. Продолжаем этот процесс. Если 100 песчинок -- куча, то 99 -- тоже куча и т.д. 10 песчинок -- куча, 9-- куча, ... 3 песчинки -- куча, 2 песчинки -- куча, 1 песчинка -- куча. Итак, суть парадокса в том, что постепенные количественные изменения (убавление на 1 песчинку) не приводят к качественным изменениям.
5.2 Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента).
Примерами таких парадоксов (противоречий) являются «Каталог всех нормальных каталогов», «Мэр города», «Генерал и брадобрей» и др.
Парадокс, называемый «Мэр города», состоит в следующем: каждый мэр города живет или в своем городе, или вне его. Был издан приказ о выделении одного специального города, где жили бы только мэры, не живущие в своем городе. Где должен жить мэр этого специального города? а). Если он хочет жить в своем городе, то он не может этого сделать, так как там живут только мэры, не живущие в своем городе, б). Если же он не хочет жить в, своем городе, то, как и все мэры, не живущие в своих городах, должен жить в отведенном городе„ т.е. в своем. Итак, он не может жить ни в своем городе, ни вне его.
Таким образом, в логику входит категория времени, категория изменения: приходится рассматривать изменяющиеся объемы понятий. А рассмотрение объема в процессе его изменения -- это уже аспект диалектической логики. Трактовка парадоксов математической логики и теории множеств, связанных с нарушением требований диалектической логики, принадлежит С.А. Яновской. В примере с каталогом удается избежать противоречия потому, что объем понятия «каталог всех нормальных каталогов» берется на какое-то определенное, точно фиксированное время, например, на 20 июня 1998 г. Имеются и другие способы избежать противоречий такого рода.
6. Искусство ведения дискуссии
Роль доказательства в научном познании и дискуссиях сводится к подбору достаточных оснований (аргументов) и к показу того, что из них с логической необходимостью следует тезис доказательства.
Правила ведения дискуссии можно показать на примере проведения диспута молодежи. Диспут позволяет рассматривать, анализировать проблемные ситуации, развивать способность аргументированно отстаивать свои знания, свои убеждения.
Диспуты могут быть спланированы заранее или возникать экспромтом (в походе, после просмотра кинофильма и т.д.). В первом случае заранее можно прочитать литературу, подготовиться, во втором -- преимущество в эмоциональности. Очень важно выбрать тему диспута, она должна звучать остро и проблематично.
В ходе диспута надо ставить 3-4 вопроса, но так, чтобы на них нельзя было дать однозначных ответов.
Существуют различные виды диалога: спор, полемика, дискуссия, диспут, беседа, дебаты, свара, прения и др. Искусство ведения спора называют эристикой (от греческого -- спор), так же называется и раздел логики, изучающий приемы спора. Для того чтобы дискуссия, спор были плодотворными, т.е. могли достигнуть своей цели, требуется соблюдение определенных условий. А.Л. Никифоров рекомендует помнить о соблюдении следующих условий при проведении спора. Прежде всего должен существовать предмет спора -- некоторая проблема, тема, к которой относятся утверждения участников дискуссии. Если такой темы нет, спор оказывается беспредметным, вырождается в бессодержательный разговор. Относительно предмета спора должна существовать реальная противоположность спорящих сторон, т.е. стороны должны придерживаться противоположных убеждений относительно предмета спора. Если нет реального расхождения позиций, то спор вырождается в разговор о словах, т.е. оппоненты говорят об одном и том же, но используя при этом разные слова, что и создает видимость расхождения. Необходима также некоторая общая основа спора, т.е. какие-то принципы, положения, убеждения, которые признаются обеими сторонами! Если нет ни одного положения, с которым согласились бы обе стороны, то спор оказывается невозможным. Требуется некоторое знание о предмете спора: бессмысленно вступать в спор о том, о чем ты не имеешь ни малейшего представления. К условиям плодотворного спора относятся также способность быть внимательным к своему противнику, умение выслушивать и желание понимать его рассуждения, готовность признать свою ошибку и правоту собеседника. Спор -- это не только столкновение противоположных мнений, но и борьба характеров. Приемы, используемые в споре разделяются на допустимые и недопустимые (т.е. лояльные и нелояльные). Когда противники стремятся установить истину или достигнуть общего согласия, они используют только лояльные приемы. Если же кто-то из оппонентов прибегает к нелояльным приемам, то это свидетельствует о том, что его интересует только победа, добытая любыми средствами. С таким человеком не следует вступать в спор. Однако знание нелояльных приемов спора необходимо: оно помогает людям разоблачать их применение в конкретном споре. Иногда их используют бессознательно или в запальчивости, в таких случаях указание на использование нелояльных приемов служит дополнительным аргументом, свидетельствующим о слабости позиции оппонента.
А.Л. Никифоров выделяет следующие лояльные (допустимые) приемы спора, которые просты и немногочисленны. Важно с самого начала захватить инициативу: предложить свою формулировку предмета спора, план обсуждения, направлять ход полемики в нужном для вас направлении. В споре важно не обороняться, а наступать. Предвидя возможные аргументы оппонента, следует высказать их самому и тут же ответить на них. Важное преимущество в споре получает тот, кому удается возложить бремя доказывания или опровержения на оппонента. И если он плохо владеет приемами доказательства, то может запутаться в своих рассуждениях и будет вынужден признать себя побежденным. Рекомендуется концентрировать внимание и действия на наиболее слабом звене в аргументации оппонента, а не стремиться к опровержению всех ее элементов. К лояльным приемам относится также использование эффекта внезапности: например, наиболее важные аргументы можно приберечь до конца дискуссии. Высказав их в конце, когда оппонент уже исчерпал свои аргументы, можно привести его в замешательство и одержать победу. К лояльным приемам относится и стремление взять последнее слово в дискуссии: подводя итоги спора, можно представить его результаты в выгодном для вас свете.
Некорректные, нелояльные приемы используются в тех случаях, когда нет уверенности в истинности защищаемой позиции или даже осознается ее ложность, но тем не менее есть желание одержать победу в споре. Для этого приходится ложь выдавать за истину, недостоверное -- за проверенное и заслуживающее доверия.
Большая часть нелояльных приемов связана с сознательным нарушением правил доказательства. Сюда относится подмена тезиса: вместо того чтобы доказывать или опровергать одно положение, доказывают или опровергают другое положение, лишь по видимости сходное с первым. В процессе спора часто стараются тезис противника сформулировать как можно более широко, а свой -- максимально сузить. Более общее положение труднее доказать, чем положение меньшей степени общности.
Значительная часть нелояльных приемов и уловок в споре связана с использованием недопустимых аргументов. Аргументы, используемые в дискуссии, в споре, могут быть разделены на два вида: аргументы ad rem (к делу, по существу дела) и аргументы ad hominem (к человеку). Аргументы первого вида имеют отношение к обсуждаемому вопросу и направлены на обоснование истинности доказываемого положения. В качестве таких аргументов могут быть использованы суждения об удостоверенных единичных фактах; определения понятий, принятых в науке; ранее доказанные законы науки и теоремы. Если аргументы данного вида удовлетворяют требованиям логики, то опирающееся на них доказательство будет корректным.
Аргументы второго вида не относятся к существу дела, не направлены на обоснование истинности выдвинутого положения, а используются лишь для того, чтобы одержать победу в споре. Они затрагивают личность оппонента, его убеждения, апеллируют к мнениям аудитории и т.п. С точки зрения логики, все аргументы ad hominem некорректны и не могут быть использованы в дискуссии, участники которой стремятся к выяснению и обоснованию истины. Наиболее распространенными разновидностями аргументов ad hominem являются следующие:
1. Аргумент к личности -- ссылка на личные особенности оппонента, его убеждения, вкусы, внешность, достоинства и недостатки. Использование этого аргумента ведет к тому, что предмет спора остается в стороне, а вместо него обсуждается личность оппонента, причем обычно в негативном освещении. Разновидностью этого приема является «навешивание ярлыков на оппонента, на его утверждения, на его позицию. Встречается аргумент к личности и с противоположной направленностью, т.е. ссылающийся не на недостатки, а, напротив, на достоинства человека. Такой аргумент часто используется в юридической практике защитниками обвиняемых.
2. Apгумент к aвmopumemy -- ссылка на высказывание или мнения великих ученых, общественных деятелей, писателей и т.п. в поддержку своего тезиса. Аргумент к авторитету имеет множество разнообразных форм: ссылаются на авторитет общественного мнения, авторитет аудитории, авторитет оппонента и даже на собственный авторитет. Иногда изобретают вымышленные авторитеты или приписывают реальным авторитетам такие суждения, которых они никогда не высказывали.
3. Аргумент к публике -- ссылка на мнения, настроения, чувства слушателей. Человек, пользующийся таким аргументом, обращается уже не к своему оппоненту, а к присутствующим или даже случайным слушателям, стремясь привлечь их на свою сторону и с их помощью оказать психологическое давление на противника. Одна из наиболее эффективных разновидностей аргумента к публике -- ссылка на материальные интересы присутствующих. Если одному из оппонентов удается показать, что отстаиваемый его противником тезис затрагивает материальное положение, доходы и т.п. присутствующих, то их сочувствие будет, несомненно, на стороне первого.
4. Аргумент к тщеславию -- расточение неумеренных похвал оппоненту в надежде сделать его мягче и покладистей. Выражения вроде: «Я верю в глубокую эрудицию оппонента», «Оппонент -- человек выдающихся достоинств и т п. -- можно считать завуалированными аргументами к тщеславию.
5. Аргумент к силе («к палке») -- угроза неприятными последствиями, в частности угроза применения или прямое применение каких-либо средств принуждения. У всякого человека, наделенного властью, физической силой или вооруженного, всегда велико искушение прибегнуть к угрозам в споре с интеллектуально превосходящим его противником. Однако следует помнить о том, что согласие, вырванное под угрозой насилия, ничего не стоит и ни к чему не обязывает согласившегося.
6. Аргумент к жалости -- возбуждение в другой стороне жалости и сочувствия. Этот аргумент бессознательно используется многими людьми, которые усвоили себе манеру постоянно жаловаться на тяготы жизни, трудности, болезни, неудачи и т.п. в надежде пробудить в слушателях сочувствие и желание уступить, помочь в чем-то.
7. Аргумент к невежеству -- использование таких фактов и положений, о которых оппонент ничего не знает, ссылка на сочинения, которых он, как заведомо известно, не читал. Люди часто боятся признаться в том, что они чего-то не знают, считая, что они якобы роняют свое достоинство. В споре с такими людьми аргумент к невежеству действует безотказно. Однако если не бояться признать, что чего-то не знаешь, и попросить противника рассказать подробнее о том, на что он ссылается, может выясниться, что его ссылка не имеет никакого отношения к предмету спора.
Все перечисленные аргументы являются некорректными и не должны использоваться в строго логичном и этически корректном споре. Заметив аргумент подобного рода, следует указать оппоненту на то, что он прибегает к некорректным способам ведения спора, следовательно, не уверен в прочности своих позиций. Добросовестный человек должен будет признать, что ошибся. С недобросовестным человеком лучше вообще не вступать в спор.
ЛИТЕРАТУРА
1. Гетманова А.Д. Логика. М., 2002 г.
2. Гетманова А.Д. Учебник по логике. М., 2001 г.
3. Ивлев Ю.В. Логика. М., 2002 г.
4.Гетманова А.Д. Логика. М.,2011г.
5.Кириллов В.И.,Старченко А.А. Логика. М., 2002.
Размещено на Allbest.ru
Подобные документы
Сущность и основные правила аргументации по отношению к тезису, аргументам, демонстрации. Ошибки и эвристические приемы в соответствующих процедурах, принципы их исследования и разрешения. Софизмы и логические парадоксы, их формирование и анализ.
контрольная работа [27,7 K], добавлен 17.05.2015Отличие опровержения от доказательства. Основные составляющие доказательства: тезис, аргументы, доводы и демонстрация. Ведение разделительного косвенного доказательства по одной из схем разделительно-категорического силлогизма. Правила закона тождества.
контрольная работа [15,5 K], добавлен 13.08.2010Доказательство – логическая операция по обоснованию истинности суждений с помощью других истинных суждений. Опровержение - вид доказательного процесса, направленного на уже существующие доказательства для того, чтобы показать их несостоятельность.
контрольная работа [23,2 K], добавлен 21.05.2008Использование основных законов логики риска, конфликтов и споров при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях. Рассмотрение законов тождества, непротиворечия, исключенного третьего и достаточного основания.
реферат [16,5 K], добавлен 24.07.2011Доказательность как важное качество правильного мышления. Структура доказательства, правила по отношению к тезисам, аргументам и демонстрациям и их возможные нарушения. Прямое и косвенное доказательства. Процесс опровержения допущения в форме контртезиса.
контрольная работа [26,0 K], добавлен 12.10.2009Логические характеристики понятия по содержанию и объему. Противопоставление предикату как вид непосредственно умозаключения. Способы восстановления энтимем и проверка схемы рассуждения на соответствие правилам силлогизма. Ошибки рассуждения по аналогии.
контрольная работа [14,6 K], добавлен 19.11.2010Правила доказательства и опровержения и основные ошибки, возникающие при их нарушении. Правила по отношению к тезисам и аргументам. Argumentum ad hominem — аргумент к человеку. их разновидности: к авторитету, к публике, к силе, к жалости и нелепые доводы.
реферат [18,2 K], добавлен 22.02.2009Основные принципы и законы правильного мышления. Нарушение закона исключения третьего. Логическая характеристика понятий по объему и содержанию. Установление отношений между понятиями с помощью кругов Эйлера. Логические основы теории аргументации.
контрольная работа [38,7 K], добавлен 10.07.2013Обобщение и ограничение понятия. Понятие как форма мышления. Правила построения определения. Структура логического деления. Простейшие логические операции, связанные в основном с изменением объема понятий: сложение, умножение, отрицание, вычитание.
контрольная работа [83,0 K], добавлен 20.02.2009Выполнение логических действий. Запись выражения на языке логики высказываний. Составление таблиц истинности. Тавтологически истинное рассуждение. Использование кругов Эйлера. Определение соотношения объемов понятий. Индуктивное и дедуктивное рассуждения.
контрольная работа [18,6 K], добавлен 21.11.2013