Сложные суждения

Сложность суждений и высказываний Цицерона. Исчисление высказываний на истинность и ложность. Сложные суждения, рассматриваемые из методических соображений по отдельности в реальном процессе мышления. Сочетание и образование мыслительных конструкций.

Рубрика Философия
Вид лекция
Язык русский
Дата добавления 14.01.2012
Размер файла 337,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сложные суждения

Сложные суждения образуются из нескольких простых суждений. Таково, например, высказывание Цицерона: «Ведь если бы даже ознакомление с правом представляло огромную трудность, то и тогда сознание его великой пользы должно было бы побуждать людей к преодолению этой трудности». Так же, как и простые, сложные суждения могут быть истинными или ложными. Но в отличие от простых суждений, истинность или ложность которых определяется их соответствием или несоответствием действительности, истинность или ложность сложного суждения зависит, прежде всего, от истинности или ложности составляющих его суждений. Логическая структура сложных суждений также отличается от структуры простых суждений. Основными структурообразующими элементами здесь являются уже не понятия, а простые суждения, составляющие сложное суждение. При этом связь между ними осуществляется не с помощью связок «есть», «не есть» и т. п., а посредством логических союзов «и», «или», «либо», «если [...], то» и др. Юридическая практика особенно богата такого рода суждениями. В соответствии с функциями логических связок сложные суждения делятся на следующие виды.

Соединительные суждения (конъюнктивные) - это такие суждения, которые включают в качестве составных частей другие суждения - конъюнкты, объединяемые связкой «и». Например, «Осуществление прав и свобод человека и гражданина не должно нарушать права и свободы других лиц».

Разделительные (дизъюнктивные) суждения - включают в качестве составных частей суждения - дизъюнкты, объединяемые связкой «или». Например, «Истец вправе увеличить или уменьшить размер исковых требований». Различают слабую дизъюнкцию, когда союз «или» имеет соединительно-разделительное значение, то есть входящие в сложное суждение составляющие не исключают друг друга. Например, «Договор купли-продажи может быть заключен в устной или письменной форме». Сильная дизъюнкция возникает, как правило, тогда, когда логические союзы «или», «либо» употребляются в исключающе-разделяющем смысле, то есть ее составляющие исключают друг друга. Например, «Клевета, соединенная с обвинением лица в совершении тяжкого или особо тяжкого преступления, наказывается ограничением свободы на срок до трех лет, либо арестом на срок от четырех до шести месяцев, либо лишением свободы на срок до трех лет».

Условные (импликативные) суждения образованы из двух простых суждений посредствам логического союза «если [...], то». Например, «Если по истечении срока временной работы с работником не был, расторгнут договор, то он считается принятым на постоянную работу». Аргумент, начинающийся в импликативных суждениях словом «если», называется основанием, а составляющая, начинающаяся со слова «то» - следствием. В условных суждениях отражаются, прежде всего, объективные причинно-следственные, пространственно-временные, функциональные и другие связи между предметами и явлениями действительности. Однако в практике применения законодательства в форме импликации могут также выражаться права и обязанности людей, связанные с теми или иными условиями. Например, «Военнослужащие воинских частей Российской Федерации, дислоцирующихся за пределами Российской Федерации, за преступления, совершенные на территории иностранного государства, несут уголовную ответственность по настоящему Кодексу, если иное не предусмотрено международным договором Российской Федерации» (п. 2 ст. 12 УК РФ).

При этом необходимо иметь в виду, что грамматическая форма «если [...], то» не является исключительным признаком условного суждения, она может выражать простую последовательность. Например, «Если исполнителем признается лицо, непосредственно совершившее преступление, то подстрекатель - это лицо, склонившее другое лицо к совершению преступления путем уговора, подкупа, угрозы или другим способом». Сложные суждения, рассмотренные из методических соображений по отдельности, в реальном процессе мышления используются в различном сочетании друг с другом, образуя порой весьма сложные мыслительные конструкции.

Например: «Суд не принимает отказа истца от иска, признание иска ответчиком и не утверждает мирового соглашения сторон, если эти действия противоречат закону и нарушают чьи-либо права и охраняемые законом интересы».

Здесь налицо соединение нескольких конъюнкций с дизъюнкцией и импликацией.

Сложные суждения по количеству терминов могут быть трех разновидностей, которые схематично могут быть представлены следующим образом: S?, S?, S? есть (не есть) Р

Например, «Государственные пенсии и социальные пособия устанавливаются законом»; S есть (не есть) P?, Р?, Р?.

Например, «Лица, совершившие преступления, равны перед законом и подлежат уголовной ответственности»;S?, S?, S? есть (не есть) Р?, Р?, Р?. Например, «Основные права и свободы человека неотчуждаемы и принадлежат каждому от рождения».

суждение истинность ложность

Исчисление высказываний

Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания. Таблицы истинности этих логических связок следующие:

а

b

a^b

aU b

au b

а>b

а=b

И

И

И

И

Л

И

И

И

Л

Л

И

И

Л

Л

Л

И

Л

И

И

И

Л

Л

Л

Л

Л

Л

И

И

 

а

a

И

Л

Л

И

Буквы а, b - переменные, обозначающие суждения; буква “И” обозначает истину, а “Л” - ложь.

Таблицу истинности для конъюнкции (а U b) можно разъяснить на следующем примере. Учителю дали короткую характеристику, состоящую из двух простых суждений: “Он является хорошим педагогом (а) и учится заочно (b)”. Она будет истинна в том и только в том случае, если суждения а и b оба истинны. Это и отражено в первой строке. Если же о ложно, или b ложно, или и а, и b ложны, то вся конъюнкция обращается в ложь, т. е. учителю была дана ложная характеристика.

Суждение “Увеличение рентабельности достигается или путем повышения производительности труда (а), или путем снижения себестоимости продукции (b)” - пример нестрогой дизъюнкции. Дизъюнкция называется нестрогой, если члены дизъюнкции не исключают друг друга. Высказывание или формула с такой дизъюнкцией истинна в том случае, когда истинно хотя бы одно из двух суждений (первые три строки таблицы), и ложна, когда оба суждения ложны.

Строгая дизъюнкция (а u b ) - та, в которой члены дизъюнкции исключают друг друга. Ее можно разъяснить на примере:

“Я поеду на Юг на поезде (а) или полечу туда на самолете (b)”. Я не могу одновременно ехать на поезде и лететь на самолете. Строгая дизъюнкция истинна тогда, когда лишь одно из двух простых суждений истинно, и только одно.

Таблицу для импликации (а > b) можно разъяснить на таком примере: “Если по проводнику пропустить электрический ток (а), то проводник нагреется (b)1. Импликация истинна всегда, кроме одного случая, когда первое суждение истинно, а второе - ложно. Действительно, не может быть, чтобы по проводнику пропустили электрический ток, т. е. суждение (а) было истинным, а проводник не нагрелся, т. е. чтобы суждение (b) было ложным.

В таблице эквиваленция (a ? b) характеризуется так: а ? b истинно в тех и только в тех случаях, когда и а, и b либо оба истинны, либо оба ложны.

Отрицание суждения а (т. е. a) характеризуется так: если а истинно, то его отрицание ложно, и если а - ложно, то . a - истинно.

Если в формулу входят три переменные, то таблица истинности для этой формулы, включающая все возможные комбинации истинности или ложности ее переменных, будет состоять из 23 = 8 строк; при четырех переменных в таблице будет 24 = 16 строк; при пяти переменных в таблице имеем 25 = 32 строки; при n переменных 2n строк.

Алгоритм распределения значений И и Л для переменных (например, для четырех переменных а, b, с, d) таков: (см. таблицу на стр. 81);

Имеем 24 = 16 строк. В столбце для а сначала пишем 8 раз “И” и 8 раз “Л”. В столбце для b сначала пишем 4 раза “И” и 4 раза “Л”, затем повторяем и т. д.

Тождественно-истинной формулой называется формула, которая при любых комбинациях значений для входящих в нее переменных принимает значение “истина”. Тождественно-ложная формула -та, которая (соответственно) принимает только значение “ложь”. Выполнимая формула может принимать значения как “истина”, так и “ложь”.

а

b

с

d

и

и

и

и

и

и

и

л

и

и

л

и

и

и

л

л

и

л

и

и

и

л

и

л

и

л

л

и

и

л

л

л

л

и

и

и

л

и

и

л

л

и

л

и

л

и

л

л

л

л

и

и

л

л

и

л

л

л

л

и

л

л

л

л

Приведем доказательство тождественной истинности формулы:

а

b

с

b ^ c

a > (b ^ c).

(V  )

(a > (b ^ c)) ^ (V )

((a > (b ^ c)) ^ (V )) >

и

и

и

л

л

л

и

и

л

л

и

и

и

л

л

л

и

л

л

и

л

и

и

л

и

л

и

л

л

л

и

л

и

и

л

л

л

и

и

л

л

и

л

и

л

и

и

и

л

л

и

и

л

л

и

л

и

л

и

л

и

л

и

и

и

и

л

л

и

и

и

л

л

и

и

и

и

л

л

л

и

и

и

л

и

и

и

и

Так как в последней колонке имеем одни истины, то формула является тождественно-истинной, или законом логики (или, как иногда ее называют, тавтологией).

Итак, конъюнкция (а ^ b) истинна тогда, когда оба простых суждения истинны. Строгая дизъюнкция (а u b) истинна тогда, когда только одно простое суждение истинно. Нестрогая дизъюнкция (а v b ) истинна тогда, когда хотя бы одно простое суждение истинно. Импликация (а > b) истинна во всех случаях, кроме одного: когда а - истинно, b - ложно. Эквиваленция (а  b) истинна тогда, когда оба суждения истинны или оба ложны. Отрицание () истины дает ложь, и наоборот.

Способы отрицания суждений

Два суждения называются отрицающими или противоречащими друг другу, если одно из них истинно, а другое ложно (т. е. не могут быть одновременно истинными и одновременно ложными).

Отрицающим являются следующие пары суждений:

1. А - О. “Все S суть Р” и “Некоторые Sне суть Р”.

2. Е -1. “Ни одно S не суть Р” и “Некоторое S суть Р”.

3. “Это S суть Р” и “Это S не суть Р”.

Операцию отрицания в виде образования нового суждения из данного следует отличать от отрицания, входящего в состав отрицательных суждений. Существует два вида отрицания: внутреннее и внешнее. Внутреннее - указывает на несоответствие предиката субъекту (связка выражена словами: “не суть”, “не есть”, “не является”). Например: “Некоторые люди не имеют высшего образования”. Внешнее отрицание означает отрицание всего суждения. Например: “Неверно, что в Москве протекает река Нева”.

Отрицание сложных суждений

Чтобы получить отрицание сложных суждений, имеющих в своем составе лишь операции конъюнкции и дизъюнкции, необходимо поменять знаки операций друг на друга (т. е. конъюнкцию на дизъюнкцию и наоборот) и над буквами, выражающими элементарные высказывания, написать знак отрицания, а если он уже есть, то отбросить его.

Имеем:

Эти четыре формулы называются законами де Моргана. Применив их, получим:

Если в сложном суждении имеется импликация, то ее необходимо заменить на тождественную формулу без импликации (с дизъюнкцией), а именно:

затем по общему методу находить противоречащее суждение. Например: “Если я буду иметь свободное время (а), то буду вязать (b) или посмотрю телевизор (с)”. Формула этого сложного суждения:

Противоречащее суждение будет:

Оно читается так: “У меня будет свободное время, но я не буду вязать, и не буду смотреть телевизор”.

Исчисление высказываний

I. Символы исчисления высказываний состоят из знаков трех категорий:

1. а, b, с,d, е,f... и те же буквы с индексами а1 ,а2 ,... Эти символы называются переменными высказываниями, или пропозициональными переменными. С помощью этих символов записываются повествовательные предложения, выражающие суждения (высказывания).

2. Символы, обозначающие логические термины:--, ^,  , u, > ?. Эти символы выражают следующие логические операции (логические связки): отрицание (“не”), конъюнкция (“и”), нестрогая дизъюнкция (нестрогое “или”), строгая дизъюнкция (строгое “или”), импликация (“если..., то”) эквиваленция (“если и только если, то...”). Подробнее об этих логических терминах см. на с. 26-27 этого учебника.

3. Скобки: ( ).

Иных символов, кроме указанных, исчисление высказываний не имеет.

II. Определение формулы (или правильно построенной формулы - ППФ).

1. Переменное высказывание есть формула (а, b, с ...).

2. Если А и В есть ППФ, то  , (А^В), (АВ), (A u В), (А=B) и (А>В) есть ППФ. (Здесь буквы А, В, С... не являются символами исчисления высказываний. Они представляют собой только условные сокращенные обозначения формул).

Ничто иное не является формулой (ППФ).

Так, не являются формулами: (а ^ b ; а-b; ^ а; а>b; а ^ b ; а  b . Первое из этих слов содержит незакрытую скобку. Второе и третье слова никак не могут быть построены на основании пункта 2. Четвертое слово не является формулой потому, что хотя а и b - формулы, но соединение формул связкой > всегда сопровождается заключением в скобки; то же самое можно сказать и о двух последних словах.

Существуют правила опускания скобок. При этом исходят из того, что связка связывает сильнее, чем все остальные; связка ^ сильнее, чем >. В силу этих правил формулу (а ^ b)  c будем писать в виде а ^ b v с. Формулу (а  b) > (с ^ d ) будем писать в виде а v b>с ^ d.

Однако не всякая формула может быть записана без употребления скобок. Например, в формулах а > (b > с), а ^ (b>с) исключение скобок невозможно.

Для моделирования с помощью ЭВМ текстов естественного языка, включающих отрицание, возможно записать некоторые выражения на языке алгебры логики (А, В, С, D - высказывания, “+” - знак нестрогой дизъюнкции, “*” - знак конъюнкции, “-” -знак отрицания.

Отношения между сложными суждениями

Сопоставление сложных суждений позволяет разделить их на группу независимых и группу зависимых суждений.

К независимым относятся суждения, которые не имеют общих составляющих; для них характерны все сочетания истинных значений. Зависимые - это суждения, которые имеют одинаковые составляющие и могут различаться логическими связками, включая отрицание. Пример зависимых сложных суждений: "Норвегия или Швеция имеют выход к Балтийскому морю" и "Не верно, что Норвегия и Швеция имеют выход к Балтийскому морю". Хотя эти суждения различны по логической форме (первое из них - дизъюнктивное суждение, а второе - отрицание конъюнкции), вместе с тем они зависимы, поскольку включают одинаковые составляющие.

Сложные зависимые суждения могут быть совместимыми и несовместимыми.

Отношение совместимости.

К совместимым относятся суждения, которые одновременно могут быть истинными. Как и в случае простых суждений различают три вида совместимости сложных суждений: эквивалентность, частичная совместимость и подчинение.

Эквивалентными являются такие суждения, которые принимают одни и те же значения, т. е. одновременно являются либо истинными, либо ложными.

Отношение эквивалентности позволяет выражать одни сложные суждения через другие - конъюнкцию через дизъюнкцию или импликацию, и наоборот.

Частичная совместимость характерна для суждений, которые могут быть одновременно истинными, но не могут быть одновременно ложными.

Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего, подчиненное всегда будет истинным.

Отношение логического подчинения, позволяющее по истинности подчиняющего суждения определить истинность подчиненного, составляет основу фундаментального в науке логике понятия логического следования, регулирующего все виды рассуждений.

Отношение несовместимости.

Несовместимыми являются суждения, которые одновременно не могут быть истинными. Из двух видов несовместимости одна - противоположность, другая - противоречие.

Противоположность - отношение между суждениями, которые одновременно не могут быть истинными, но могут быть одновременно ложными.

Противоречащими являются суждения, которые одновременно не могут быть ни истинными, ни ложными. При истинности одного из них другое будет ложным, а при ложности первого второе будет истинным.

Чтобы получить сложное суждение, противоречащее исходному, последнее нужно подвергнуть отрицанию.

Сопоставление суждений в дискуссиях. Отчетливое представление об отношениях, в которых могут находиться суждения, позволяет логически грамотно анализировать высказывания участников дискуссий. Встречаются ситуации, когда логический анализ показывает совместимость различных по структуре суждений. Нередко это случается с частными суждениями. Пропонент утверждает, что "Некоторые S есть Р"; оппонент настаивает, что "Некоторые S не есть Р". На поверку же выходит, что эти суждения не исключают друг друга, а являются частично совместимыми и оба могут оказаться истинными.

В спорах и дискуссиях могут смешиваться противоречащие и противоположные суждения; Например, обвинитель утверждает, что в рассматриваемом случае имело место убийство, которое совершено умышленно. Защитник не отрицает факта убийства, но считает, что оно было совершено без умысла. Каждый из них считает, что утверждения исключают друг друга как альтернативные. В действительности же оказывается, что эти высказывания находятся в отношении противоположности. Отсюда следует, что если будет показана в целом несостоятельность утверждения обвинителя, то это еще не означает правоту защитника. Точно так же опровержение утверждений защитника логически не обязывает принимать точку зрения обвинителя. Может оказаться, что оба утверждения ложны, и задача сведется к поиску нового объяснения фактам.

Размещено на Allbest.ru


Подобные документы

  • Логика как раздел философии и наука о мышлении. Высказывание как форма мышления, понятие, структура и виды сложных высказываний. Логические значения сложных высказываний. Предложения, являющиеся сложными высказываниями, их логическая характеристика.

    контрольная работа [42,6 K], добавлен 18.02.2013

  • Понятие простого и сложного суждения. Логические связки, конъюнктивное суждение. Импликативные (условные) суждения. Парадоксы материальной импликации. Основные суждения эквивалентности. Особенности выражения одних логических связок посредством других.

    реферат [24,7 K], добавлен 07.05.2010

  • Обобщения и ограничения имени как логические операции. Определение субъекта, предиката и связки в суждении. Запись суждения при помощи логических символов. Истинность и ложность суждения. Непосредственные умозаключения, категорический силлогизм.

    контрольная работа [29,2 K], добавлен 15.11.2010

  • Особенность умозаключений из простых и сложных суждений. Сокращенные, сложные и сложносокращенные силлогизмы. Схемы чисто условного умозаключения, утверждающе-отрицающего модуса, конструктивной и деструктивной дилеммы. Понятие о логике высказываний.

    контрольная работа [1,3 M], добавлен 25.04.2009

  • Сущность и значение суждения, его отличительные признаки и структура. Связь между предложениями и суждениями. Значение логического смысла предложений и языковые формы одного суждения. Классификация простых и сложных суждений по характеру предиката.

    презентация [344,1 K], добавлен 14.10.2013

  • Суждения со сложным субъектом и сложным предикатом, понятие их истинности или ложности. Соединительные и разделительные суждения. Построение логического квадрата. Антецедент и консеквент условных и эквивалентных суждений и их символическая запись.

    контрольная работа [18,8 K], добавлен 23.09.2011

  • Характеристика логического определения суждений. Изучение логических связей между суждениями. Истинностное значение сложных суждений. Особенности логических связок, которыми связываются отдельные суждения. Условный (гипотетический) силлогизм и дилеммы.

    реферат [30,7 K], добавлен 13.08.2010

  • Суждение как отображение действительно существующих существенных связей и отношений между предметами. Общая характеристика суждения, субъект атрибутивного суждения. Причины бессмысленности суждений. Понятие "квантор существования" в современной логике.

    реферат [13,5 K], добавлен 11.03.2012

  • Общая характеристика суждения. Атрибутивные суждения, их виды. Отношение субъекта и предиката в общеотрицательных суждениях. Вид частноотрицательного суждения. Выделяющие, исключающие и определенно-частные суждения. Основные виды логической связи.

    реферат [44,6 K], добавлен 02.01.2011

  • Суждение как форма мышления, представляющая собой утверждение или отрицание существования предметов и явлений, связей или отношенияй между ними. Суждения: простое и сложное, атрибутивные, релятивные и экзистенциальные; равносильность или истинность.

    контрольная работа [13,1 K], добавлен 13.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.