Доказательство и его структура
Логическое доказательство как процедура установления истинности некоторого утверждения путем приведения других утверждений. Задачи и структура логического доказательства. Правила формирования тезиса, аргумента, факта; требования, предъявляемые к ним.
Рубрика | Философия |
Вид | реферат |
Язык | русский |
Дата добавления | 24.09.2011 |
Размер файла | 29,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
19
План
1. Понятие и качества логического доказательства
2. Структура логического доказательства
3. Классификация доказательств
Библиография
1. Понятие и качества логического доказательства
Под доказательством в логике понимается процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое [2; 161].
А. А. Ивин говорит о том, что изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем - чаще всего незаметно для себя - общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т. д. [2; 161].
В доказательстве различаются тезис - утверждение, которое нужно доказать, основание (аргументы) - те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Способ логической связи между тезисом и аргументами называется формой доказательства, или демонстрацией. Понятие доказательства всегда предполагает указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.
К примеру, нужно доказать тезис «Все металлы проводят электрический ток». Подбирается в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: «Все вещества, имеющие в своей кристаллической решетке свободные электроны, проводят электрический ток» и «Все металлы имеют в своей кристаллической решетке свободные электроны». Строится умозаключение: «Все вещества, имеющие в своей кристаллической решетке свободные электроны, проводят электрический ток. Все металлы имеют в своей кристаллической решетке свободные электроны. Все металлы проводят электрический ток».
Данное умозаключение является правильным (оно представляет собой категорический силлогизм), посылки его истинны; значит, умозаключение является доказательством исходного тезиса.
Доказательство - это правильное умозаключение с истинными посылками. Логическую основу каждого доказательства (его схему) составляет логический закон.
Доказательство, объясняет А.А. Ивин, - «это всегда в определенном смысле принуждение» [3; 201]. Источником «принудительной силы» доказательств являются логические законы мышления, лежащие в их основе. Именно данные законы, действуя независимо от воли и желаний человека, заставляют в процессе доказательства с необходимостью принимать одни утверждения вслед за другими и отбрасывать то, что несовместимо с принятым [3; 201].
Задача доказательства - исчерпывающе утвердить обоснованность доказываемого тезиса. Раз в доказательстве речь идет о полном подтверждении, связь между аргументами и тезисом должна носить дедуктивный характер.
По своей форме доказательство - дедуктивное умозаключение или цепочка таких умозаключений, ведущих от истинных посылок к доказываемому положению.
Обычно доказательство протекает в очень сокращенной форме.
Видя чистое небо, мы заключаем: «Погода будет хорошей». Это доказательство, но до предела сжатое. Опущено общее утверждение: «Всегда, когда небо чистое, погода будет хорошей». Опущена также посылка: «Небо чистое». Оба эти утверждения очевидны, их незачем произносить вслух. Встретив идущего по улице человека, мы отмечаем: «Обычный прохожий». За этой констатацией опять-таки стоит целое рассуждение. Но оно настолько обычное и простое, что протекает почти неосознанно.
А.А. Ивин напоминает о том, что нередко в понятие доказательства вкладывается более широкий смысл: под доказательством понимается любая процедура обоснования истинности тезиса, включающая как дедукцию, так и индуктивное рассуждение, ссылки на связь доказываемого положения с фактами, наблюдениями и т. д. Расширительное истолкование доказательства является обычным в гуманитарных науках. Оно встречается и в экспериментальных, опирающихся на наблюдения рассуждениях [3; 202].
Как правило, широко понимается доказательство и в обычной жизни. Для подтверждения выдвинутой идеи активно привлекаются факты, типичные в определенном отношении явления и т. п. Дедукции в этом случае, конечно, нет, речь может идти только об индукции. Но, тем не менее предлагаемое обоснование нередко называют доказательством.
Определение доказательства включает два центральных понятия логики: понятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясными, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.
Многие утверждения, замечает А. А. Ивин, не являются ни истинными, ни ложными, т. е. лежат вне «категории истины». Оценки, нормы, советы, декларации, клятвы, обещания не описывают каких-то ситуаций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соответствовали действительности и являлись истинными.
Удачный совет, приказ характеризуется как эффективный или целесообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипятите воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и доказательным. Встает, таким образом, вопрос о существенном расширении понятия доказательства, определяемого в терминах истины. Им должны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения доказательства пока не решена ни логикой оценок, ни деонтической (нормативной) логикой. Это делает понятие доказательства не вполне ясным по своему смыслу [3; 203].
Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказательство. Долгое время считалось, что оно представляет собой ясный и бесспорный процесс. В нашем веке отношение к математическому доказательству изменилось. Сами математики разбились на группировки, каждая из которых придерживается своего истолкования доказательства. Причиной этого послужило, прежде всего, изменение представления о лежащих в основе доказательства логических принципах. Исчезла уверенность в их единственности и непогрешимости.
Полемика по поводу математического доказательства показала, что нет критериев доказательства, не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто использует критерий. Математическое доказательство является парадигмой доказательства вообще, но даже в математике доказательство не является абсолютным и окончательным.
Не существует, далее, единого понятия логического следования. Логических систем, претендующих на определение этого понятия, в принципе бесконечно много. Ни одно из имеющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования».
2. Структура логического доказательства
Доказательство как особый логический способ обоснования истины имеет свое строение. Всякое доказательство включает: тезис, аргументы, демонстрацию. Каждый из этих элементов в логической структуре доказательства выполняет свои особые функции, поэтому ни один из них нельзя игнорировать при построении логически правильного доказательства. Допустим, что адвокату необходимо доказать алиби подсудимого. Адвокат, прежде всего, указывает, что в день и час совершения преступления его подзащитный находился в другом месте, то есть выделяет и формулирует тезис. Аргументами в подтверждение истинности данного тезиса будут процессуальные доказательства.
Демонстрация наглядно убеждает суд (присяжных заседателей) в логической связи между тезисом адвоката и установленными по делу фактами.
Тезисом доказательства называется то положение, истинность или ложность которого требуется доказать. Если нет тезиса, то и доказывать нечего. Поэтому все доказательное рассуждение целиком подчинено тезису и служит для его подтверждения (или опровержения). Известный русский логик С. И. Поварнин сравнивал роль тезиса в доказательстве со значением фигуры «короля» в шахматной игре. Этой фигуре подчинен весь процесс игры, с ее «интересами» сообразуется каждое движение других шахматных фигур. Аналогично и в доказательстве: главная цель всех рассуждении -тезис, его подтверждение или опровержение.
Тезис может быть сформулирован как в начале доказательства, так и в любой другой его момент. Тезис часто высказывается в форме категорического суждения, например: «Положение, которое я доказываю, состоит в следующем», «Вот мой тезис», «Передо мной стоит задача доказать», «Вот мое положение», «Я глубоко убежден, что…» и т. п. Нередко тезис формулируют и в форме вопроса, например: «Есть ли причинная связь между действиями обвиняемого и наступившими последствиями?».
Доказательства бывают простые и сложные. Главное их различие состоит в том, что в сложном доказательстве имеется основной тезис и частные тезисы. Основной тезис - это положение, которому подчинено обоснование ряда других положений. Частный тезис - это такое положение, которое становится тезисом лишь потому, что при его помощи доказывается основной тезис. Частный тезис, будучи доказанным, сам становится затем аргументом для обоснования основного тезиса.
Тезис должен быть логически определенным, ясным и точным. Иногда люди в своем выступлении, письменном заявлении, научной статье, докладе, лекции не могут четко, ясно, однозначно сформулировать тезис. Так, выступающий на собрании не может четко сформулировать основные положения своего выступления и потому веско аргументировать их перед слушателями. И слушатели недоумевают, зачем он выступал в прениях и что хотел им доказать.
Тезис должен оставаться тождественным, т. е. одним и тем же, на протяжении всего доказательства или опровержения. Нарушение этого правила ведет к логической ошибке -- «подмене тезиса». Тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения -- так гласят правила по отношению к тезису. При нарушении их возникает ошибка, называемая «подменой тезиса». Суть ее в том, что один тезис умышленно или неумышленно подменяют другим и начинают этот новый тезис доказывать или опровергать [1; 133].
Аргументами (или основаниями) доказательства называются те суждения, которые приводятся для подтверждения или опровержения тезиса. Доказать тезис - значит привести такие суждения, которые были бы достаточными для обоснования истинности или ложности выдвинутого тезиса. В качестве аргументов при доказательстве тезиса может быть приведена любая истинная мысль, если только она связана с тезисом, обосновывает его Основными видами аргументов являются: факты, законы, аксиомы, определения, документальные свидетельства и т. п.
Различают несколько видов аргументов:
1. Удостоверенные единичные факты. Сюда относится так называемый фактический материал, т. е. статистические данные о населении, территории государства, выполнении плана, количестве вооружения, свидетельские показания, подписи на документах, научные данные, научные факты. Роль фактов в обосновании выдвинутых положений, в том числе научных, велика.
В «Письме к молодежи» И. П. Павлов призывал молодых ученых к изучению и накоплению фактов: «Изучайте, сопоставляйте, накопляйте факты. Как ни совершенно крыло птицы, оно никогда не смогло бы поднять ее ввысь, не опираясь на воздух. Факты -- воздух ученого. Без них вы никогда не сможете взлететь. Без них ваши «теории» -- пустые потуги» [1; 134].
Факт - это явление или событие, имевшее место в действительности. Факты являются очень важным видом аргумента. Они обладают достоверностью и большой силой убедительности и поэтому широко используются в доказательствах. Поскольку факты отражают действительность, то отрицать их в то время, когда они существуют, или ссылаться на факты, которых нет, значит не считаться с действительностью. Факты настолько авторитетны, насколько авторитетна сама действительность. В судебном познании факты (фактические данные) являются основным видом аргументов. Раскрыть преступление и изобличить преступника - это значит обнаружить и собрать факты, которые с достоверностью устанавливают событие преступления, лицо, его совершившее, и его виновность.
Практика показывает, что факты никогда не говорят сами за себя. Факты всегда объясняют люди. Вот почему один и тот же факт, взятый в различных связях и отношениях, может быть объяснен по-разному. Но в одном и том же отношении, в одно и то же время факт должен объясняться однозначно. Поэтому факты, прежде чем стать аргументами, должны быть правильно поняты. А для этого необходимо подходить к ним диалектически, рассматривать не изолированно, а во взаимной связи друг с другом, в единстве. Чтобы факты могли реализовать роль аргументов, нужно брать не отдельные факты, а всю совокупность относящихся к рассматриваемому вопросу фактов. Не следует произвольно ни выхватывать лишь нужные факты и забывать, не видеть других, нежелательных, ни брать у фактов лишь второстепенные стороны и не учитывать главных, существенных сторон. Всякая односторонность в отношении фактов ведет к непониманию их существа, осознанному или неосознанному их искажению. Важным видом аргументов выступают законы науки. Ссылка на закон является веским аргументом. Авторитетность законов науки как аргументов связана с нашим пониманием того, что такое закон.
2. Определения как аргументы доказательства. Определение является результатом глубокого познания предметов, отраженных в данном понятии. Определение раскрывает содержание понятия, включает признаки, выражающие сущность предметов. Поэтому ссылка на определение может оказаться достаточной для признания истинности положения, подпадающего под данное определение. Определение в таких случаях принимается за истину, не требующую доказательства. Однако необходимо учитывать, что не всякое определение может быть аргументом. Чтобы определение могло быть использовано для обоснования тезиса, оно должно быть истинным, правильным, общепринятым, утвердившимся в науке. Определение, которое оспаривается, требует своего уточнения, не может быть аргументом.
3. Аксиомы. В математике, механике, теоретической физике, математической логике и других науках, кроме определений, вводят аксиомы. Аксиомы -- это суждения, которые принимаются в качестве аргументов без доказательства. Истинность аксиом, лежащих в основе доказательства, не удостоверяется в каждом отдельном случае потому, что проверка этой истинности многократно производилась ранее, подтверждена практикой человека. Аксиомы довольно широко используются в качестве оснований в юриспруденции. Роль аксиом здесь выполняют презумпции. Презумпция есть положение, предполагаемое установленным и не нуждающимся в доказательстве. Она - не очевидна и принимается за истину не потому, что ее правильность представляется бесспорной и вытекает из самого положения, составляющего содержание презумпции. Презумпция - это положение, формулирующее какое-либо наиболее обычное, наиболее часто встречающееся отношение.
4. Ранее доказанные законы науки и теоремы как аргументы доказательства. В качестве аргументов доказательства могут выступать ранее доказанные законы физики, химии, биологии и других наук, теоремы математики (как классической, так и конструктивной). Юридические законы являются аргументами в ходе судебного доказательства [1; 134].
Законы науки - это истины особого порядка, которые отличаются от других знаний как своим содержанием, так и формой их открытия. Законы науки являются отражением законов объективного мира и выражают внутренние, существенные, устойчивые, повторяющиеся, необходимые связи между явлениями и процессами. Но всякий закон имеет границы своего действия. Законы действуют в определенных условиях, с изменением последних может появиться другой закон. Поэтому при обосновании какого-либо положения при помощи закона надо знать, можно ли доказываемый тезис обосновать именно данным законом.
В ходе доказательства какого-либо тезиса может использоваться не один, а несколько из перечисленных видов аргументов.
К аргументам предъявляются следующие правила:
· Аргументы, приводимые для доказательства тезиса, должны быть истинными и не противоречащими друг другу.
· Аргументы должны быть достаточным основанием для доказательства тезиса.
· Аргументы должны быть суждениями, истинность которых доказана самостоятельно, независимо от тезиса [1; 134].
Демонстрацией (или формой доказательства) называется способ логической связи тезиса с аргументами. Тезис и аргументы доказательства являются по своей логической форме суждениями. Выраженные предложениями, они воспринимаются нами непосредственно: тезис и аргументы можно увидеть, если они написаны, услышать, если они произнесены [2; 178].
Однако тезис и аргументы сами по себе, вне логической связи друг с другом, еще не составляют доказательства. Аргументы начинают приобретать определенное значение лишь тогда, когда мы выводим из них тезис. Процесс выведения тезиса из аргументов и есть демонстрация. Она всегда выражается в форме умозаключения. Это может быть отдельное умозаключение, но чаще - цепочка умозаключений. Обоснование тезиса может принимать форму дедукции, индукции или аналогии, которые применяются самостоятельно или в различных сочетаниях. При этом особенность умозаключений, в форме которых протекает демонстрация, состоит в том, что нуждающееся в обосновании суждение, выступающее тезисом доказательства, является заключением вывода и формулируется заранее, а суждения об аргументах, которые служат посылками вывода, остаются неизвестными и подлежат восстановлению. Таким образом, в процессе доказательства по известному заключению (тезису) восстанавливаются посылки вывода (аргументы).
3. Классификация доказательств
Все доказательства делятся по своей структуре, по общему ходу мысли на прямые и косвенные.
При прямых доказательствах задача состоит в том, чтобы найти убедительные аргументы, из которых логически вытекает тезис. Схема этого доказательства такая: из данных аргументов (а, b, с...) необходимо следует доказываемый тезис q. По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем и т. д. Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях, в художественной и другой литературе [1; 135].
Например, нужно доказать, что кометы подчиняются действию законов небесной механики. Известно, что эти законы универсальны: они распространяются на все тела в любых точках космического пространства. Очевидно, также, что кометы являются телами. Отметив это, строится умозаключение: «Все космические тела подпадают под действие законов небесной механики. Кометы - космические тела. Следовательно, кометы подчиняются данным законам».
Это прямое доказательство, осуществляемое в два шага:
1. подыскиваются подходящие аргументы;
2. затем демонстрируется, что из них логически вытекает тезис.
Еще один пример: нужно доказать, что сумма углов четырехугольника равна 360°. Отмечается, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводится, что сумма углов четырехугольника равна 360°.
В построении прямого доказательства можно выделить два связанных между собою этапа: отыскание тех признанных обоснованными утверждений, которые способны быть убедительными аргументами для доказываемого положения; установление логической связи между найденными аргументами и тезисом. Нередко первый этап считается подготовительным, и под доказательством понимается дедукция, связывающая подобранные аргументы и доказываемый тезис [3; 209].
Косвенные доказательства устанавливают справедливость тезиса тем, что вскрывают ошибочность противоположного ему допущения, антитезиса. Если тезис обозначить буквой а, то его отрицание (а) будет антитезисом, т. е. противоречащим тезису суждением. Апагогическое косвенное доказательство (или доказательство «от противного») осуществляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике. Примеров доказательства «от противного» очень много в школьном курсе математики. Так, например, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом «от противного» доказывается и следующая теорема: «Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны». Доказательство этой теоремы прямо начинается словами: «Предположим противное, т. е. что прямые АВ и СД не параллельны» [1; 135].
В косвенном доказательстве рассуждение идет как бы окольным путем. Вместо того, чтобы прямо отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.
Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является, как говорят, доказательством от противного.
Допустим нужно построить косвенное доказательство такого весьма тривиального тезиса: «Пятиугольник не является окружностью». Выдвигается антитезис: «Пятиугольник есть окружность». Необходимо показать ложность этого утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: у пятиугольника, поскольку он есть окружность, нет углов, и у пятиугольника, как такового, есть углы. Поскольку антитезис ложен, исходный тезис должен быть истинным.
Другой пример. Врач, убеждая пациента, что тот не болен гриппом, рассуждает так. Если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т. п. Но ничего подобного нет. Значит, нет и гриппа.
Это опять-таки косвенное доказательство. Вместо прямого обоснования тезиса выдвигается антитезис, что у пациента в самом деле грипп. Из антитезиса выводятся следствия, но они опровергаются объективными данными. Это говорит, что допущение о гриппе неверно. Отсюда следует, что тезис «Гриппа нет» истинен.
Оценивая чье-то выступление, мы можем рассуждать так. Если бы выступление было скучным, оно не вызвало бы стольких вопросов и острой, содержательной дискуссии. Но оно вызвало такую дискуссию. Значит, выступление было интересным. Это рассуждение также представляет собой косвенное доказательство. Вместо прямого обоснования тезиса выдвигается антитезис, что выступление не вызвало интереса. Из антитезиса выводятся следствия, но они не подтверждаются реальной ситуацией. Значит, допущение о неудаче выступления неверно, а тезис «Выступление было интересным» истинен [2; 199].
Таким образом, косвенное доказательство проходит следующие этапы: выдвигается антитезис и из него выводятся следствия с намерением найти среди них хотя бы одно ложное; устанавливается, что в числе следствий действительно есть ложное; делается вывод, что антитезис неверен; из ложности антитезиса делается заключение, что тезис является истинным.
В зависимости от того, как показывается ложность антитезиса, можно выделить несколько вариантов косвенного доказательства.
Иногда ложность антитезиса удается установить простым сопоставлением вытекающих из него следствий с фактами, эмпирическими данными. Так обстояло, в частности, дело в примере с выступлением, вызвавшим острую дискуссию.
Еще один путь - анализ самой логической структуры следствий антитезиса. Если в числе следствий встретились и утверждение, и отрицание одного и того же, можно сразу заключить, что антитезис неверен. Ложным будет он и в том случае, если из него выводится внутренне противоречивое высказывание о тождестве утверждения и отрицания.
Например, для косвенного доказательства тезиса «Феодализм не обеспечивает подлинной справедливости в отношениях между людьми» выдвигается антитезис: «Феодализм обеспечивает реальную справедливость». Из последнего выводится как то, что при феодализме имеется равенство реальных политических и юридических прав, так и то, что такое равенство оказывается в значительной мере формальным, не говоря уже о коренном неравенстве людей по отношению к средствам производства. Раз из антитезиса вытекают утверждение и отрицание одного и того же, значит, он неверен, а правильным является противоположное утверждение - тезис.
Если имеется в виду только та их часть, в которой показывается ошибочность некоторого предположения, они именуются приведением к абсурду (нелепости). Привести некоторое утверждение к абсурду - значит продемонстрировать ложность этого утверждения, выведя из него противоречие.
Следует учитывать, что существует одна разновидность косвенного доказательства, которая не требует искать ложные следствия. В этом случае для доказательства утверждения достаточно показать, что оно логически вытекает из своего собственного отрицания.
В романе И. С.Тургенева «Рудин» есть такой диалог:
«- Стало быть, по-вашему, убеждений нет?
- Нет - и не существует.
- Это ваше убеждение?
- Да.
- Как же вы говорите, что их нет? Вот вам уже одно на первый случай».
Ошибочному мнению, что никаких убеждений нет, противопоставляется его отрицание: есть, по крайней мере, одно убеждение, а именно убеждение, что убеждений нет. Коль скоро утверждение «Убеждения существуют» вытекает из своего собственного отрицания, это утверждение, а не его отрицание, является истинным и доказанным.
Если число рассматриваемых возможностей не ограничивать двумя - доказываемым утверждением и его отрицанием, то получим так называемое разделительное косвенное доказательство. Оно применяется в тех случаях, когда можно быть уверенным, что доказываемое положение входит в число всех рассматриваемых возможностей. Доказательство ведется следующим образом: одна за другой исключаются все альтернативы, кроме одной, которая и является доказательным тезисом. В стандартных косвенных доказательствах альтернативы - тезис и антитезис - исключают друг друга в силу законов логики. В разделительном же доказательстве взаимная несовместимость возможностей и то, что ими исчерпываются все мыслимые ситуации, определяются не логическими, а фактическими обстоятельствами. Отсюда понятна обычная ошибка разделительных доказательств: выдвинутые возможности, вместе взятые, не исчерпывают всех возможных альтернатив.
С помощью разделительного доказательства можно, к примеру, показать, что из всех латиноамериканских стран только в Бразилии господствующим языком является португальский. В качестве альтернатив выдвигаются утверждения, что в Аргентине говорят по преимуществу на португальском, что в Эквадоре говорят главным образом на этом языке, что в Венесуэле дело обстоит так же и т. д., перечисляя все государства Латинской Америки. Убеждаемся затем, что фактически в Аргентине, Венесуэле, Эквадоре и во всех других странах Южной Америки, исключая Бразилию, господствующим языком является испанский, а не португальский. Опровергнув все альтернативы, кроме одной, получаем доказательство исходного тезиса. Нужно заметить, что в ходе этого доказательства рассматриваются и по очереди опровергаются предположения, касающиеся всех латиноамериканских стран, исключая Бразилию. Вопрос, на каком языке говорит большинство бразильцев, вообще не поднимается. Ответ на него получается не прямо, а косвенным образом: путем показа того, что ни в одной другой стране рассматриваемого региона португальский язык не является господствующим. Это доказательство оказалось бы несостоятельным, если бы, допустим, выяснилось, что были перечислены не все латиноамериканские страны.
Косвенное доказательство представляет собой эффективное средство обоснования выдвигаемых положений. Однако его специфика в определенной мере ограничивает его применимость. Имея дело с этим доказательством, мы все время вынуждены сосредоточивать свое внимание не на тезисе, справедливость которого следует обосновать, а на его отрицании, являющемся ошибочным предложением. Не удивительно поэтому, что после того, как такое доказательство проведено, ход его иногда рекомендуют тут же забыть, оставив в памяти только доказанный тезис. Нужно отметить, что найденное косвенное доказательство какого-то положения, как правило, удается перестроить в прямое доказательство этого же положения [2; 201]. логическое доказательство тезис аргумент факт
В разделительном доказательстве антитезис является одним из членов разделительного суждения, в котором должны быть обязательно перечислены все возможные альтернативы: «Преступление мог совершить либо Л, либо В, либо С. Доказано, что не совершали преступление ни А, ни В. Преступление совершил С». Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения, кроме одного.
Здесь применяется структура отрицающе-утверждающего модуса разделительно-категорического силлогизма. Заключение будет истинным, если в разделительном суждении предусмотрены все возможные случаи (альтернативы), т. е. если оно является закрытым (полным) дизъюнктивным суждением [1; 138].
Библиография
1. Войшвилло Е. К., Дегтярев М. Г. Логика: Учебник для вузов. - М.: Гуманит. изд. центр ВЛАДОС, 1998. - 505 с.
2. Ивин А. А. Логика: Учебник для гуманитарных факультетов. - М,: Фаир-Пресс, 2002. - 304 с.
3. Ивин А. А. Теория аргументации: Учебник. - М.: Гардарики, 2000. - 416 с.
Размещено на Allbest.ru
Подобные документы
Изучение логической структуры доказательства - логической процедуры установления истинности какого-либо утверждения при помощи других утверждений, истинность которых уже установлена. Виды доказательства и опровержение. Условия и правила доказательства.
реферат [30,2 K], добавлен 20.09.2010Исследование логической категории и основных способов аргументации как полного или частичного обоснования, какого либо утверждения с использованием других утверждений. Сущность доказательства как установления истинности положения логическими средствами.
реферат [14,8 K], добавлен 27.12.2010Доказательность как важное качество правильного мышления. Структура доказательства, правила по отношению к тезисам, аргументам и демонстрациям и их возможные нарушения. Прямое и косвенное доказательства. Процесс опровержения допущения в форме контртезиса.
контрольная работа [26,0 K], добавлен 12.10.2009Доказательство как процесс обоснования истинности любого утверждения с помощью уже установленных истин. Тезис, аргумент и демонстрация. Сориты (сокращенные полисиллогизмы) аристотелевского типа и гоклиниевского. Типы умозаключений и виды доказательств.
контрольная работа [19,3 K], добавлен 10.02.2009Доказательство – логическая операция по обоснованию истинности суждений с помощью других истинных суждений. Опровержение - вид доказательного процесса, направленного на уже существующие доказательства для того, чтобы показать их несостоятельность.
контрольная работа [23,2 K], добавлен 21.05.2008Отличие опровержения от доказательства. Основные составляющие доказательства: тезис, аргументы, доводы и демонстрация. Ведение разделительного косвенного доказательства по одной из схем разделительно-категорического силлогизма. Правила закона тождества.
контрольная работа [15,5 K], добавлен 13.08.2010Порядок формирования таблицы истинности. Упрощение посылок и заключений, приведение их к базисному множеству. Доказательство истинности заключения методом дедуктивного вывода и резолюции с построением соответствующих графов. Исчисление предикатов.
курсовая работа [137,1 K], добавлен 21.11.2012Значение спора в жизни, науке, государственных и общественных делах. Связь логики с судопроизводством и ораторским искусством. Доказательство истинности или ложности тезиса. Уловки в споре. Правила и ошибки по отношению к форме аргументации и критики.
контрольная работа [34,9 K], добавлен 14.12.2014Логическая характеристика понятий. Отношения между понятиями. Состав и виды простых суждений. Определение истинности по логическому квадрату. Умозаключения из суждений с отношениями. Методы установления причинных связей; доказательство и опровержение.
контрольная работа [134,8 K], добавлен 30.10.2015Правила доказательства и опровержения и основные ошибки, возникающие при их нарушении. Правила по отношению к тезисам и аргументам. Argumentum ad hominem — аргумент к человеку. их разновидности: к авторитету, к публике, к силе, к жалости и нелепые доводы.
реферат [18,2 K], добавлен 22.02.2009