Зенон о парадоксах движения

Зенон Элейский - греческий философ и логик. Роль Зенона в истории науки и развитии логики, состояние греческой философии в середине 5 в. до н.э. Парадоксы множества и движения, тривиальность апории "Ахиллес", парадокс о летящей стреле, парадокс стадий.

Рубрика Философия
Вид творческая работа
Язык русский
Дата добавления 03.01.2011
Размер файла 26,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Зенон Элейский

зенон элейский парадокс

Зенон Элейский (р. ок. 490 до н.э.), греческий философ и логик, прославившийся главным образом им парадоксами, которые носят его имя. Он был родом из греческого города Элея на юге Италии. Платон сообщает, что Зенон бывал в Афинах и встречался с Сократом. О его жизни известно немногое, и о его трудах, включая его знаменитые парадоксы, мы знаем в основном из сочинений более поздних философов. Он был представителем Элейской школы, учеником Парменида (ок. 515-450 до н. э.), который утверджал, что истинная реальность должна быть вечной и неизменной, постижимой лишь разумом и логикой. Предположительно ок. 465 до н.э. он изложил свои идеи в не дошедшей до нас книге. Согласно легенде, Зенон погиб в борьбе с тираном (вероятно, правителем Элеи Неархом). элейский тиран Неарх пытал и казнил Зенона за участие в заговоре против правительства .Информацию о нем приходится собирать по крупицам: из Платона, который родился 60-ю годами позже Зенона, из сообщений ученика Платона Аристотеля, из Диогена Лаэртия, который в 3 в. н.э. составил жизнеописания греческих философов. Говорится о Зеноне и у поздних комментаторов аристотелевской школы: Александра Афродисийского (3 в. н.э.), Фемистия (4 в.), Симплиция и Иоанна Филопона (оба 6 в.). В большинстве случаев эти источники так хорошо согласуются друг с другом, что по ним можно реконструировать взгляды Зенона.

Зенон Элейский принадлежал к той греческой философской школе, которая учила, что любое изменение в мире иллюзорно, а бытие едино и неизменно. Его парадокс (сформулированный в виде четырех апорий (от греч. aporia «безвыходность»), породивших с тех пор еще примерно сорок различных вариантов) показывает, что движение, образец «видимого» изменения, логически невозможно.

Историческое окружение

Чтобы оценить роль Зенона в истории науки и развитии логики, необходимо рассмотреть состояние греческой философии в середине 5 в. до н.э. Ионийские философы из Малой Азии искали первоначало всех вещей, основной элемент, из которого образована Вселенная. Каждый останавливался на своем элементе: один отводил эту роль воде, другой - воздуху, третий - бескачественному «безграничному» или «неопределенному» (апейрон). Ионийцы полагали, что все известные нам виды материи возникают в результате непрерывно протекающих процессов сдавливания, разрежения и сгущения основного элемента. На этом постоянном изменении сделал акцент Гераклит Эфесский (6-5 в. до н.э.): река, в которую мы входим ныне, не та же самая, что была вчера; все меняется; гармония Вселенной - это гармония противоположностей. Наконец, школа, основанная Пифагором (6 в. до н.э.), выдвинула в качестве основного элемента число, причем числа рассматривались как дискретные единицы, наделенные пространственным измерением.

Учитель Зенона Парменид подверг критике все эти теории - как монизм ионийцев, так и плюрализм пифагорейцев. Подвергая рассмотрению любой основной элемент, мы можем сделать о нем одно из трех утверждений: он существует; он не существует; он и существует, и не существует. Третье утверждение внутренне противоречиво, второе также немыслимо, поскольку об отсутствии чего-либо невозможно говорить, прибегая к тем же терминам, что использовались для его описания. Существование небытия невозможно даже представить. Следовательно, этот элемент существует. Изменение невозможно, поскольку это означало бы, что первоэлемент не был распределен с одинаковой плотностью повсюду, а пустоты быть не может, поскольку это было бы такое место, в котором первоэлемент не существует. Итак, Вселенная представляет собой неподвижный, неизменный, плотный и единовидный шар. Все есть Единое.

Заметим, что Парменид приходит к этому выводу исключительно с помощью логики, не прибегая к умозрению или интуиции, характерным для систем его предшественников. Если вывод противоречит чувствам, тем хуже для чувств: видимость обманчива.

Зенон продолжил дело, начатое Парменидом. Его тактика сводилась не к защите точки зрения учителя, а к демонстрации того, что из утверждений его оппонентов возникают еще большие нелепости. В связи с этим Зенон выработал метод опровержения противников посредством серии вопросов. Отвечая на них, собеседник был вынужден прийти к самым необычным парадоксам, с необходимостью следовавшим из его взглядов. Этот метод, получивший название диалектического (греч. «диалегомай» - «разговаривать»), впоследствии применял Сократ. Поскольку главными противниками Зенона были пифагорейцы, большинство его парадоксов связано с атомистической концепцией пифагореизма. Поэтому они особенно значимы для современных атомистических теорий числа, пространства, времени и материи.

Парадоксы множества

Со времен Пифагора время и пространство рассматривались, с математической точки зрения, как составленные из множества точек и моментов. Однако они обладают также свойством, которое легче ощутить, нежели определить, а именно «непрерывностью». С помощью ряда парадоксов Зенон стремился доказать невозможность разделения непрерывности на точки или моменты. Его рассуждение сводится к следующему: предположим, что деление проведено нами до конца. Тогда верно одно из двух: либо мы имеем в остатке наименьшие возможные части или величины, которые неделимы, однако бесконечны по своему количеству, либо деление привело нас к частям, не имеющим величины, т.е. обратившимся в ничто, ибо непрерывность, будучи однородной, должна быть делимой повсюду, а не так, чтобы в одной своей части быть делимой, а в другой - нет. Однако оба результата нелепы: первый потому, что процесс деления нельзя считать законченным, пока в остатке - части, обладающие величиной, второй потому, что в таком случае изначальное целое было бы образовано из ничто. Симплиций приписывает это рассуждение Пармениду, однако кажется более вероятным, что оно принадлежит Зенону. Например, в Метафизике Аристотеля говорится: «Если единое само по себе неделимо, то по утверждению Зенона оно должно быть ничем, ибо он отрицает, чтобы то, что не увеличивается при прибавлении и не уменьшается при отнятии могло бы вообще существовать - разумеется, по той причине, что все существующее обладает пространственными размерами». В более полном виде этот довод против множественности неделимых величин приводит Филопон: «Зенон, поддерживая своего учителя, старался доказать, что все сущее должно быть единым и неподвижным. Доказательство свое он основывал на бесконечной делимости любой непрерывности. Именно, утверждал он, если сущее не будет единым и неделимым, но может делиться на множество, единого по сути вообще не будет (ибо если непрерывность можно делить, это будет означать, что ее можно делить до бесконечности), а если ничто не будет по сути единым, невозможно и множество, поскольку множество составлено из многих единиц. Итак, сущее не может быть разделено на множество, следовательно, есть только единое. Это доказательство может строиться и по-другому, а именно: если не будет сущего, которое неделимо и едино, не будет и множества, ибо множество состоит из многих единиц. А ведь каждая единица либо едина и неделима, либо сама делится на множество. Но если она едина и неделима, Вселенная составлена из неделимых величин, если же единицы сами подлежат делению, мы будем задавать тот же самый вопрос относительно каждой из подлежащих делению единиц, и так до бесконечности. Таким образом, если существующие вещи множественны, Вселенная окажется образованной бесконечным числом бесконечностей. Но поскольку этот вывод нелеп, сущее должно быть единым, а быть множественным ему невозможно, ведь тогда придется каждую единицу делить бесконечное число раз, что нелепо».

Симплиций приписывает Зенону несколько видоизмененный вариант того же аргумента: «Если множество существует, оно должно быть точно таким, каково оно есть, не больше и не меньше. Однако, если оно таково, каково есть, оно будет конечным. Но если множество существует, вещи бесконечны по числу, потому что между ними всегда будут обнаруживаться еще другие, а между теми еще и еще. Таким образом, вещи бесконечны по числу».

Рассуждения о множественности были направлены против соперничавшей с элеатами школы, вероятнее всего, против пифагорейцев, которые полагали, что величина или протяженность составлена из неделимых частей. Зенон считал, что эта школа полагает, будто непрерывные величины и до бесконечности делимы и конечным образом разделены. Предельные элементы, из которых, как предполагалось, состояло множество, имели, с одной стороны, свойства геометрической единицы - точки; с другой - они обладали некоторыми свойствами числового единства - числа. Подобно тому как из повторных прибавлений единицы строится числовой ряд, линия считалась составленной многократным прибавлением точки к точке. Аристотель приводит следующее пифагорейское определение точки: «Единица, имеющая положение» или «Единица, взятая в пространстве». Это означает, что пифагореизм усвоил своего рода числовой атомизм, с точки зрения которого геометрическое тело не отличается от физического. Парадоксы Зенона и открытие несоизмеримых геометрических величин (ок. 425 до н.э.) привели к возникновению непреодолимого разрыва между арифметической дискретностью и геометрической непрерывностью. В физике существовало два в чем-то аналогичных лагеря: атомисты, отрицавшие бесконечную делимость материи, и последователи Аристотеля, которые ее отстаивали. Аристотель вновь и вновь разрешает парадоксы Зенона как для геометрии, так и для физики, утверждая, что бесконечно малое существует лишь в потенции, но не в реальности. Для современной математики такой ответ неприемлем. Современный анализ бесконечности, в особенности в трудах Г. Кантора, привел к определению континуума, лишающему антиномии Зенона парадоксальности.

Парадоксы движения

Значительная часть обширной литературы, посвященной Зенону, рассматривает его доказательства невозможности движения, поскольку именно в этой области воззрения элеатов вступают в противоречие со свидетельствами чувств. До нас дошли четыре доказательства невозможности движения, получившие названия «Дихотомия», «Ахилл», «Стрела» и «Стадий». Неизвестно, было ли их только четыре и в книге Зенона или же Аристотель, которому мы обязаны отчетливыми их формулировками, выбрал те, которые показались ему самыми трудными.

В первом парадоксе утверждается, что, прежде чем движущийся объект сможет преодолеть определенное расстояние, он должен пройти половину этого пути, затем половину оставшегося пути и т.д. до бесконечности. Поскольку при повторных делениях данного расстояния пополам всякий отрезок остается конечным, а число таких отрезков бесконечно, данный путь невозможно пройти за конечное время. Более того, этот довод действителен для любого, сколь угодно малого расстояния, и для любой, сколь угодно большой скорости. Следовательно, невозможно какое бы то ни было движение. Бегун не в состоянии даже тронуться с места. Симплиций, который подробно комментирует этот парадокс, указывает, что здесь за конечное время необходимо совершить бесконечное число касаний: «Тот, кто чего-либо касается, как бы считает, однако бесконечное множество невозможно сосчитать или перебрать». Или, как формулирует это Филопон, «бесконечное абсолютно неопределимо». Для того, чтобы пройти каждое из подразделений протяженности, с необходимостью требуется ограниченный временной интервал, но бесконечное число таких интервалов, как бы мал ни был каждый из них, в совокупности не может дать конечной длительности.

Аристотель усматривал в «дихотомии» скорее заблуждение, нежели парадокс, полагая, что его значимость сводится на нет «ложной посылкой.., будто невозможно пройти или коснуться бесконечного числа точек за конечный период времени». Также и Фемистий полагает, что «Зенон либо в самом деле не знает, либо делает вид, когда полагает, что ему удалось покончить с движением, сказав, что невозможно движущемуся телу за конечный период времени пройти бесконечное число положений». Аристотель считает точки лишь потенциальным, а не действительным бытием, временной или пространственный континуум «в реальности не делится до бесконечности», поскольку не такова его природа.

Аапории «Дихотомия» основывается на схожих с «Ахиллесом» аргументах и утверждает невозможность начать движение: для того чтобы пройти весь путь, движущееся тело сначала должно пройти половину пути, но чтобы преодолеть эту половину, надо пройти половину половины и т. д. до бесконечности. Иными словами, при тех же условиях, что и в предыдущем случае, мы будем иметь дело с перевернутым рядом точек: (?)n, ..., (?)3, (?)2, (?)1. Если в случае апории «Ахиллес» соответствующий ряд не имел последней точки, то в «Дихотомии» этот ряд не имеет первой точки. Стало быть, движение не может начаться. А поскольку, согласно элеатам, движение не только не может закончиться, но и не может начаться, движения нет и быть не может!

Во втором парадоксе движения рассматривается состязание в беге между Ахиллом и черепахой, которой при старте дается фора. Парадокс заключается в том, что Ахилл никогда не догонит черепаху, поскольку сперва он должен добежать до того места, откуда начинает двигаться черепаха, а за это время она доберется до следующей точки и т.д., словом, черепаха всегда будет впереди. Разумеется, это рассуждение напоминает дихотомию с той только разницей, что здесь бесконечное деление идет сообразно прогрессии, а не регрессии. В «Дихотомии» доказывалось, что бегун не может пуститься в путь, потому что он не может покинуть того места, в котором находится, в «Ахилле» доказывается, что даже если бегуну удастся тронуться с места, он никуда не прибежит. Аристотель возражает, что бег - это не прерывный процесс, как толкует его Зенон, а непрерывный, однако этот ответ возвращает нас к вопросу, каково отношение дискретных положений Ахилла и черепахи к непрерывному целому?

Современный подход к этой проблеме заключается в вычислениях (либо методом сходящихся бесконечных рядов, либо простым алгебраическим уравнением), которыми устанавливается, где и когда Ахилл нагонит черепаху. Предположим, Ахилл бежит в десять раз быстрее черепахи, которая проходит 1 м в секунду и имеет преимущество в 100 м. Пусть х - расстояние в метрах, пройденное черепахой к тому моменту, когда Ахилл ее нагонит, а t - время в секундах. Тогда t = x/1 = (100 + x)/10 = 111/9 с. Вычисления показывают, что бесконечному количеству движений, которые должен совершить Ахилл, соответствует конечный отрезок пространства и времени. Однако самими по себе вычислениями парадокс не разрешается. Ведь сначала необходимо доказать утверждение, что расстояние - это скорость, умноженная на время, а сделать это невозможно без анализа того, что подразумевается под моментальной скоростью - понятием, лежащим в основе третьего парадокса движения.

В большинстве источников, где излагаются парадоксы, говорится о том, что Зенон вообще отрицал возможность движения, но иногда утверждается, что доводы, которые он отстаивал, были направлены лишь на доказательство несовместимости движения с постоянно оспаривавшимся им представлением о непрерывности как о множестве. В «Дихотомии» и «Ахилле» утверждается, что движение невозможно при предположении о бесконечной делимости пространства на точки, а времени на мгновения. В последних двух парадоксах движения утверждается, что движение равным образом невозможно и в том случае, когда делается противоположное предположение, а именно, что деление времени и пространства завершается неделимыми единицами, т.е. время и пространство обладают атомарной структурой.

Конечно, если отрешиться от классического закона исключенного третьего, то нельзя прямым путем доказать, что Ахиллес не догонит черепаху. Но это отнюдь не устраняет поставленной в апории проблемы: поскольку из опыта мы знаем, что Ахиллес непременно должен догнать черепаху, то должны ответить на вопрос, как это возможно в рамках рассуждений Зенона.

Другой небезынтересный аспект -- тривиальность самой апории «Ахиллес»: мол, речь всегда идет о догоняющем Ахиллесе, а догоняющий (потенциальная бесконечность), разумеется, -- и не догнал. Но, с другой стороны, если, как в математическом анализе, уже «дано» (актуальная бесконечность), то и говорить не о чем -- апория разрешается, фактически, путем постулирования наличия решения. Но такое «решение» не менее тривиально рассуждений Зенона. Беда в том, что тривиальны оба варианта, и выходит, что в обоих случаях мы получаем ровно то, что постулируем. Но нетривиальность данной апории в том, что Зенон показывает невыводимость актуальной бесконечности из потенциальной. В то же самое время из опыта мы знаем, что догоняющий, если он быстрее, становится догнавшим и перегнавшим. И проблема описания движения в апории «Ахиллес» остается -- во всяком случае, до тех пор, пока не будет постулирована дискретность пространства и времени.

Если принять следующие условия, что Ахиллеса отделяет от финиша расстояние 1, а черепаху -- ?. Двигаться Ахиллес и черепаха начинают одновременно. Пусть для определенности Ахиллес бежит в 2 раза быстрее черепахи. Тогда, пробежав расстояние ?, Ахиллес обнаружит, что черепаха успела за то же время преодолеть отрезок ? и по-прежнему находится впереди героя. И т. д.

Знающие математический анализ обычно указывают, что ряд

сходится к 1. Поэтому, дескать, Ахиллес преодолеет весь путь за конечный промежуток времени и, безусловно, обгонит черепаху. Действительно, в передаче Аристотеля весьма неопределенно выглядит выражение «никогда не догонит», и, по всей вероятности, это -- интерпретация апории самим Стагиритом, ибо он «разрешает» апорию как раз вышеуказанным образом.

Однако вряд ли следует считать, что сам Зенон не понимал этого, и уж наверняка он обращал внимание совсем на другое. «Никогда не догонит» -- не значит бесконечное течение времени, но отсутствие такой возможности в рамках данного рассуждения. Парадоксально, но, согласно апориям, и время не превысит своего предела. А парадокс не опровергается его констатацией. Констатацией он как раз утверждается. К сожалению, многих настолько приучили опровергать путем приведения к противоречию, что они и сами противоречия (парадоксы) готовы «опровергать» подобным же образом. Ведь можно переформулировать апорию следующим образом: «Никогда не пройдет одна секунда, ибо когда пройдет полсекунды, останется полсекунды, когда пройдет половина полсекунды (?), останется ? секунды...» и т. д.

Парадокс опровергается демонстрацией того, за счет чего он существует. Необходимо указать принципиально неверное утверждение в рассуждениях Зенона, а не демонстрировать путем других рассуждений или эмпирики, что Зенон пришел к противоречию -- Зенон об этом и сам прекрасно знал и сам же об этом говорил. Мало показать, как парадокс не существует, т. е. как его можно обойти путем интерпретаций, ибо перевод проблемы в иную систему (аксиом, координат, запретов и т. п.) нельзя считать разрешением парадокса: нужно исследовать парадокс в той системе, в которой он именно существует. В противном случае, мы будем говорить, что победили дракона, обезвредив всего лишь мелкую ящерицу.

Как верно отметил теоретик прагматизма Уильям Джемс, критика Зеноновых соображений, гласящая, что если бесконечный ряд, составленный из интервалов времени, имеет конечную сумму, то, следовательно, Ахиллес должен догнать черепаху, «совершенно не попадает в цель. Зенон вполне охотно согласился бы с тем, что если черепаху вообще можно догнать, то ее можно догнать, например, в двадцать секунд; но тем не менее он настаивал бы, что ее нельзя догнать вообще» Действительно, из того факта, что весь интервал времени, который отпущен ему для этого деяния, имеет конечную меру, автоматически еще не следует вывод о том, что он в самом деле может исчерпать эту последовательность.

Наконец, формулировку апории можно изменить, не меняя сути ее проблемы: «Самый быстрый бегун не сможет догнать самого медленного (хотя при этом он не будет прекращать движения), ибо догоняющий должен прежде достичь того места, откуда сдвинулся убегающий, так что более медленный будет впереди».

В то же самое время вышеозначенное рассуждение, что сумма бесконечного числа временных интервалов все-таки сходится и, таким образом, дает конечный промежуток времени, абсолютно не затрагивает один существенно парадоксальный момент, а именно парадокс, заключающийся в том, что некая бесконечная последовательность следующих друг за другом событий, последовательность, завершаемость которой мы не можем себе даже представить (не только физически, но хотя бы в принципе), на самом деле все-таки должна завершиться. Апория не ставит вопрос о пределе и его вычислении, апория спрашивает: как этот предел в принципе возможно достичь?

Суть проблемы заключается в интеграции бесконечного количества частей, а математический анализ рассматривает дифференциацию уже определенной, а значит, и актуализированной бесконечности: целое приращение уже дано, и остается только делить -- причем, в случае с бесконечно малыми величинами, уже не актуально, а потенциально! -- его на части; в то время как Зенон задается вопросом, а как это целое из таких частей составить (а уже потом пробовать его делить)? Получается, само решение возможно только при завершении процесса, т. е., по сути, возможно только при актуальной бесконечности, а это не что иное, как «разрешение» апории путем постулирования наличия решения. Согласно общим аргументам Зенона, мы не можем получить ни ?s, ни ?t, а потому вообще не можем обратиться к математическому анализу. Значит, «разрешение» апорий с помощью математического анализа есть не что иное, как логическая ошибка circulus vitiosus.

Аргумент, что в математическом анализе о достижении переменной значения предела в определениях предела ничего не говорится, здесь значения не имеет, ибо математический анализ в данном случае просто-напросто обходит неудобный момент, напрямую связанный с апориями, путем его игнорирования. Конечно, современное определение математического анализа, которое отрешилось от темпорологических понятий («статическая теория переменной» Вейерштрасса) и, по сути, отождествило предел бесконечной последовательности с самой последовательностью, устранило математическую (но не более!) проблему, связанную с вопросом, достигает ли переменная своего предела. Однако, преодолев подобной актуализацией интуитивную зависимость понятия предела от понятия движения, математический анализ просто-напросто отстранился от тех вопросов, которые как раз были поставлены апориями, что лишний раз доказывает совершенную неприменимость математического анализа для разрешения проблем движения и, в частности, апорий Зенона, ибо, в противном случае, математическому анализу снова придется обратиться к темпорологическим понятиям и соотношению своих абстракций с категориями движения. То, что ныне из математики изгнаны представления о процессах и изменении величин, в результате чего переменная стала пониматься как обозначение для произвольного элемента рассматриваемой предметной области (напр., области натуральных или действительных чисел), т. е. как родовое имя всей этой области, а не как динамически изменяющаяся величина, -- это напрямую связано с теми проблемами, которые впервые были поставлены Зеноном и которые так и не удалось разрешить. В данном случае современная математика всего-навсего опирается на абстракцию актуальной бесконечности, позволяющую рассматривать произвольные бесконечные множества в качестве «завершенных», актуальных объектов, отвлекаясь от принципиальной незавершимости процесса образования такого множества, т. е. игнорируя те проблемы, которые связаны с апориями

Хорошо это или плохо -- зависит от того, какие цели мы перед собой ставим. Ныне математика уже достигла той стадии развития, когда вопрос о том, что, собственно, следует считать математикой -- логицизм, интуиционизм, формализм или теорию множеств, -- вызывает ожесточенные споры. Но как бы то ни было, мы должны раз и навсегда уяснить, что современный математический анализ не может быть применим для разрешения парадоксов Зенона: ввиду того что представления о времени и движении уже не считаются имеющими отношение к пониманию математического анализа и сам он не содержит их в себе, научные аргументы, относящиеся к основаниям математического анализа, уже неприменимы к вопросам, связанным с природой времени и движения.

«Стрела»

Согласно Аристотелю, в третьем парадоксе - о летящей стреле - Зенон утверждает: любая вещь либо движется, либо стоит на месте.

Суть апории «Стрела» заключается в следующем: в каждый момент полета стрела занимает определенное место и покоится в нем; стало быть, движение стрелы есть сумма состояний покоя, т. е. стрела не движется.

Однако ничто не может пребывать в движении, занимая пространство, которое равно ему по протяженности. В определенный момент движущееся тело (в данном случае стрела) постоянно находится на одном месте. Следовательно, летящая стрела не движется. Симплиций формулирует парадокс в сжатой форме: «Летящий предмет всегда занимает пространство, равное себе, но то, что всегда занимает равное себе пространство, не движется. Следовательно, оно покоится».

Аристотель с наскока отмел парадокс «стрела», утверждая, что время не состоит из неделимых моментов. «Ошибочен ход рассуждений Зенона, когда он утверждает, что если все, занимающее равное себе место, находится в покое, и то, что находится в движении, всегда занимает в любой момент такое место, то летящая стрела окажется неподвижной». Трудность устраняется, если вместе с Зеноном подчеркнуть, что в каждый данный момент времени летящая стрела находится там, где она находится, все равно как если бы она покоилась. Динамика не нуждается в понятии «состояния движения» в аристотелевском смысле, как реализации потенции, однако это не обязательно должно приводить к сделанному Зеноном выводу, что раз такой вещи, как «состояние движения», не существует, не существует и самого движения, стрела неизбежно находится в покое.

Часто современные математики и физики торопятся «урезонить» античного смутьяна аргументом, что Зенон-де просто не умел оперировать «бесконечно малыми величинами» и что движущееся тело обладает отличной от нуля «мгновенной скоростью», и в этом-де все дело.

Отмахиваясь от апорий Зенона на протяжении двух с половиной тысячелетий и объявляя их пустыми софизмами, человеческий разум только показывал свою трусливую беспомощность пред гениальным прозрением античности.

«Еще со времен Зенона и его парадоксов, -- (по высказываниям Куранта и Роббинса,) все попытки дать точную, математическую формулировку интуитивному физическому или метафизическому понятию непрерывного движения были безуспешными. Нет затруднений в продвижении шаг за шагом по дискретной последовательности значений а1, a2, a3 ... Но когда приходится иметь дело с непрерывной переменной х, пробегающей целый интервал значений на числовой оси, то описание того, как х «приближается» к заданному значению x1, затруднено тем, что принимаемые значения из интервала не могут быть указаны последовательно в порядке их возрастания. В самом деле, точки прямой представляют везде плотное множество, и не существует точки, «следующей» за данной. Остается неизбежное расхождение между интуитивной идеей и точным математическим языком, предназначенным для того, чтобы описывать ее основные линии в научных, логических терминах. Парадоксы Зенона ярко обнаруживают это несоответствие» А потому аргумент оппонентов Зенона, что мы не может в плотном множестве определить порядок точек прямой, а следовательно, апория «Стрела», дескать, не имеет смысла, -- этот аргумент должен быть поставлен не в укор античному философу, а в заслугу его прозрению, поставившему столь великий вопрос, который на протяжении многих веков столь бездарно пытаются похоронить видимостью псевдоответов.

Уточняя понятия анализа и удаляясь от идей Лейбница и Ньютона - пришли к торжеству элейских апорий, и что слова «Ахиллес не догонит черепаху» на современный язык переводятся как «переменная не достигает своего предела».

«Стадий»

Больше всего споров вызывает последний парадокс, известный под названием «стадий», и он же труднее прочих поддается изложению. Тот его вид, в котором он дан Аристотелем и Симплицием, отличается фрагментарностью, и соответствующие тексты считаются не вполне надежными. Возможная реконструкция данного рассуждения имеет следующий вид. Пусть А1, А2, А3 и А4 - неподвижные тела равного размера, а В1, В2, В3 и В4 - тела, имеющие такой же размер, что и А, которые единообразно движутся вправо так, что каждое В минует каждое А за одно мгновение, считая мгновение наименьшим возможным промежутком времени. Пусть С1, С2, С3 и С4 - тела также равного А и В размера, которые единообразно движутся относительно А влево так, что каждое С проходит мимо каждого А тоже за мгновение. Предположим, что в определенный момент времени эти тела находятся в следующем положении друг относительно друга:

Отсюда очевидно, что С1 миновало все четыре тела В. Время, которое потребовалось С1 для прохождения одного из тел В, можно принять за единицу времени. В таком случае на все передвижение потребовалось четыре такие единицы. Однако предполагалось, что два момента, которые прошли за это передвижение, являются минимальными и потому неделимыми. Из этого с необходимостью следует, что две неделимые единицы равны четырем неделимым единицам.

Согласно некоторым толкованиям «стадия», Аристотель полагал, что Зенон совершил здесь элементарную ошибку, предположив, что телу требуется одно и то же время на прохождение мимо подвижного тела и тела неподвижного. Эвдем и Симплиций также интерпретируют «стадий» как всего лишь смешение абсолютного и относительного движения. Но если бы это было так, парадокс не заслуживал бы того внимания, которое уделил ему Аристотель. Поэтому современные комментаторы признают, что Зенон видел здесь более глубокую проблему, затрагивающую структуру непрерывности.

Парадокс «Предикация»

К числу более сомнительных парадоксов, приписываемых Зенону, относится рассуждение о предикации. В нем Зенон утверждает, что вещь не может в одно и то же время быть единой и иметь множество предикатов; таким же точно доводом пользовались афинские софисты. В Пармениде Платона это рассуждение выглядит так: «Если вещи множественны, они должны быть и подобными, и неподобными [неподобными, поскольку они не являются одним и тем же, и подобными, поскольку общее у них то, что они не являются одним и тем же]. Однако это невозможно, поскольку неподобные вещи не могут быть подобными, а подобные неподобными. Следовательно, вещи не могут быть множественны».

Здесь вновь видится критина множественности и столь характерный косвенный тип доказательства, и потому этот парадокс был также приписан Зенону.

Парадокс «Место»

Аристотель приписывает Зенону парадокс «Место», похожие рассуждения приводят Симплиций и Филопон в 6 в. н.э. В Физике Аристотеля эта проблема излагается следующим образом: «Далее, если существует место само по себе, где оно находится? Ведь затруднение, к которому приходит Зенон, нуждается в каком-то объяснении. Поскольку все, что существует, имеет место, очевидно, что место тоже должно иметь место и т.д. до бесконечности». Считается, что парадокс возникает здесь потому, что ничто не может содержаться само в себе или отличаться от самого себя. Филопон добавляет, что, показав самопротиворечивость понятия «места», Зенон желал доказать несостоятельность концепции множественности.

Заключение

Как бы то ни было, мы должны признать, что элеаты относились к описанию движения более критично, нежели современная механика, которая не может дать вразумительного ответа, каков физический смысл «нульмерной» точки или «бесконечно малой величины». Понимая вслед за Галилеем движение как совокупность «продвинутостей», т. е. как нахождение объекта в разные моменты времени в разных местах, наука, по сути, трактует движение так же, как описал его Зенон в апории «Стрела». Но если наука ставит здесь точку и оставляет проблему описания движения за собственными рамками, то скрупулезность элеатов идет дальше и показывает нелепость такого понимания движения. И поэтому, увы, мы и по сей день не избавились от парадоксов, связанных с описанием движения. А ведь незнание движения, по словам Аристотеля -необходимо влечет за собой незнание природы .И мы никак не можем отмахнуться от саркастической усмешки Зенона, говорящего нам сквозь века: «То, что движется, не движется ни в том месте, где оно есть, ни в том, где его нет»

Список используемых источников:

1. Комарова В.Я. Учение Зенона Элейского. Попытка реконструкции системы аргументов. Л., 1988

2. Фрагменты ранних греческих философов, ч. 1. М., 1989.

3. Курант Р., Роббинс Г. Что такое математика? М.: МЦНМО, 2001. Стр. 465,332,333.

4. Клайн М. Математика. Утрата определенности. Стр. 176. Цитаты

5. Клайн М. Математика. Утрата определенности. М.: Мир, 1984. Стр. 357.

6. Джемс У. Вселенная с плюралистической точки зрения. М, 1911. Стр. 125.

7. Анисов А. М. Апории Зенона и проблема движения.

8. Богомолов С. А. Актуальная бесконечность. Зенон Элейский и Георг Кантор.

9. Труды научно-исследовательского семинара Логического центра Института философии РАН. Вып. 14. М.: ИФ РАН, 2000. Стр. 139-155.

Размещено на Allbest.ru


Подобные документы

  • Понятие единого Бога и умопостигаемого сущего в философии Ксенофана, Парменида. Апория как понятие, означающее в древнегреческой философии трудноразрешимую проблему. Метод доказательства. Феномен популярности апорий Зенона. Отрицание пустоты как небытия.

    курсовая работа [35,6 K], добавлен 06.07.2011

  • Парадокс как безвопросный способ постановки проблемы, их место и роль на ранних стадиях развития научных теорий. Наиболее известный логический парадокс "Лжец", история его открытия Евбулидом из Милетом, отражение в нем самый важных тем семантики.

    реферат [46,7 K], добавлен 23.05.2009

  • Парадокс как неотъемлемая часть любой области научного исследования. Паралогизм как ненамеренная ошибка в рассуждении. Софизмы как ошибки преднамеренные. Анализ парадоксов в логике. Парадоксы в математике и в физике. Роль парадоксов в развитии науки.

    реферат [59,6 K], добавлен 28.05.2010

  • Возникновение софизмов в Древней Греции. Дискуссия между софистами и Сократом о существовании объективной истины. Основные виды софизмов. Отличия софизмов и логических парадоксов. Парадокс "деревенского парикмахера". Апории - отдельная группа парадоксов.

    контрольная работа [51,9 K], добавлен 26.08.2015

  • Основные пути возникновения логических парадоксов, их историческое развитие и положительное влияние на развитие логики и философии. Типы парадоксов, их классификация. Конкретные примеры: парадокс "Лжец", парадоксы Рассела, Кантора, Ришара и другие теории.

    реферат [457,2 K], добавлен 12.05.2014

  • Введение актуальной бесконечности как базисного научного понятия в математику, сближение ее с философией благодаря этой проблеме. Зенон о бесконечной величине. Аристотель о потенциальной и актуальной бесконечности. "Парадоксы бесконечного" Больцано.

    курсовая работа [279,8 K], добавлен 09.05.2011

  • Проблема единого первоначала, изменчивости. Иллюзии восприятия и мыслимая реальность. Апейрон как первоначало. Мир как вечное становление. Обоснование элейской онтологии. Парадоксы Зенона. Апория места, делимости, сложения, счисления, "Ахилл и черепаха".

    презентация [377,4 K], добавлен 26.09.2013

  • Античная диалектика как форма мысли. Диалектика Платона, Гегеля и Маркса. Противоположность диалектического и эклектического в процессе познания. Апории Зенона, их роль в развитии античной диалектики, логики. Проблемы непрерывности и бесконечности.

    контрольная работа [41,0 K], добавлен 21.01.2012

  • Связь понятий парадокса, антиномии, контрадикторности с понятием противоречия. Диалектический процесс познания, его гносеологические трудности. Построение семантической линии. Парадоксы лжеца и Мура. "Парадокс лица", регулирующий механизмы вежливости.

    реферат [31,9 K], добавлен 27.01.2010

  • Проблемы парадоксальности в истории познания. Парадоксы одноплоскостного мышления в многомерном мире. Восточная философия дзен. Парадоксы в научном познании, основные стратегии избавления от парадоксов в теории множеств. Принцип многомерности мышления.

    реферат [43,2 K], добавлен 14.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.