Взаємозв'язок математики та філософії

Мілетська школа як одна з перших античних математичних шкіл, що зробила суттєвий вплив на розвиток філософських уявлень, її представники. Ідеї та особливості діяльності піфагорейської школи. Зв'язок математики та філософії в поглядах Елейської школи.

Рубрика Философия
Вид контрольная работа
Язык украинский
Дата добавления 12.10.2010
Размер файла 21,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Вступ

Питання про взаємозв'язок математики і філософії вперше був заданий досить давно. Аристотель, Бекон, Леонардо і Вінчі - багато великих розумів людства займалися цим питанням і досягли видатних результатів. Це не дивовижно: адже основу взаємодії філософії з якийсь із наук складає потреба використання апарату філософії для проведення досліджень у даній області; математика ж, безсумнівно, найбільше серед точних наук піддається філософському аналізу (у силу своєї абстрактності). Поряд із цим прогресуюча математизація науки робить активний вплив на філософське мислення.

Спільний шлях математики і філософії почався в Древній Греції біля VI століття до н.е. Не стиснуте рамками деспотизму, грецьке товариство тієї доби було подібно живильному розчину, на якому виростило багато чого, що дійшло до нас у сильно зміненому часом вигляді, проте зберігши основними, закладену греками ідею: театр, поезія, драматургія, математика, філософія. У цій роботі я спробував простежити за процесом формування, розвитку і взаємний вплив математики і філософії Древньої Греції, а також привести різноманітні точки зору на рушійні сили і результати цього процесу.

Відомо, що грецька цивілізація на початковому етапі свого розвитку відштовхувалася від цивілізації древнього Сходу. Яка ж була математична спадщина, отримана греками?

З математичних документів, які дійшли до нас, можна зробити висновок, що в Древньому Єгипті були сильно розвинуті галузі математики, пов'язані з рішенням економічних задач. Папірус Райнда (бл. 2000 р. до н.е.) починався з обіцянки навчити «зробленому й обгрунтованому дослідженню всіх речей, розумінню їхніх сутностей, пізнанню всіх таємниць». Фактично викладається мистецтво обчислення з цілими числами і дробами, в які посвячувались державні чиновники для того, щоб уміти вирішувати широке коло практичних задач, таких, як розподіл заробітної плати між відомим числом робочих, обчислення кількості зерна для готування певної кількості хліба, обчислення поверхонь і обсягів і т.д. Далі рівнянь першого ступеня і найпростіших квадратних рівнянь єгиптяни, очевидно, не пішли. Весь зміст відомої нам єгипетської математики переконливо свідчить, що математичні знання єгиптян призначалися для задоволення конкретних потреб матеріального виробництва і не могли скільки-небудь серйозно бути пов'язаними з філософією.

Математика Вавилона, як і єгипетська, була викликана до життя потребами виробничої діяльності, оскільки вирішувалися задачі, пов'язані з потребами зрошення, будівництва, господарського обліку, відношеннями власності, численням часу. Збережені документи показують, що, базуючись на 60-річної системі числення, вавілоняни могли виконувати чотири арифметичних дії, існували таблиці квадратних коренів, кубів і кубічних коренів, сум квадратів і кубів, ступенів даного числа, були відомі правила підсумовування прогресій. Чудові результати були отримані в області чисельної алгебри. Хоча вавілоняни і не знали алгебраїчної символіки, але рішення задач проводилося за планом, задачі зводилися до єдиного «нормального» виду і потім рішались по загальних правилах, причому тлумачення перетворень «рівняння» не зв'язувалося з конкретною природою вихідних даних. Зустрічалися задачі, що зводяться до рішення рівнянь третього ступеня й особливих видів рівнянь четвертого, п'ятого і шостого ступенів.

Якщо ж порівнювати математичні науки Єгипту і Вавилона по способу мислення, то неважко буде встановити їхню спільність по таких характеристиках, як авторитарність, некритичність, проходження за традицією, украй повільна еволюція знань. Ці ж риси виявляються й у філософії, міфології, релігії Сходу. Як писав із цього приводу Е. Кольман, «у цім місці, де воля деспота вважалася законом, не було місця для мислення, що дошукується до причин і обгрунтувань явищ, ні тим більше для вільного обговорення».

Аналіз давньогрецької математики і філософії варто почати з мілетської математичної школи, що заклала основи математики як доказової науки.

Мілетська школа

Мілетська школа - одна з перших античних математичних шкіл, що зробила суттєвий вплив на розвиток філософських уявлень того часу. Вона існувала в Іонії наприкінці V-IV ст. до н.е.; основними діячами її були Фалес (бл. 624-547 р. до н.е.), Анаксимандр (бл. 610-546 р. до н.е.) і Анаксимен (бл. 585-525 р. до н.е.). Розглянемо на прикладі мілетської школи основні відмінності грецької науки від догрецької і проаналізуємо їх.

Якщо зіставити вихідні математичні знання греків із досягненнями єгиптян і вавілонян, то навряд чи можна сумніватися в тому, що такі елементарні положення, як рівність кутів у основі рівнобедреного трикутника, відкриття якого приписують Фалесу Мілетському, не були відомі древній математикові. Проте, грецька математика вже у вихідному своєму пункті мала якісну відмінність від своїх попередників.

Її своєрідність полягає, насамперед, у спробі систематично використовувати ідею доказу. Фалес прагне довести те, що емпірично було отримано і без належного обгрунтування використовувалося в єгипетській і вавилонській математиці. Можливо, у період найбільше інтенсивного розвитку духовного життя Вавилона і Єгипту, у період формування основ їхніх знань виклад тих або інших математичних положень супроводжувалося обгрунтуванням у тій або іншій формі. Проте, як пише Ван дер Варден, «у часи Фалеса єгипетська і вавилонська математика давно вже були мертвими знаннями. Можна було показати Фалесу, як треба обчисляти, але вже невідомий був хід міркувань, що лежать в основі цих правил».

Греки вводять процес обгрунтування як необхідний компонент математичної дійсності, доказовість дійсно являється відмітною рисою їхньої математики. Технікою доказу ранньої грецької математики, як у геометрії, так і в арифметиці спочатку була проста спроба надання наочності. Конкретними різновидами такого доказу в арифметиці був доказ за допомогою камінчиків, у геометрії - шляхом накладення. Але сам факт наявності доказу говорить про те, що математичні знання сприймаються не догматично, а в процесі міркування. Це, у свою чергу, виявляє критичний склад розуму, впевненість (може бути, не завжди усвідомлену), що міркуванням можна встановити правильність або хибність розглянутого положення, впевненість у силі людського розуму.

Греки на протязі одного-двох сторіччя зуміли опанувати математичною спадщиною попередників, накопиченою на протязі тисячоріч, що свідчить про інтенсивність, динамізм їхнього математичного пізнання. Якісна відмінність досліджень Фалеса і його послідовників від догрецької математики виявляється не стільки в конкретнім змісті досліджуваної залежності, скільки в новому засобі математичного мислення. Вихідний матеріал греки взяли в попередників, але засіб засвоєння і використання цього матеріалу був новий. Відмінними рисами їхнього математичного пізнання являється раціоналізм, критицизм, динамізм.

Ці ж риси характерні і для філософських досліджень мілетської школи. Філософська концепція і сукупність математичних положень формується за допомогою однорідного по своїх загальних характеристиках розумового процесу, якісно відмінного від мислення попередньої епохи. Як же сформувався цей новий засіб сприйняття дійсності? Звідки бере свій початок прагнення до наукового знання?

Ряд дослідників зазначає відзначені вище характеристики розумового процесу «уродженими особливостями грецького духу». Проте це посилання нічого не пояснює, тому що незрозуміло, чому той же «грецький дух» після закінчення епохи еллінізму втрачає свої якості. Можна спробувати виявити причини такого світорозуміння в соціально-економічній сфері.

Іонія, де проходила діяльність мілетської школи, була достатньо розвиненою в економічному відношенні областю. Тому саме вона серед інших вступила на шлях повалення первісно-общинного ладу і формування рабовласницьких відношень. У VIII-VI ст. до н.е. земля все більше зосереджувалася в руках крупної родової знаті. Розвиток ремісничого виробництва і торгівлі ще в більшій мірі прискорював процес соціально-майнового розшарування. Відношення між аристократією і демосом стають напруженими; згодом ця напруженість переростає у відкриту боротьбу за владу. Калейдоскоп подій у внутрішньому житті, не менш мінлива зовнішня обстановка формують динамізм, гостроту суспільної думки.

Напруженість у політичній і економічній сферах призводить до сутичок в області релігії, оскільки демос, ще не сумніваючись у тому, що релігійні і світські установлення вічні, тому що дані богами, вимагає, щоб вони були записані і стали загальнодоступними, тому що правителі спотворюють божественну волю і тлумачать її по-своєму. Проте неважко зрозуміти, що систематичний виклад релігійних і міфологічних уявлень (спроба такого викладу була зроблена Гесіодом) не могло не завдати серйозного удару релігії. При перевірці релігійних вигадувань логікою перші, безсумнівно, показалися б конгломератом дурниць.

Таким чином, матеріалістичний світогляд Фалеса і його послідовників не є якимось загадковим, не від світу цього породженням «грецького духу». Воно є продуктом цілком визначених соціально-економічних умов і виражає інтереси історично-конкретних соціальних сил, насамперед торгово-ремісничих прошарків товариства» - пише О.И. Кедровський.

На підставі всього перерахованого вище ще не можна з великою впевненістю стверджувати, що саме вплив світогляду виявився вирішальним чинником для виникнення доказу; не виключено ж, що це відбулося в силу інших причин: потреб виробництва, запитів елементів природознавства, суб'єктивних спонукань дослідників. Проте можна переконатися, що кожна з цих причин не змінила принципово свого характеру в порівнянні з догрецькою епохою і безпосередньо не призводить до перетворення математики в доказову науку. Наприклад, для задоволення потреб техніки було цілком достатньо практичної науки древнього Сходу, у справедливості положень якої можна було переконатися емпірично. Сам процес виявлення цих положень показав, що вони дають достатню для практичних потреб точність.

Можна вважати одним із спонукальних мотивів виникнення доказу необхідність осмислення й узагальнення результатів попередників. Проте і цьому чиннику не належить вирішальна роль, тому що, наприклад, існують теорії, які сприймаються нами як очевидні, але отримали суворе обгрунтування в античній математиці (наприклад, теорія подільності на 2).

Поява потреби доказу в грецькій математиці одержує задовільне пояснення, якщо врахувати взаємодію світогляду на розвиток математики. У цьому відношенні греки істотно відрізняються від своїх попередників. У їх філософських і математичних дослідженнях виявляються віра в силу людського розуму, критичне відношення до досягнень попередників, динамізм мислення. У греків вплив світогляду перетворився зі стримуючого чинника математичного пізнання в стимулюючий, у діючу силу прогресу математики.

У тому, що обгрунтування прийняло саме форму доказу, а не зупинилося на емпіричній перевірці, вирішальним є поява нової, світоглядної функції науки. Фалес і його послідовники сприймають математичні досягнення попередників, насамперед для задоволення технічних потреб, але наука для них - щось більше, ніж апарат для рішення виробничих задач. Окремі, найбільше абстрактні елементи математики вплітаються в натурфілософську систему і тут виконують роль антипода міфологічним і релігійним віруванням. Емпірична підтверджуваність для елементів філософської системи була недостатньою в силу спільності їхнього характеру й убогості підтверджуваних фактів. Математичні знання ж на той час досягли такого рівня розвитку, що між окремими положеннями можна було встановити логічні зв'язки. Така форма обгрунтувань виявилася об'єктивно прийнятною для математичних положень.

Піфагорійська школа

На підставі даного вище дослідження мілетської школи можна лише переконатися в активному впливі світогляду на процес математичного пізнання тільки при радикальній зміні соціально-економічних умов життя товариства. Проте залишаються відкритими питання про те, чи впливає зміна філософської основи життя товариства на розвиток математики, чи залежить математичне пізнання від зміни ідеологічної спрямованості світогляду, чи має місце обернений вплив математичних знань на філософські ідеї. Можна спробувати відповісти на поставлені питання, звернувшись до діяльності піфагорейської школи.

Піфагореїзм як напрямок духовного життя існував протягом всієї історії Древньої Греції, починаючи з VI століття до н.е. І пройшов у своєму розвитку ряд етапів. Питання про їхню тимчасову тривалість складне і дотепер не вирішене однозначно. Основоположником школи був Піфагор Самосський (бл. 580-500 до н.е.). Жоден рядок, написаний Піфагором, не зберігся; взагалі невідомо, чи вдавався він до письмової передачі своїх думок. Що було зроблено самим Піфагором, а що його учнями, встановити дуже важко. Свідчення про нього старогрецьких авторів суперечливі; якоюсь мірою різноманітні оцінки його діяльності відбивають різноманіття його навчання.

У піфагореїзмі виділяють дві складові: практичну («піфагорейський спосіб життя») і теоретичну (визначена сукупність навчань). У релігійному навчанні піфагорійців найбільш важливою рахувалась обрядова сторона, потім малося на увазі створити визначений щиросердечний стан і лише потім по значимості йшли вірування, у трактуванні яких припускалися різні варіанти. У порівнянні з іншими релігійними плинами в піфагорійців були специфічні уявлення про природу і долю душі. Душа - істота божественна, вона укладена в тіло на кару за гріхи. Вища ціль життя - звільнити душу з тілесної в'язниці, не впустивши в інше тіло, що нібито відбувається після смерті. Шляхом для досягнення цієї цілі є виконання визначеного морального кодексу, «піфагорейський спосіб життя». У численній системі розпоряджень, що регламентували майже кожен крок життя, значне місце приділялося заняттям музикою і науковими дослідженнями.

Теоретична сторона піфагореїзму тісно пов'язана з практичною. У теоретичних вишукуваннях піфагорійці бачили кращий засіб звільнення душі з кола народжень, а їхні результати ринулися використовувати для раціонального обгрунтування гаданої доктрини. Мабуть, у діяльності Піфагора і його найближчих учнів наукові положення були перемішані з містикою, релігійними і міфологічними уявленнями. Вся ця «мудрість» викладалася в якості изречений оракула, яким придавався прихований зміст божественного одкровення.

Основними об'єктами наукового пізнання в піфагорійців були математичні об'єкти, у першу чергу числа натурального ряду (пригадаємо знамените «Число є сутність усіх речей»). Значне місце приділялося вивченню зв'язків між парними і непарними числами. В області геометричних знань увага акцентується на найбільших абстрактних залежностях. Піфагорійцями була побудована значна частина планіметрії прямокутних фігур; вищим досягненням у цьому напрямку був доказ теореми Піфагора, окремі випадки якої за 1200 років до цього приводяться в клинописних текстах вавилонян. Греки доводять її загальною уявою. Деякі джерела приписують піфагорійцям навіть такі видатні результати, як побудова п'ятьох правильних багатогранників.

Числа в піфагорійців виступають основними універсальними об'єктами, до яких передбачалося зводити не тільки математичні побудови, але і все різноманіття дійсності. Фізичні, етичні, соціальні і релігійні поняття одержали математичне фарбування. Науці про числа й інші математичні об'єкти приділяється основне місце в системі світогляду, тобто фактично математика об'являється філософією. Як писав Аристотель,»… у чисел вони вбачали, здавалося б, багато подібних рис із тим, що існує і відбувається, - більше, ніж у вогню, землі і води… У них, очевидно, число приймається за початок і в якості матерії для речей, і в якості вираження для їхніх станів і властивостей… Наприклад, такою-то властивістю чисел є справедливість, а такою-то - душа і розум, іншою - вдача, і можна сказати - у кожному з інших випадків точно також.»

Якщо порівнювати математичні дослідження ранньої піфагорейської і мілетської шкіл, то можна виявити ряд істотних розходжень. Так, математичні об'єкти розглядалися піфагорійцями як першосутність світу, тобто радикально змінилося саме розуміння природи математичних об'єктів. Крім того, математика перетворена піфагорійцями в складове релігії, у засіб очищення душі, досягнення безсмертя. І нарешті, піфагорійці обмежують область математичних об'єктів найбільше абстрактними типами елементів і свідомо ігнорують додатки математики для рішення виробничих задач. Але чим же обумовлені такі глобальні розбіжності в розумінні природи математичних об'єктів у школах, що існували практично в той самий час і черпали свою мудрість, очевидно, із того самого джерела - культури Сходу? Втім, Піфагор, швидше за все, користувався досягненнями мілетської школи, тому що в нього, як і у Фалеса, виявляються основні ознаки розумової діяльності, що відрізняються від догрецької епохи; проте математична діяльність цих шкіл носили істотно різноманітний характер.

Аристотель був одним із перших, хто спробував пояснити причини появи піфагорівської концепції математики. Він бачив їх у межах самої математики: «Так звані піфагорійці, зайнявшись математичними науками, уперше рушили їх вперед і, виховавшись на них, стали вважати їх початками всіх речей.» Подібна точка зору не позбавлена підстави хоча б у силу придатності математичних положень для вираження відношень між різноманітними явищами. На цій підставі можна, неправомірно розширивши даний момент математичного пізнання, прийти до твердження про виразність всього існуючого за допомогою математичних залежностей, а якщо вважати числові відношення універсальними, то «число є сутність усіх речей». Крім того, до часу діяльності піфагорійців математика пройшла довгий шлях історичного розвитку; процес формування її основних положень губився в темряві століть. Таким чином, з'являлася спокуса зневажити ним і оголосити математичні об'єкти чимось первинним стосовно існуючого світу. Саме так і зробили піфагорійці.

У радянській філософській науці проблема появи піфагорівської концепції математики розглядалася, природно, із позицій марксистсько-ленінської філософії. Так, О.И. Кедровський пише:»… Вироблена ним (Піфагором) концепція об'єктивно виявилася ідеологією цілком визначених соціальних прошарків товариства. Це були…представники аристократії, які утискалися демосом… Для них характерне прагнення піти від тяготи земного життя, обертання до релігії і містики». Ця точка зору, як і перша, не позбавлена змісту; істина ж, мабуть, знаходиться десь посередині. Проте, на мій погляд, крах піфагорійського навчання варто зв'язувати в першу чергу не з виродженням аристократії як класу, а зі спробою піфагорійців зіпсувати самому природу процесу математичного пізнання, позбавивши математику таких важливих джерел прогресу, як додатки до виробництва, відкрите обговорення результатів досліджень, колективна творчість, утримати прогрес математики в рамках рафінованого навчання для присвячених. До речі, самі піфагорійці підірвали свій основний принцип «число є сутність усіх речей», відкривши, що відношення діагоналі і сторони квадрата не виражається за допомогою цілих чисел.

Таким чином, вже у вихідному пункті свого розвитку теоретична математика була схильна впливу боротьби двох типів світогляду - матеріалістичного і релігійно-ідеалістичного. Ми ж переконалися, що поряд із впливом світогляду на розвиток математичного пізнання має місце й обернений вплив.

Елейска школа

Елейска школа досить цікава для дослідження, тому що це одна з найдавніших шкіл, у працях якої математика і філософія достатньо тісно і різнобічно взаємодіють. Основними представниками елейскої школи вважають Парменида (кінець VI-V ст. до н.е.) і Зенона (перша половина V ст. до н.е.).

Філософія Парменида полягає в наступному: усілякі системи світорозуміння базуються на одній з трьох посилок: 1)Є тільки буття, небуття немає; 2)Існує не тільки буття, але і небуття; 3) Буття і небуття тотожні. Вірною Парменид визнає тільки першу посилку. Відповідно до нього, буття єдине, неподільне, незмінне, позачасне, закінчено в собі, тільки воно істинно існуюче; множинність, мінливість, переривчастість, текучість - усе це уділ мнимого.

З захистом навчання Парменида від заперечень виступив його учень Зенон. Древні приписували йому сорок доказів для захисту навчання про єдність існуючого (проти множинності речей) і п'ять доказів його нерухомості (проти рухомості). З них до нас дійшло усього дев'ять. Найбільшою популярністю за всіх часів користувалися зенонові докази проти рухомості; наприклад, «рухомість не існує на тій підставі, що тіло, що переміщається, повинно колись дійти до половини, перед тим як до кінця, а щоб дійти до половини, потрібно пройти половину цієї половини і т.д.».

Аргументи Зенона призводять до парадоксальних, з погляду «здорового глузду», висновків, але їх не можна було просто відкинути як неспроможні, оскільки і за формою, і по змісту задовольняли математичним стандартам тієї пори. Розклавши апорії Зенона на складові частини і рухаючись від висновків до посилок, можна реконструювати вихідні положення, що він узяв за основу своєї концепції. Важливо відзначити, що в концепції еліатів, як і в дозеноновскій науці фундаментальні філософські уявлення істотно спиралися на математичні принципи. Значне місце серед них займали такі аксіоми:

Сума нескінченно великого числа будь-яких, хоча б і нескінченно малих, але протяжних розмірів повинна бути нескінченно великою;

Сума будь-якого, хоча б і нескінченно великого числа непротяжних розмірів завжди дорівнює нулю і ніколи не може стати деяким заздалегідь заданим протяжним розміром.

Саме в силу тісного взаємозв'язку загальних філософських уявлень із фундаментальними математичними положеннями удар, нанесений Зеноном по філософських поглядах, істотно торкнув системи математичних знань. Цілий ряд найважливіших математичних побудов, що рахувалися до цього безсумнівно вірними, у світлі зеноновських побудов виглядали як суперечливі. Міркування Зенона призвели до необхідності переосмислити такі важливі методологічні питання, як природа безкрайості, співвідношення між безупинним і перериваним і т. п. Вони звернули увагу математиків на нетривкість фундаменту їхньої наукової діяльності й у такий спосіб зробили стимулюючий вплив на прогрес цієї науки.

Варто звернути увагу і на зворотну зв'язок - на роль математики у формуванні елейскої філософії. Так, встановлено, що апорії Зенона пов'язані з перебуванням суми безкінечної геометричної прогресії. На цій підставі радянський історик математики Э. Кольман зробив припущення, що «саме на математичний грунті підсумовування таких прогресій і виростили логіко-філософські апорії Зенона». Проте таке припущення, очевидно, позбавлено достатніх основ, тому що воно занадто жорстко зв'язує навчання Зенона з математикою при тому, що існуючі історичні дані не дають підстави підтверджувати, що Зенон взагалі був математиком.

Величезне значення для наступного розвитку математики мало підвищення рівня абстракції математичного пізнання, що відбулося у великому ступені завдяки діяльності еліатів. Конкретною формою прояву цього процесу було виникнення побічного доказу («від противного»), характерною рисою якого є доказ не самого твердження, а абсурдності оберненого йому. У такий спосіб був зроблений крок до становлення математики як дедуктивної науки, створені деякі передумови для її аксіоматичної побудови.

Отже, філософські міркування еліатів, з одного боку, стали потужним поштовхом для принципово нової постановки найважливіших методологічних питань математики, а з іншого боку - послужили джерелом виникнення якісно нової форми обгрунтування математичних знань.

Література

Сократ. Платон. Аристотель. Ю.М. Шопенгауер: Биографические повествования. - Урал, 1995. - (Жизнь замечательных людей. Биографическая библиотека Ф. Павленкова).

Туган - Барановский М.И. К лучшему будущему. - М.: РОССПЗН, 1996. - (Научная философия).

Сокуляр З.А. Проблема основания знания: (Гносеологические концепции Л. Витгенштейна и К. Поппера) / отв. ред. Е.А. Мамчур; АН СССР, ИНИНОН. - М.: Наука, 1988.

Татаркевич В. Історія філософії. - Львів: Свічадо. 1997.

Горан В.П. Необходимость и случайность в философии Демокрита /Отв. ред. М.Г. Федеров. - Новосибирск: Наука. Сиб. Отд-ние, 1984.

Луканин Р.К. «Органон» Аристотеля /Отв. ред. В.В. Соколов. - М.: Наука, 1984.

Панченко Д.В. Платон и Атлантида /АН СССР. - Л.: Наука. Ленингр. отд-ние, 1990.

Нерсесянц, В.С. Платон. - М.: Юрид. Лит., 1984.

Платон. Диалоги / Платон; АН СССР, Ин-т философии. - М.: Мысль, 1986.

Учебники платоновской философии. /Сост. Шигалин Ю.А. - М.: Водолей, 1995.

Жмузь Л.Я. Пифагор и его школа (ок. 530 - ок. 430 гг. до н.э.) / АН СССР. - Л.: Наука. Ленингр. отд-ние, 1990.


Подобные документы

  • Поняття і загальна характеристика соціальної психології. Філософія психології як світогляд, пізнання. Що визначає характер суспільного устрою. Взаємозв’язок соціальної філософії та філософії психології. Основні проблеми становлення філософії як науки.

    реферат [35,0 K], добавлен 26.04.2016

  • Особливості наукової революції XVI—XVII ст. та її вплив на розвиток філософії. Історичні передумови появи філософії нового часу, її загальна спрямованість та основні протилежні напрями. Характеристика діяльності основних філософів: Ф. Бекона, Р. Декарта.

    реферат [29,5 K], добавлен 18.02.2011

  • Зародки філософського мислення в Індії. Ведична література. Побудова соціальної філософії на принципах етики страждань і щастя. Становлення філософської думки у Стародавньому Китаї. Філософія стародавніх греків і римлян. Мілетська та Піфагорійська школи.

    реферат [28,8 K], добавлен 28.02.2009

  • Формування філософських ідеї в Древній Індії, осмислення явищ світу у "Упанішадах". Філософська думка в Древньому Китаї - творчість Лаоцзи і Конфуція. Періоди розвитку грецької філософії. Духовні витоки Росії, їх особливості, історичні етапи становлення.

    реферат [49,9 K], добавлен 14.03.2010

  • Період "високої класики" в філософії як період розквіту давньогрецької філософії з середини V до кінця IV століття до нашої ери. Провідні риси цього етапу розвитку філософії. Особливості філософської системи Платона. Провідні ідеї філософії Аристотеля.

    контрольная работа [28,4 K], добавлен 20.02.2011

  • Періодизація розвитку античної філософії. Представники мілетської філософії, принципи Анаксимандра. Уявлення про походження життя та природу. Атомістичне вчення Левкіппа та Демокріта. Наукові ідеї Епікура та Платона, метафізика Арістотеля та софісти.

    реферат [34,6 K], добавлен 06.03.2011

  • Особливості філософії серед різних форм культури. Співвідношення філософії та ідеології, науки, релігії, мистецтва. Ведична релігія і брахманізм. Створення вчення про перевтілення душ. Процес переходу від міфологічно-релігійного світогляду до філософії.

    контрольная работа [91,7 K], добавлен 04.01.2014

  • Етапи становлення позитивістської філософії науки. Особливість спрямування еволюції уявлень про навчання від монізму до плюралізму. Аналіз суб’єктності та об’єктивності знання. Суть принципу верифікації, який відстоювали представники неопозитивізму.

    статья [27,3 K], добавлен 27.08.2017

  • Становлення та розвиток політичної філософії. Зв'язок філософії епохи Просвітництва з її політичними наслідками: реформацією, лібералізмом, марксизом. Ленін і філософія. Етика, фундаментальний дуалізм і метафізика політики: позитивний і природний закони.

    реферат [32,5 K], добавлен 24.09.2014

  • Філософія як особлива сфера людського знання і пізнання, основні етапи її зародження та розвитку, місце та значення в сучасному суспільстві. Характеристика та специфічні риси античної філософії, її найвидатніші представники, її вклад в розвиток науки.

    контрольная работа [10,6 K], добавлен 23.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.