Этапы развития логики как науки и основные направления современной символической логики

Краткие сведения из истории классической и неклассических логик. Развитие логики в связи с проблемой обоснования математики. Основные положения теории интуиционистской, конструктивной, многозначной, модальной, положительной и паранепротиворечивой логик.

Рубрика Философия
Вид лекция
Язык русский
Дата добавления 26.08.2010
Размер файла 168,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Система Fхо и другая построенная автором бесконечнозначная логика Gхо в совокупности охватывают оба направления в процессе познания - как в сторону истины, так и, к сожалению, в сторону лжи, заблуждения.

§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)

В главе IV “Законы (принципы) правильного мышления” была проанализирована специфика действия закона исключенного третьего при наличии “неопределенности” в познании, сделан вывод, что закон этот применяется там, где познание имеет дело с жесткой ситуацией: или - или, истина - ложь. Во многих неклассических логических системах формулы, соответствующие законам исключенного третьего и непротиворечия, не являются тавтологиями.

Ниже приведена таблица (см. с. 430), в которой знаком “ + ” обозначено то, что в указанной логической системе закон непротиворечия и закон исключенного третьего, т. е. формулы и , являются тавтологиями (или выводимыми формулами), и соответственно знаком “ - ”, когда не являются. Рассмотрено, кроме того, отрицание закона непротиворечия, выражающееся формулой , и отрицание закона исключенного третьего, выражающееся формулой . В этих формулах имеется в виду та форма отрицания, которая принята в указанной логической системе.

Вид логической системы

Закон исключенного третьего

a

Закон

непротиворечия

Отрицание закона исключенного третьего

Отрицания

закона

непротиворечия

Формальное противоречие

1. Двузначная классическая логика

+

+

-

-

-

2. Трехзначная логика Лукасевича

-

-

-

-

-

3. Трехзначная логика Рейтинга

-

+

-

-

-

4. Трехзначная логика Рейхенбаха:

а)циклическое отрицание

-

-

-

-

-

б) диаметральное отрицание

-

-

-

-

-

в) полное отрицание

+

+

-

-

-

5.т-значная логика Поста: а)первое отрицание

-

-

-

-

-

б)второе отрицание

-

-

-

-

-

6. Конструктивная логика Маркова

-

+

-

-

-

7. Конструктивная логика Гливенко

-

+

-

-

-

8. Конструктив-ная логика Колмогорова

-

+

-

-

-

9. Интуиционистская логика Гейтинга

-

+

-

-

-

В интуиционистской и конструктивных логиках закон исключенного третьего для бесконечных множеств “не работает”. Осуществимость в конструктивной математике понимается как потенциальная осуществимость конструктивного процесса, дающего в результате один из членов дизъюнкции, который должен истинным. Но так как для бесконечных множеств нет алгоритма распознавания, что является истинным: а или не-а, то конструктивная логика отвергает закон исключенного третьего в пределах конструктивной математики.

Итак, из таблицы видно, что формула a , соответствующая закону исключенного третьего, из рассмотренных 12 видов отрицания не является тавтологией, или доказуемой формулой, для 10 видов.

6.1 Специфика закона непротиворечия в неклассических логиках

В результате исследования 9 формализованных логических систем выявлено, что из 12 приведенных видов отрицания для 7 видов закон непротиворечия является тавтологией (или доказуемой формулой), для остальных же 5 закон непротиворечия тавтологией (доказуемой формулой) не является. По сравнению с законом исключенного третьего закон непротиворечия более устойчив.

Закон непротиворечия не является тавтологией во многих многозначных логиках. В классической, интуиционистской и конструктивных логиках закон непротиворечия, наоборот, признается неограниченно действующим. Причина в том, что в многозначных логиках число значений истинности может быть как конечным (большим 2), так и бесконечным. В логических системах, в которых отражена жесткая ситуация, “или - или” (истина - ложь), закон непротиворечия и закон исключенного третьего - тавтологии. Но это предельные случаи в познании (истина или ложь). Если же в процессе познания мы еще не достигли истины или еще не опровергли какое-либо утверждение (доказав его ложность), то нам приходится оперировать не истинными или ложными, а неопределенными суждениями.

Классическая двузначная логика должна быть дополнена многозначными логиками, в частности бесконечнозначной логикой, которая применима в процессе рассуждения об объектах, отражаемых в понятиях с нефиксированным объемом, и бесконечное число значений истинности которой лежит в интервале от 1 до 0. Совсем другие ситуации в познании отражены в конструктивных и интуиционистской логиках: конструктивный процесс или имеется (осуществляется), или его нет, но то и другое не может иметь места одновременно по отношению к одному и тому же конструктивному объекту или процессу, поэтому закон непротиворечия в этих логиках действует неограниченно. В конструктивных логиках приняты абстракции, отличные от тех, которые приняты в многозначных логиках. В конструктивных и интуиционистской логиках принимаются лишь два знамения истинности - истина и ложь, доказуемо (выводимо) или недоказуемо (невыводимо), поэтому закон непротиворечия - выводимая формула.

Однако независимо от того, является ли закон непротиворечия в той или иной логической системе тавтологией или не является, сами логические системы строятся непротиворечиво: иными словами, метатеория (металогика) построения формализованных систем подчиняется закону непротиворечия, иначе такие системы были бы бесполезными, так как в них было бы выводимо все что угодно - как истина, так и ложь.

Очень важным в гносеологическом и логическом плане результатом является то, что закон непротиворечия и закон исключенного третьего нельзя опровергнуть, так как отрицание этих законов ни в одной из известных форм, ни в одной из исследованных автором 18 логических системах не является тавтологией (или выводимой, доказуемой формулой), что свидетельствует об их фундаментальной роли в познании. Закон непротиворечия - один из основных законов правильного человеческого мышления - устойчив, его нельзя опровергнуть и заменить другим, в противном случае стерлось бы различие в познании между истиной как его целью и ложью.

Многообразие логических систем свидетельствует о развитии науки логики в целом и ее составных частей, в том числе теории основных фундаментальных формально-логических законов - закона непротиворечия и закона исключенного третьего.

§ 7. Модальные логики

В классической двузначной логике рассматривались простые и сложные ассерторические суждения, т. е. такие, в которых не установлен характер связи между субъектом и предикатом, например: “Морская вода соленая” или “Дождь то начинал хлестать теплыми крупными каплями, то переставал”.

В модальных суждениях раскрывается характер связи между субъектом и предикатом или между отдельными простыми суждениями в сложном модальном суждении. Например: “Необходимо, что металлы - проводники электрического тока” или “Если будет дуть попутный ветер, то, возможно, мы приплывем в гавань до наступления темноты”.

Модальными являются суждения, которые включают модальные операторы (модальные понятия), т. е. слова “необходимо”, “возможно”, “невозможно”, “случайно”, “запрещено”, “хорошо” и многие другие (см. главу III, § 6 “Деление суждений по модальности”). Модальные суждения рассматриваются в специальном направлении современной формальной логики - в модальной логике.

Изучение модальных суждений имеет длительную и многогранную историю. Мы отметим лишь некоторые из ее аспектов. Модальности в логику были введены Аристотелем. Термин “возможность”, по Аристотелю, имеет различный смысл. Возможным он называет и то, что необходимо, и то, что не необходимо, и то, что возможно. Исходя из понимания модальности “возможность”, Аристотель писал о неприменимости закона исключенного третьего к будущим единичным событиям.

Наряду с категорическим силлогизмом Аристотель исследует и модальный силлогизм, у которого одна или обе посылки и заключение являются модальными суждениями. Я. Лукасевич в книге “Аристотелевская силлогистика с точки зрения современной формальной логики” две главы посвящает аристотелевской модальной логике предложений (гл. VI) и модальной силлогистике Аристотеля (гл. VIII)'. Аристотель рассматривает модальную силлогистику по образцу своей ассерторической силлогистики: силлогизмы подразделяются на фигуры и модусы, неправильные модусы отбрасываются с помощью их интерпретации на конкретных терминах.

Согласно Аристотелю, случайность есть то, что не необходимо и не невозможно, т. е. р - случайно означает то же самое, что и р - не необходимо и р - не невозможно, но Лукасевич отмечает, что аристотелевская теория случайных силлогизмов полна серьезных ошибок2. Итог исследований Лукасевича такой: пропозициональная модальная логика Аристотеля имеет огромное значение для философии; в работах Аристотеля можно найти все элементы, необходимые для построения полной системы модальной логики; однако Аристотель исходил из двузначной логики', в то время как модальная логика не может быть двузначной. К идее многозначной логики Аристотель подошел вплотную, рассуждая о “будущем мореном сражении”. Следуя Аристотелю, Лукасевич в 1920 г. построил первую многозначную (трехзначную) логику. Так осуществляется связь модальных и многозначных логик.

Значительное внимание разработке модальных категорий уделяли философы в Древней Греции и особенно Диодор Крон, рассматривавший модальности в связи с введенной им временнбй переменной. В средние века модальным категориям также уделялось большое внимание. В XIX в. категорию вероятности разрабатывали Дж. Буль и П. С. Порецкий.

Возникновение модальной логики как системы датируется 1918г., когда американский логик и философ Кларенс Ирвинг Льюис (1883-1964) в работе “A Survey of Symbolic Logic” сформулировал модальное исчисление, названное им впоследствии S3.

В книге “Simbolic Logik”, написанной им совместно с К. Лэнгфордом в 1932 г., он сформулировал еще пять модальных логических систем, связанных с S3 и между собой. Это - системы S1, S2, S4, S5,S6.

Приведем описание модальной системы S12.

I. Исходные символы:

1. р, q, r и т. д. - пропозициональные переменные;

2. ~ р - отрицание р

3. р* q - конъюнкция p и q;

4. р q - строгая импликация льюисовской системы;

5. ?р- модальный оператор возможности (возможно p);

6. р = q - строгая эквивалентность, р = q равносильно ( рq)*(qp)

II. Аксиомы системы S1:

1) p*qq*p;

2) p*qp;

3) pp*p;

4) (p*q)*rp*(q*r),

5) р~ ~ р;

6)(pq)*(qr) [pr};

7) p*(pq) q.

Аксиома 5 может быть выведена из остальных, как было показано позднее. Так как конъюнкция связывает “сильнее”, чем импликация, то скобки можно опустить или заменить их точками; как это сделано у Льюиса.

III. Правила вывода S1:

1) Правило подстановки. Любые два эквивалентных друг другу выражения взаимозаменимы.

2) Любая правильно построенная формула может быть подставлена вместо р, или q. или r и т. д. в любом выражении.

3) Если выводим о р и выводим о q, то выводимо р * q .

4) Если выводим о р и выводим о р q , то выводимо q.

Льюис построил модальную пропозициональную логику S1 в виде расширения немодального (ассерторического) пропозиционального исчисления. При этом основные черты S1 и других его исчислений были скопированы с формализованной логической системы Principia Mathematica Рассела и Уайтхеда, сформулированы с помощью понятий, только терминологически отличающихся от понятий, использованных в Principia Mathematica. Кроме Рассела и Уайтхеда, идеи классической логики развивали многие современные математические логики, например, американский логик и математик С. Клини'. Исчисления Льюиса построены аксиоматически по образцу Principia, и по аналогии с Principia Льюис доказывает ряд специфических теорем.

В классической двузначной логике логическое следование отождествляется с материальной импликацией и допускаются такие формы вывода:

p> (q>p). (1)

т. е. истинное суждение следует из любого суждения (“истина следует откуда угодно”),

p>(>q) (2)

т. е. из ложного суждения следует любое суждение (“из лжи следует все, что угодно”). Это противоречит нашему содержательному, практическому пониманию логического следования, поэтому данные формулы, как и некоторые другие, и соответствующие им принципы логического следования называются парадоксами материальной импликации.

Льюис создал свои новые системы с целью избежать этих парадоксов и ввести новую импликацию, названную им “строгой импликацией”, такую, чтобы логическое следование представлялось не чисто формально, а по смыслу (содержательно) и новая импликация была ближе к связке естественного языка “если, то”. В строгой импликации Льюиса рq невозможно утверждать антецедент, т. е. р, и отрицать консеквент, т. е. q 1.

В системах Льюиса были устранены парадоксы материальной импликации, т.е. формулы (1) и (2) стали невыводимыми, но появились парадоксы строгой импликации. К ним относятся, например, такие формулы:

(~ ? ~p)(q p) (3)

(~ ? p) (p q) (4)

Итак, отождествлять строгую импликацию Льюиса со следованием нельзя.

С целью исключить парадоксы строгой импликации Льюиса немецкий математик и логик Ф. В. Аккерман (1896 -1962) построил свою систему модальной логики. Он ввел так называемую сильную импликацию, которая не тождественна строгой импликации Льюиса, и модальные операторы Аккермана и Льюиса также не являются тождественными. Аккерман все логические термины и модальные операторы определяет через сильную импликацию так: NA равносильно >л, МА равносильно. Здесь А - любая правильно построенная формула системы Аккермана; N- оператор необходимости; М- оператор возможности; -отрицание A; > обозначает сильную импликацию; -логическая постоянная, обозначающая “абсурдно”. Эта постоянная в свою очередь определяется так: А&, где & обозначает конъюнкцию. И последняя формула читается так: из противоречия, т. е. А и не-А, следует абсурд. В системе Аккермана не выводятся формулы, структурно подобные парадоксам материальной или строгой импликации.

Системы Льюиса и Аккермана являются бесконечнозначными. В отличие от этих систем первоначально построенные системы Лукасевича являются конечнозначными: одна - трехзначная (1920), другая - четырехзначная (1953). В четырехзначной системе Лукасевича1 также обнаружены парадоксы. Главный из них состоит в том, что ни одно аподиктическое предложение не истинно, т. е. ни одно суждение вида L (где L обозначает необходимость, а - любая формула) не является истинным. Это означало бы, что необходимых суждений нет, т. е. модальный оператор “необходимо” упраздняется. Лукасевич пишет: “Любое аподиктическое предложение должно быть отброшено”2. Сам Лукасевич считал это достоинством своей системы, а понятие “необходимость” - псевдопонятием. С такой точкой зрения, конечно, согласиться нельзя.

Интерпретации модальных логик различны. Известный австрийский философ и логик Р. Карнап (1891-1970) пытался интерпретировать модальные понятия (операторы) с помощью так называемой теории “возможных миров”, в которой допускается наличие множества “миров”, один из которых -действительный, реальный мир, а остальные - возможные миры. Необходимым объявляется то, что существует во всех мирах, возможным - то, что существует хотя бы в одном.

Р. Карнап в 1946 г., используя понятие “описание состояния”, предложил интерпретацию модальных операторов, в основе которой лежала идея различия возможного и действительного мира.

В ином направлении шел финский логик Я. Хинтикка. Критически переосмыслив введенное Карнапом понятие “описание состояния”, он разработал технику “модальных множеств”, т. е. миров (1957), - оригинальную семантическую концепцию возможных миров. Разработка семантики возможных миров для модальных логик продолжается.

Разнообразными проблемами модальной логики занимается американский логик Р. Фейс'.

В настоящее время разработаны многие виды модальностей, которые отражены в таблице, помещенной на с. 97 данного учебника.

Теорией модальных логик и построением новых модальных логических систем активно занимаются логики А. А. Ивин2, Я. А. Слинин3, Б. С. Чендов4,0. Ф. Серебряников, В. Т. Павлов и др.

§ 8. Положительные логики

Положительные логики (сокращенно - ПЛ) - это логики, построенные без операции отрицания. Их можно разделить на два вида:

1) ПЛ в широком смысле слова, или квазипозитивные логики. Они построены без операции отрицания, но отрицание может быть выражено средствами их логических систем;

2) ПЛ в узком смысле слова. Они построены без операции отрицания, и отрицание не может быть выражено в их системах.

Можно предложить классификацию ПЛ и по другому основанию: числу логических операций, на котором построена ПЛ.

Квазипозитивными логиками, построенными на одной операции, являются логика, построенная на операции “штрих Шеффера” (антиконъюнкция), и логика, основанная на операции антидизъюнкции. Квазипозитивная логика, построенная на операции антидизъюнкции, которая соответствует сложному союзу “ни..., ни...” и обозначается аb (“ни а, ни b), таблично определена так:

а

b

ab

И

И

Л

И

Л

Л

Л

И

Л

Л

Л

И

Ряд квазипозитивных логик основан на двух операциях. ПЛ в узком смысле, основанными на одной операции, являются импликативная логика, основанная на операции импликации, и логика, построенная на операции эквиваленции. Ряд ПЛ основан на двух операциях:

а) на импликации и конъюнкции;

б) на дизъюнкции и конъюнкции;

в) на импликации и дизъюнкции.

ПЛ (в узком смысле) является подсистемой (частичной системой) более сильных логик - интуиционистской и классической. Все утверждения ПЛ имеют силу как в интуиционистской логике, так и в классической логике. Внутри самих ПЛ также имеются различные по силе системы. Так, импликативная логика, включающая две аксиомы, слабее, чем ПЛ, включающая, кроме этих двух, аксиомы, характеризующие конъюнкцию и дизъюнкцию. Аксиоматическое построение подтверждает это соотношение: самой сильной является классическая логика, слабее интуиционистская, еще слабее ПЛ.

Общим для ПЛ в широком и узком смыслах является то, что среди логических констант этих систем нет операции отрицания.

Отличия этих систем следующие:

1) в квазипозитивных логиках операция отрицания выразима средствами этой логики, а в ПЛ в узком смысле операция отрицания не выразима;

2) квазипозитивные логики являются моделями классической логики, т.е. они эквивалентны классической логике высказываний, а ПЛ в узком смысле не эквиваленты классической логике, являясь ее подсистемами (частичными системами), следовательно, они слабее классической логики высказываний.

Роль ПЛ в искусственных языках весьма значительна. Особенно это касается конструктивной логики А. А. Маркова, которая строится на иерархии языков. В алфавите языка Я1, нет отрицания, и в нем нельзя выразить отрицание, ибо нет импликации. Марковым был построен язык Я1, который хотя и узок, но приспособлен для описания работы нормальных алгоритмов. Этот язык пригоден для выражения некоторых отношений между словами, встречающимися в чистой семиотике и в теории алгоритмов. С помощью языка Я1, (языка без отрицания) можно дать описание работы различных алгоритмов - и в этом состоит важное значение языка без операции отрицания.

Логическая система без операции логического отрицания находит свое применение при построении машинных программ. Но если взять искусственные языки - такие, как ФОРТРАН или КОБОЛ, которые позволяют воспользоваться высокоэффективным способом программирования, то в их состав, кроме логического сложения и логического умножения, входит и логическое отрицание, соответствующее частице “не” и обозначаемое знаком “ ”. Все инструкции о том, как произвести сборку замков, мебели, по использованию машин, инструментов, технических приборов и т. п. основаны на содержательном (не формализованном) использовании ПЛ.

§ 9. Паранепротиворечивая логика

Эта логика представляет одно из направлений современной неклассической математической логики. Объективной основой появления паранепротиворечивых логик является стремление отразить средствами логики специфику мышления человека о переходных состояниях, которые наряду с устойчивостью и относительным покоем наблюдаются в природе, обществе и познании. В природе и обществе происходят изменения, предметы и их свойства переходят в свою противоположность, поэтому нередки переходные состояния, промежуточные ситуации, неопределенность в познании, переход от незнания или неполного знания к более полному и точному. Действие законов двузначной логики - закона исключенного третьего и закона непротиворечия - в этих ситуациях ограничено или вообще исключено. На необщезначимость этих законов указывал еще Аристотель. Говоря о будущих единичных случайных событиях, по Аристотелю, нельзя считать суждение истинным или ложным, оно неопределенно.

Закон непротиворечия утверждает, что два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении. Но в разное время они могут быть оба истинными. Аристотель писал: “Все изменяющееся необходимо должно быть делимым... необходимо, чтобы часть изменяющегося предмета находилась в одном (состоянии), часть - в другом, так как невозможно сразу быть в обоих или ни в одном”'.

Вследствие неопределенности интервалов и неопределенности состояний изменяющегося предмета предполагается временная интервальная Паранепротиворечивая семантика, допускающая истинность как высказывания А, так и не-А. Кроме временных интервалов с переходными состояниями, наше мышление имеет дело с так называемыми нечеткими понятиями (нежесткими, расплывчатыми, размытыми -fuzzy), отражающими нежесткие множества, концепция которых предложена в 1965 г. американским математиком Л. Заде2. Все это обусловило необходимость и возможность появления паранепротиворечивых логик (paraconsistent logics) -логических исчислений, которые могут лежать в основе противоречивых формальных теорий. Противоречивые данные возникают на судебных заседаниях, в дискуссиях, полемике, при постановке диагноза болезни, в научных теориях (прежних и новых), в ситуациях, связанных с решением нравственных проблем, в других сферах интеллектуальной деятельности. В связи с этим встала проблема создания информационной системы, работающей с противоречивыми данными.

Предшественниками паранепротиворечивой логики как нового вида неклассичесиой формальной логики явились логики Н. А. Васильева и Я. Лукасевича. Как новый вид математической логики паранепротиворечивая логика разрабатывалась в работах польского логика Ст. Яськовского (1948) и бразильского математика Ньютона да Коста (начиная с 1958 г.) История паранепротиворечивой логики изложена бразильским логиком А. И. Аррудой в работе “Обзор паранепротиворечивой логики. Математическая логика в Латинской Америке”'.

В паранепротиворечивых системах принцип (закон) непротиворечия лишен всеобщей значимости. Логике не присущи ни единство, ни абсолютность - эту мысль мы встречаем у многих современных логиков, в том числе у Н. да Косты. В статье, написанной специально для журнала “Философские науки”, “Философское значение паранепротиворечивой логики” Н. да Коста пишет: “Допустим, что имеющийся у нас язык дедуктивной теории Т содержит в себе символ отрицания. Т называют противоречивой (inconsistent) теорией, если и только если в Т имеются две теоремы, одна из которых есть отрицание другой; в противоположном случае Т считается непротиворечивой (consistent). Т считают тривиальной, если и только если все формулы (или все высказывания [sentences]) языка Т являются также теоремами Т; в противном случае мы называем Т нетривиальной... Система логики паранепротиворечива, если она может быть использована как логика, лежащая в основе противоречивых, но нетривиальных теорий”2. Н. да Коста полагает, что вместо стандартных теорий множеств могут быть использованы паранепротиворечивые теории множеств.


Подобные документы

  • Возникновение и этапы развития традиционной формальной логики. Аристотель как основатель логики. Создание символической логики, виды логических исчислений, алгебра логики. Метод формализации. Становление диалектической логики, работы И. Канта, Г. Гегеля.

    реферат [26,9 K], добавлен 19.01.2009

  • История возникновения и дальнейшего развития логики как науки, а также анализ ее современного значения и содержания. Особенности становления и сравнительная характеристика символической (математической), индуктивной, диалектической и формальной логики.

    контрольная работа [33,4 K], добавлен 01.12.2010

  • Причины возникновения и этапы становления традиционной логики. Вклад Аристотеля, Ф. Бэкона, Дж. Милля, Р. Декарта, М. Каринского в развитие логического знания. История создания и основные концепции символической (математической) и диалектической логики.

    реферат [32,8 K], добавлен 05.01.2013

  • Сущность и содержание модальной логики, ее отличительные признаки от классической, история становления и развития, применение принципов на современном этапе. Система модальной силлогистики. Основные принципы и сферы применения вероятностной логики.

    реферат [16,6 K], добавлен 13.08.2010

  • Сущность и содержание логики как научного направления, предмет и методы ее исследования, основные этапы становления и развития в мире. Этапы создания символической логики и ее отличительные особенности, направления и сферы практического применения.

    реферат [12,3 K], добавлен 26.09.2011

  • Логика как самостоятельная наука. Предмет и значение логики. Теоретические проблемы логики. Основные этапы развития логики. Логика и мышление. Предмет формальной логики и ее особенности. Мышление и язык. Основные правила научного исследования.

    курс лекций [29,4 K], добавлен 09.10.2008

  • Причины возникновения и этапы развития науки логики. Аристотель как основоположник формальной логики. Дедуктивный метод Декарта. Процедуры противопоставления предикату, противопоставления субъекту. Умозаключения, соответствующие 1 и 2 фигурам силлогизма.

    контрольная работа [88,7 K], добавлен 23.06.2017

  • С чего началась наука логика. Формирование логики как самостоятельной науки. Внутренняя структура человеческого мышления. Законы и правила логики. Двухчленные и трехчленные суждения. Закон противоречия с логических позиций. Основные элементы силлогизма.

    контрольная работа [22,4 K], добавлен 26.03.2011

  • Зарождение формальной логики и ее развитие в недрах философии. Основные периоды истории развития логики, философские идеи логики Древней Индии и Древнего Китая. Вопросы создания логических систем, представления о формах умозаключений и теории познания.

    реферат [25,2 K], добавлен 16.05.2013

  • Сущность мышления в системе познания, способы взаимопонимания, логика объяснения. Предмет и семантические категории традиционной формальной логики. Этапы становления логики как науки. Простое суждение и его логический анализ. Основы теории аргументации.

    курс лекций [138,4 K], добавлен 02.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.