Этапы развития логики как науки и основные направления современной символической логики
Краткие сведения из истории классической и неклассических логик. Развитие логики в связи с проблемой обоснования математики. Основные положения теории интуиционистской, конструктивной, многозначной, модальной, положительной и паранепротиворечивой логик.
Рубрика | Философия |
Вид | лекция |
Язык | русский |
Дата добавления | 26.08.2010 |
Размер файла | 168,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Согласно законам диалектики, тождество и различие являются двумя сторонами единого предмета или процесса. Отражение отношений тождества и различия, имеющихся в самих предметах действительного мира, находит свое выражение и в мышлении в формах умозаключений. Поэтому отбросить различие, выражающееся в отрицательных суждениях, и все свести только к тождеству, выражающемуся в утвердительных суждениях, нельзя, да и нет в этом необходимости. Единство противоположностей - тождества и различия - неразрывно.
Интересны и оригинальны взгляды Джевонса на категорический силлогизм с двумя отрицательными посылками. Джевонс утверждает, что его принцип умозаключения ясно отличает случаи, когда оно оказывается правильным, от тех случаев, когда оно неправильно. Он приводит пример умозаключения:
Все, что не металлично, не способно к сильному магнитному влиянию.
Уголь не металличен.
Уголь не способен к сильному магнитному влиянию.
Здесь из двух отрицательных посылок получается истинное отрицательное заключение. Джевонс считает; что там, где возможно подставлять тождественное вместо тождественного, допустим вывод заключения из двух отрицательных посылок.
Джевонс внес значительный вклад в алгебру логики, особенно в проблему отрицания классов и отрицательных суждений.
Следующий этап в развитии математической логики связан с именем русского логика, математика и астронома Платона Сергеевича Порецкого (1846-1907). Его работы' существенно обобщают и развивают достижения Буля, Джевонса и Шредера.
Анализируя понятия, Порецкий различает две формы: форму, обладающую данным признаком, обозначаемую буквами а, b, с..., и форму, им не обладающую, обозначаемую а, b,с…, и т. д.2 Формы совместного обладания или необладания несколькими признаками записывает так: a,a1 ,b,b1 (без особого знака между буквами). Современное пересечение классов Порецкий называет операцией реализирования (умножения), обозначая ее “ * ”, а операцию объединения классов - абстрагированием (сложением), обозначая ее “ ? ”, т. е. знаком вопроса; 0 и 1 обозначают пустой класс и универсальный. Порецкий вводит операцию отрицания классов (отрицание а обозначается через а1,) - это дополнение к классу а. Для каждого данного а его отрицание, т. е. о,, может быть различно. Это определяется избранным универсальным классом. Так, если за 1, т. е. универсум, принять англичан, а за а класс артистов, то а1, означает англичан-не-артистов, но если 1 обозначает класс людей, то a1, обозначает людей-не-артистов и т. д.
Заслуга Порецкого в том, что он рассматривал логические операции не только над отдельными логическими классами, но и над логическими равенствами. Порецкий считает, что если два класса состоят из одних и тех же предметов, т.е. имеют равные объемы и могут отличаться только формой, то они равны между собой. Соединяя равные классы знаком “ = ”, мы получаем логическое равенство. Равенством логических классов русский логик называет полную их тождественность, т. е. одинаковость их логического содержания, считая, что все их различие может состоять только в способе их происхождения. Примером такого равенства является закон де Моргана: (m + n), = т1 * n1. Если классы а и b равны, то и их отрицания, т. е. классы а и b, также равны. По его мнению, отрицание всякого равенства приводит к новому равенству, тождественному первоначальному.
По мнению Порецкого, операция отрицания неприменима к системам равенств. К соединению двух и более равенств в одно новое равенство применимы лишь две логические операции: сложение и умножение отдельных частей равенств, причем предварительно каждое отдельное равенство может быть в случае надобности заменено его отрицанием.
В созданной им теории логики Порецкий подчеркивал взаимосвязь двух проблем: выведения следствия из заданной системы посылок и нахождения тех посылок, из которых данное логическое равенство может быть получено в качестве следствия. Несколько подробнее остановимся на методе нахождения всех простых следствий из данных посылок, который в теории логики получил название метода Порецкого - Блэйка (его предложил американский математик Блэйк' на основе работы Порецкого).
Простым следствием из данных посылок называется дизъюнкция каких-либо букв или их отрицаний, являющаяся логическим следствием из этих посылок, и притом таким, которое не поглощается никаким более сильным следствием такого же вида. (Мы говорим, что а сильнее b, если из а следует b, но из b не следует а). Все простые следствия из данных посылок можно получить, выполнив преобразования следующих пяти типов:
1) привести конъюнкцию посылок к конъюнктивной нормальной форме (КНФ). КНФ есть конъюнкция из дизъюнкции элементарных высказываний или их отрицаний, эквивалентная данному выражению, т. е. если есть импликация, то ее надо заменить на дизъюнкцию по формуле (а > b= b);
2) произвести все операции “отбрасывания”, т. е. члены вида a x (или а * х * ) можно исключить, так как этот член тождественно истинен;
3) использовать законы выявления, т. е. формулы
ах ^ b = ах ^ b ^ аb; или ax b = ax b ab;
4) произвести все “поглощения” на основании законов поглощения:
а ^ (a b) = а и а (а ^ b)= а;
5) из всех повторяющихся членов оставить только один (на основании законов идемпотентности).
В результате получится силлогистический многочлен, который будет содержать все простые следствия из данных посылок, и только простые следствия. Они интереснее, чем обычные логические следствия, так как зависят от меньшего числа пара метров (элементарных высказываний).
Покажем это на конкретном примере. Из данных трех посылок, имеющих соответственно, формы (1) q >, (2) p q и (3) r, требуется вывести все разные (неэквивалентные между собой) формы простых логических следствий. Для решения задачи выполним следующие операции:
1. Соединяем посылки знаками конъюнкции и приводим выражение в КНФ:
(q >) ^ (p q) ^ r = () ^ (p q) ^ r
или в другой записи
pq ^ r.
2. В полученной КНФ к членам 1 и 3 применяем закон выявления, получаем
^ pq ^ r = ^ pq ^
Затем ко второму и четвертому членам снова применяем этот же закон.
^ pq ^ r ^ = ^ pq ^ r ^ ^ p
3. Произведем операции “поглощения”. Первый член ( ) поглощается четвертым (), поэтому отбрасываем первый член, а второй член (pq) поглощается пятым членом (p). В результате этого получим
^ pq ^ r ^ ^ p =r ^ ^ p
Вывод: при данных посылках суждения r и р истинны, а суждение q ложно, т. е. если суждениями выражены некоторые события, то событие r и событие р наступят, а событие q не наступит.
Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий и в наши дни.
В XX в. математическая логика развивалась в трудах Ч. С. Пирса и Дж. Пеано.
Американский логик Чарльз Сандерс Пирс (1839-1914) внес существенный вклад в разработку алгебро-логических концепций и явился основоположником новой науки - семиотики (общей теории знаков). В работах Пирса содержится тенденция к расчленению семиотики на прагматику (анализирует отношение знака к его исследователю), семантику (выясняет отношение знака к обозначаемому им объекту) и синтактику (исследует взаимоотношения между знаками).
Пирс пишет о том, что реальное можно определить как нечто, свойства которого независимы от того, что о них мыслят. Наиболее общим подразделением знаков он считал такие: изображения (icons), индексы (indices) и символы (symbols). Пирс предлагал классификацию знаков и по другим основаниям.
Пирс предложил строить исчисление высказываний лишь на одной операции, этим предвосхитив результаты М. X. Шеффера (Шеффер также строил исчисление высказываний на одной операции, которая вошла в историю логики под именем ее создателя - штрих Шеффера). Единственной логической операцией Пирс предлагал считать отрицание нестрогой дизъюнкции.
Пирсу принадлежат работа по логике “Studies in Logic” и другие.
Достижения Джузеппе Пеано (1858-1932), итальянского математика, явились переходным звеном от алгебры логики, в том виде, какой ей придали Буль, Шредер, Порецкий и Пирс, к современной форме математической логики. Основные результаты Пеано были опубликованы в пятитомном “Формуляре математики”'.
Пеано ввел следующие, употребляющиеся и ныне, символы:
а) “ ” - знак принадлежности элемента к классу;
б) “” - знак включения одного класса в другой класс;
в) “” - знак объединения классов;
г) “” - знак для обозначения операции пересечения классов.
Крупным вкладом Пеано в развитие аксиоматического метода явилась его система из пяти аксиом для арифметики натуральных чисел. На базе своей аксиоматики Пеано строит всю теорию натуральных чисел.
На заключительном этапе своей научной деятельности Пеано приступил к систематическому изложению логики как особой. по его мнению, математической дисциплины.
Далее развитие математической логики осуществлялось по многим направлениям, а также в проблемном плане. Это было обусловлено необходимостью дальнейшего освоения как классической и неклассической логик, так и возникшими трудностями в обосновании математики.
Краткому освещению основных направлений в современной логике посвящены последующие разделы данной главы.
§ 2. Развитие логики в связи с проблемой обоснования математики
Немецкий математик и логик Готтлоб Фреге (1848-1925) предпринял попытку свести математику к логике. С этой целью в первой своей работе по математической логике “Исчисление понятий” (“Begriffsschrift”) он определил множество как объем понятия и таким образом получил возможность определить и число через объем понятия. Такое определение числа он сформулировал в “Основаниях арифметики” (“Grundlagen der Arithmetik”), книге, которая в то время осталась незамеченной, но впоследствии получила широкую известность. Здесь Фреге определяет число, принадлежащее понятию, как объем этого понятия. Два понятия считаются равночисленными, если множества, выражающие их объемы, можно поставить во взаимооднозначное соответствие друг с другом. Так, например, понятие “вершина треугольника” равночисленно понятию “сторона треугольника”, и каждому из них принадлежит одно и то же число 3, являющееся объемом понятия “вершина треугольника”.
Если Лейбниц только наметил программу сведения математики к логике, то Г. Фреге предпринял попытку сведения довольно значительной части арифметики к логике, т. е. произвел некоторую математизацию логики'. Символические обозначения, принятые им, очень громоздки, и поэтому мало кто полностью прочитал его “Основные законы арифметики”. Впрочем, и сам Фреге особенно не рассчитывал на это. Тем не менее труд Фреге сыграл значительную роль в истории обоснования математики в первой половине XX в. Об этом своем произведении Фреге писал: “В моих “Основаниях арифметики” (1884) я пытался привести аргументы в пользу того, что арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никаких основ доказательства. В этой книге (речь идет об “Основных законах арифметики - А. Г.) это должно быть подтверждено тем, что простейшие законы арифметики здесь выводятся только с помощью логических средств”2.
Итак, Фреге полагал, что он логически определил число и точно перечислил логические правила, с помощью которых можно определять новые понятия и доказывать теоремы, и что таким образом он и сделал арифметику частью логики. Фреге не подозревал, однако, что построенная им система не только не представляла собой логического обоснования содержательной арифметики, но была даже противоречивой. Это противоречие в системе Фреге обнаружил Бертран Рассел.
В послесловии к “Основным законам арифметики” Фреге писал по этому поводу: “Вряд ли есть что-нибудь более нежелательное для автора научного произведения, чем обнаружение по завершении его работы, что одна из основ его здания оказывается пошатнувшейся. В такое положение я попал, получив письмо от господина Бертрана Рассела, когда печатание этой книги близилось к концу”'. Противоречием, который обнаружил Рассел в системе Фреге, был знаменитый парадокс Рассела о множестве всех нормальных множеств (см. с. 226-227 учебника).
Причину своей неудачи Фреге видел в использованном им предположении, что у всякого понятия есть объем в смысле постоянного, строго фиксированного множества, не содержащего в себе никакой неопределенности или расплывчатости. Ведь именно через этот объем он и определил основное понятие математики - понятие числа.
Вслед за Г. Фреге очередную попытку сведения математики к логике предпринял видный английский философ и логик Бертран Рассел (1872-1970). Он также автор ряда работ из областей истории, литературы, педагогики, эстетики, естествознания, социологии и др. Труды Рассела по математической логике оказали большое влияние на ее развитие. Вместе с английским логиком и математиком А. Уайтхедом2 Рассел разработал оригинальную систему символической логики в фундаментальном трехтомном труде “Principia Mathematica”3. Выдвигая идею сведения математики к логике, Рассел считает, что если гипотеза относится не к одной или нескольким частным вещам, но к любому предмету, то такие выводы составляют математику. Таким образом, он определяет математику как доктрину, в которой мы никогда не знаем ни того, о чем мы говорим, ни того, верно ли то, что мы говорим.
Рассел делит математику на чистую и прикладную. Чистая математика, по его мнению, есть совокупность формальных выводов, независимых от какого бы то ни было содержания, т. е. это класс высказываний, которые выражены исключительно в терминах переменных и только логических констант. Рассел не только вполне уверен в том, что ему удалось свести математику к такого рода предложениям, но делает из этого утверждения вывод о существовании априорного знания, считает, что “математическое познание нуждается в посылках, которые не базировались бы на данных чувства”'.
От чистой математики Рассел отличает прикладную математику, которая состоит в применении формальных выводов к материальным данным.
Для того чтобы показать, что чистая математика сводится к логике, Рассел берет систему аксиом арифметики, сформулированную Пеано, и пытается их логически доказать, а три неопределяемые у Пеано понятия: “нуль”, “число”, “следующее за” - определить в терминах своей логической системы. Все натуральные числа Рассел также считает возможным выразить в терминах логики, а следовательно, свести арифметику к логике. А так как, по его мнению, вся чистая математика может быть сведена к арифметике, то математика может быть сведена к логике. Рассел пишет: “Логика стала математической, математика логической. Вследствие этого сегодня совершенно невозможно провести границу между ними. В сущности это одно и то же. Они различаются, как мальчик и мужчина; логика - это юность математики, а математика - это зрелость логики”2. Рассел считает, что не существует пункта, где можно было бы провести резкую границу, по одну сторону которой находилась бы логика, а по другую - математика.
Но в действительности математика несводима к логике. Предметы изучения этих наук различны. Нами ранее были указаны характерные черты, присущие логике как науке (см. с.141-142). У математики другие задачи и функции.
В большом труде “Principia Mathematica” есть две стороны. Первая - заставляющая видеть в нем один из основных истоков современной математической логики. Все, что связано с этой стороной Principia Mathematica, получило в дальнейшем такое развитие в математической логике, которое сделало эту новую область науки особенно важной для решения не только труднейших задач теоретической математики и ее обоснования, но и целого ряда весьма важных для практики задач вычислительной математики и техники.
Другая сторона этого произведения - точнее, даже не самого этого произведения, а философских “обобщений”, делаемых логицистами со ссылкой на него, - принадлежит уже к области попыток использовать его для “доказательства” положения, что математика-де сводится к логике. Именно эта сторона сомнительна, и ее опровергает дальнейшее развитие науки, которое обнаружило, что попытка Рассела безуспешна. И это не случайно. Дело не в том, что Рассел в каком-то смысле не совсем удачно построил свою систему. Дело в том, что вообще нельзя построить формальную “логическую систему” с точно перечисленными и эффективно выполнимыми правилами вывода, в которой можно было бы формализовать всю содержательную арифметику. Это обстоятельство представляет собой содержание известной теоремы австрийского математика и логика К. Гёделя о неполноте формализованной арифметики', из которой следует непосредственно, что определение математических понятий в терминах логики хотя и обнаруживает некоторые их связи с логикой, тем не менее не лишает их специфически математического содержания. Формализованная система имеет смысл лишь при наличии содержательной научной теории, систематизацией которой данная формализованная система должна служить.
Однако Г. Фреге и Б. Рассел в своем логическом анализе пришли к ряду интересных результатов, относящихся к понятиям “предмет”, “имя”, “значение”, “смысл”, “функция”, “отношение” и др. Особо следует подчеркнуть значение разработанной Расселом теории типов (простой и разветвленной), цель которой состоит в том, чтобы помочь разрешить парадоксы в теории множеств. Рациональное зерно разветвленной теории Рассела состоит в том, что она является конструктивной теорией.
Одним из оснований деления логики служит различие применяемых в ней принципов, на которых базируются исследования. В результате такого деления имеем классическую логику и неклассические логики. В. С. Меськов выделяет такие основополагающие принципы классической логики:
1) область исследования составляют обыденные рассуждения, рассуждения в классических науках;
2) допущение о разрешимости любой проблемы;
3) отвлечение от содержания высказываний и от связей по смыслу между ними;
4) абстракция двузначности высказываний”'. , Неклассические логики отступают от этих принципов. К ним относятся интуиционистская логика, конструктивные логики, многозначные, модальные, положительные, паранепротиворечи-вые и другие логики, к изложению которых мы переходим.
§ 3. Интуиционистская логика
Интуиционистская логика построена в связи с развитием интуиционистской математики. Интуиционистская школа основана в 1907 г. голландским математиком и логиком Л. Брауэром (1881-1966)2, но некоторые ее идеи выдвигались и ранее.
Интуиционизм - философское направление в математике и логике, отказывающееся от использования абстракции актуальной бесконечности, отвергающее логику как науку, предшествующую математике, и рассматривающее интуитивную ясность и убедительность (“интуицию”) как последнюю основу математики и логики. Интуиционисты свою интуиционистскую математику строят с помощью финитных (конечных) средств на основе системы натуральных чисел, которая считается известной из интуиции. Интуиционизм включает в себя две стороны - философскую и математическую.
Математическое содержание интуиционизма изложено в ряде работ математиков. Ведущие представители отечественной школы конструктивной математики отмечают положительное значение некоторых математических идей интуиционистов.
В целом конструктивная математика существенно отличается от интуиционистской, но, как указывал советский математик-конструктивист А. А. Марков, конструктивное направление имеет точки соприкосновения с интуиционистской математикой. Конструктивисты сходятся с интуиционистами в понимании дизъюнкции и в силу этого признают правильной данную Брауэром критику закона исключенного третьего. Вместе с тем конструктивисты считают неприемлемыми методологические основы интуиционизма.
Если математический аспект интуиционизма имеет рациональный смысл (в этой связи предпочтительнее говорить об интуиционистской математике или интуиционистской логике, а не об интуиционизме), то второй его аспект - философско-методологический - совершенно неприемлем.
Брауэр считал, что чистая математика представляет собой свободное творение разума и не имеет никакого отношения к опытным фактам. У интуиционистов единственным источником математики оказывается интуиция, а критерием приемлемости математических понятий и выводов является “интуитивная ясность”. Но интуиционист Гейтинг вынужден был признаться в том, что понятие интуитивной ясности в математике само не является интуитивно ясным; можно даже построить нисходящую шкалу степеней очевидности.
Основой происхождения математики в конечном итоге является не какая-то “интуитивная ясность”, а отражение в сознании пространственных форм и количественных отношений действительного мира. Гейтинг, как и Брауэр, в гносеологии субъективный идеалист. Он считает, что математическая мысль не выражает истину о внешнем мире, а связана исключительно с умственными построениями'.
Еще в 1936 г. советский математик А.Н. Коломогоров подверг критике субъективно-идеалистические основы интуиционизма, заявив, что невозможно согласиться с интуиционистами, когда они говорят, что математические объекты являются продуктом конструктивной деятельности нашего духа, ибо математические объекты являются абстракциями реально существующих форм независимой от нашего духа действительности. Интуиционисты не признают практику и опыт источником формирования математических понятий, методов математических построений и методов доказательств.
Особенности интуиционистской логики вытекают из характерных признаков интуиционистской математики.
В современной классической математике часто прибегают к косвенным доказательствам. Но их почти невозможно ввести в интуиционистскую математику и логику, так как там не признаются закон исключенного третьего и закон >а и которые участвуют в косвенных доказательствах. Но закон непротиворечия представители как интуиционистской, так и конструктивной логики считают неограниченно применимым.
Закон исключенного третьего для бесконечных множеств в интуиционистской логике не проходит потому, что р требует общего метода, который по произвольному высказыванию р позволил бы получать доказательство, либо доказательство отрицания. Гейтинг считает, что так как интуиционисты не располагают таким методом, то они не вправе утверждать и принцип исключенного третьего. Покажем это на таком примере. Возьмем утверждение: “Всякое целое число, большее единицы, либо простое, либо сумма двух простых, либо сумма трех простых”. Неизвестно, так это или не так в общем случае, хотя в рассмотренных случаях, которых конечное число, это так. Существует ли число, которое не удовлетворяет этому требованию? Мы не можем указать такое число и не можем вывести противоречие из допущения его существования.
Эта знаменитая проблема X. Гольдбаха была поставлена им в 1742 г. и не поддавалась решению около 200 лет. Гольдбах высказал предположение, что всякое целое число, большее или равное шести, может быть представлено в виде суммы трех простых чисел. Для нечетных чисел это предположение было доказано только в 1937 г. советским математиком академиком И.М. Виноградовым; все достаточно большие нечетные числа представимы в виде суммы трех простых чисел. Это - одно из крупнейших достижений современной математики.
Брауэр первый наметил контуры новой логики. Идеи Брауэра формализовал Гейтинг, в 1930 г. построивший интуиционистское исчисление предложений с использованием импликации, конъюнкции, дизъюнкции и отрицания на основе 11 аксиом и двух правил вывода - modus ponens и правила подстановки. Гейтинг утверждает, что хотя основные различия между классической и интуиционистской логиками касаются свойств отрицания, эти логики не совсем совпадают и в формулах без отрицания. Он отличает математическое отрицание от фактического: первое выражается в форме конструктивного построения (выполнения) определенного действия, а второе говорит о невыполнении действия (“невыполнение” чего-либо не является конструктивным действием). Интуиционистская логика имеет дело только с математическими суждениями и лишь с математическим отрицанием, которое определяется через понятие противоречия, а понятие противоречия интуиционисты считают первоначальным, выражающимся или приходящимся в форме 1 = 2. Фактическое отрицание не связано с понятием противоречия.
Проблемами интуиционистской логики занимаются также философы К. Н. Суханов, М. И. Панов, А. Л. Никифоров и др.
§ 4. Конструктивные логики
Конструктивная логика, отличная от логики классической, своим рождением обязана конструктивной математике. Конструктивная математика может быть кратко охарактеризована как абстрактная умозрительная наука о конструктивных процессах и нашей способности их осуществлять. В результате конструктивного процесса возникает конструктивный объект, т. е. такой объект, который задается эффективным (точным и вполне понятным) способом построения (алгоритмом).
Конструктивное направление (в математике и логике) ограничивает исследование конструктивными объектами и проводит его в рамках абстракции потенциальной осуществимости (реализуемости), т. е. игнорирует практическое ограничение наших возможностей построений в пространстве, времени, материале.
Между идеями конструктивной логики советских исследователей и некоторыми идеями интуиционистской логики (например, в понимании дизъюнкции, в отказе от закона исключенного третьего) имеются точки соприкосновения.
Однако между конструктивной и интуиционистской логиками имеются и существенные отличия.
1. Различные объекты исследования. В основу конструктивной логики, которая является логикой конструктивной математики, положена абстракция потенциальной осуществимости, а в качестве объектов исследования допускаются лишь конструктивные объекты (слова в определенном алфавите).
В основу интуиционистской логики, которая является логикой интуиционистской математики, положена идея “свободно становящейся последовательности”, т. е. строящейся не по алгоритму, которую интуиционисты считают интуитивно ясной.
2. Обоснование интуиционистской математики и логики дается с помощью идеалистически истолкованной интуиции, а обоснование конструктивной математики и логики дается на базе математического понятия алгоритма (например, нормального алгоритма А. А. Маркова) или эквивалентного ему понятия рекурсивной функции.
3. Различные методологические основы. Методологической основой конструктивного направления в математике является признание практики источником познания и критерием его истинности (в том числе и научного). Это положение сохраняет свою силу и для таких наук, как логика и математика, хотя здесь практика входит в процесс познания лишь опосредованно, в конечном счете.
Интуиционисты же считают источником формирования математических понятий и методов первоначальную “интуицию”, а критерием истинности в математике - “интуитивную ясность”.
4. Различные интерпретации1. А. Н. Колмогоров интерпретировал интуиционистскую логику как исчисление задач. А.А. Марков интерпретировал логические связки конструктивной логики как прилагаемые к потенциально осуществимым конструктивным процессам (действиям).
Интуиционистская логика Л. Брауэра и А. Рейтинга интерпретируется ими как исчисление предложений (высказываний), причем область высказываний у них ограничивается математическими предложениями.
5. Отличие ряда логических средств. Представители узко-конструктивной логики признают в качестве принципа: если имеется алгоритмический процесс и удалось опровергнуть, что он продолжается бесконечно, то, следовательно, процесс закончится. Некоторые из представителей конструктивной логики доказывают этот принцип в уточненной форме.
Представители интуиционистской логики не признают данного принципа.
Конструктивные исчисления высказываний В. И. Гливенко и А. Н. Колмогорова
Первыми представителями конструктивной логики были математики А. Н. Колмогоров (1903-1987) и В. И. Гливенко (1897-1940). Первое исчисление, не содержащее закон исключенного третьего, было предложено в 1925 г. А. Н. Колмогоровым в связи с его критикой концепции Л. Брауэра, а в дальнейшем развито В. И. Гливенко. Позже было опубликовано исчисление Гейтинга, которое Колмогоров интерпретировал как исчисление задач, что породило содержательное истолкование исчислений, не пользующихся законом исключенного третьего, а это, в свою очередь, легло в основу всех дальнейших, подлинно научных исследований таких исчислений.
Введя понятия “псевдоистинность” (двойное отрицание суждения) и “псевдоматематика” (“математика псевдоистинности”), Колмогоров доказал, что всякий вывод, полученный с помощью закона исключенного третьего, верен, если вместо каждого суждения, входящего в его формулировку, поставить суждение, утверждающее его двойное отрицание. Тем самым он показал, что в “математике псевдоистинности” законно применение принципа исключенного третьего.
Колмогоров различает две логики суждений - общую и частную. Различие между ними заключается в одной аксиоме А, которая имеется лишь среди аксиом частной логики. Интересна диалектика соотношения содержания и областей применения этих логик: содержание частной логики суждений богаче, чем общей, так как частная логика дополнительно включает аксиому А, но область применения ее уже. Из системы частной логики можно вывести все формулы традиционной логики суждений.
Какова же область применения частной логики суждений? Все ее формулы верны для суждения типа А. , в том числе для всех финитных и для всех отрицательных суждений, т. е. область применимости ее совпадает с областью применимости формулы двойного отрицания А. (Символами А. ,В. ... обозначены произвольные суждения, для которых из двойного отрицания следует само суждение).
4.1 Конструктивная логика А. А. Маркова
Проблема конструктивного понимания логических связок, в частности отрицания и импликации, требует применения в логике специальных точных формальных языков. В основе конструктивной математической логики А. А. Маркова (1903-1979) лежит идея ступенчатого построения формальных языков. Сначала вводится формальный язык Я0, в котором предложения выражаются по определенным правилам в виде формул; в нем имеется определение смысла выражения этого языка, т. е. семантика. Правила вывода позволяют, исходя из верных предложений, всегда получать верные предложения.
В конструктивной математике формулируются теоремы существования, утверждающие, что существует объект, удовлетворяющий таким-то требованиям. Под этим подразумевается, что построение такого объекта потенциально осуществимо, т. е. что мы владеем способом его построения. Это конструктивное понимание высказываний о существовании отличается от классического. В конструктивной математике и логике иной является и трактовка дизъюнкции, которая понимается как осуществимость указания ее верного члена. “Осуществимость” означает потенциальную осуществимость конструктивного процесса, дающего в результате один из членов дизъюнкции, который должен быть истинным. Классическое же понимание дизъюнкции не предполагает нахождения ее истинного члена.
Новое понимание логических связок требует новой логики. Мы считаем утверждение А. А. Маркова о неединственности логики верным и весьма глубоким: “В самой идее неединственности логики, разумеется, нет ничего удивительного. В самом деле, с какой стати все наши рассуждения, о чем бы мы ни рассуждали, должны управляться одними и теми же законами? Для этого нет никаких оснований. Удивительным, наоборот, было бы, если бы логика была единственна”'.
В конструктивную математическую логику А. А. Марков вводит понятие “разрешимое высказывание” и связанное с ним понятие “прямое отрицание”. В логике А. А. Маркова имеется и другой вид отрицания - усиленное отрицание, относящееся к так называемым полуразрешимым высказываниям.
Кроме материальной и усиленной импликации, при становлении истинности которых приходится заботиться об истинности посылки и заключения, А.А. Марков вводит дедуктивную импликацию, определяемую по другому принципу. Дедуктивная импликация “если А, то В” выражает возможность выведения В из А по фиксированным правилам, каждое из которых в применении к верным формулам дает верные формулы. Всякое высказывание, выводимое из истинного высказывания, будет истинным. :
Через дедуктивную импликацию А. А. Марков определяет редукционное отрицание (reductio ad absurdum). Редукционное отрицание высказывания А (сформулированного в данном языке) понимается как дедуктивная импликация “если А, то Л”, где через Л обозначен абсурд. Это определение отрицания соответствует обычной практике рассуждений математика: математик отрицает то, что можно привести к абсурду. Для установление истинности редукционного отрицания высказывания не требуется вникать в его смысл. Высказывание, для которого установлена истинность редукционного отрицания, не может быть истинным.
Эти три различных понимания отрицания не вступают в конфликт друг с другом, они согласованы, что, по мнению А.А. Маркова, даст возможность объединить все эти понимания отрицания.
Показательно такое обстоятельство. А. А. Марков строит свои конструктивные логические системы для обоснования конструктивной математики таким образом, что у него получается не одна законченная система, а целая иерархия систем. Это система языков Я0, Я1, Я2, Я3,, Я4 , Я5,..., Яn (где п - натуральное число) и объемлющего их языка Яw; после Яw строится язык Яw '.
Итак, мы склонны думать, что развивающуюся конструктивную логику и математику невозможно вместить в одно формальное исчисление, для этого нужна система, состоящая из целой иерархии систем, в которой будет иерархия отрицаний.
Проблемами конструктивной логики и теории алгоритмов занимается также математик Н. М. Нагорный.
§ 5. Многозначные логики
В многозначных логиках число значений истинности аргументов и функций для высказываний может быть любым конечным (больше двух) и даже бесконечным. В настоящем параграфе используются так называемая польская запись, которую применял Лукасевич, и обычная, применяемая в двузначной логике: отрицание обозначается через Nx или, конъюнкция - через Кху или х v у, нестрогая дизъюнкция - через Аху или х v у, материальная импликация - через Сху или х> у. Значение функции от аргумента а записывается так: [а]. Тавтологией (или общезначимой, или законом логики, или тождественно-истинной) называется формула, которая при любых комбинациях значений входящих в нее переменных принимает выделенное (или отмеченное) значение; как правило, это значение “истина” (чаще всего в рассматриваемых системах “истина” обозначается цифрой 1).
Развитие многозначных логик подтверждает мысль, что истина всегда конкретна, а также положение об относительном характере конкретно-научных знаний: то, что является тождественно-истинным в одной логической системе, не оказывается тождественно-истинным в другой.
5.1 Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказываний) была построена в 1920 г. польским математиком и логиком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначается 1, “ложь” - 0, “нейтрально” - 1/2. В качестве основных функций взяты отрицание (Nx) и импликация (Сху); производными являются конъюнкция (Кху) и дизъюнкция (Аху). Тавтология принимает значение 1.
Отрицание и импликация соответственно определяются матрицами (таблицами) так:
Импликация Лукасевича |
||||
X \ y |
1 |
1/2 |
0 |
|
1 |
1 |
1/2 |
0 |
|
1/2 |
1 |
l |
1/2 |
|
0 |
1 |
l |
1 |
Отрицание Лукасевича
х |
Nx |
|
1 |
0 |
|
1/2 |
1/2 |
|
0 |
1 |
[Nx] =1-[x]
Конъюнкция определяется как минимум значений аргументов: [Кху] = min ( [х],[у]); дизъюнкция - как максимум значений х и у[Аху]=таx ([х],[у]).
Пользование таблицей для импликации Лукасевича, выраженной в форме х > у, происходит так. Слева в первой колонке написаны значений для х, а сверху - значения для у. Возьмем, например [х] = 1/2 (т. е. значение для х, равное 1/2 ), а [у] = 0, получаем импликацию 1/2> 0. На пересечении получаем результат 1/2 .
Если в формулу входит одна переменная, как, например, в случае формулы a , то таблица истинности для этой формулы, включающая все возможные значения истинности, или ложности, или неопределенности ее переменной в таблице, будет состоять из 3' = 3 строки; при двух переменных в таблице будет 32 = 9 строк; при трех переменных в таблице имеем З3 = 27 строк; при n переменных будет 3n строк.
Покажем, как происходит доказательство для формул a (закон исключенного третьего) и для ( закон непротиворечия), содержащих одну переменную, т. е. а. В таблице будет всего 3' = 3 строки.
a |
a |
a ^ |
|||
1 |
0 |
1 |
0 |
1 |
|
1/2 |
1/2 |
1/2 |
1/2 |
1/2 |
|
0 |
1 |
1 |
0 |
1 |
Для доказательства формулы a используем знание о том, что дизъюнкция берется по максимуму. В третьей колонке, соответствующей a, видим, что вместе со значениями 1 есть значение 1/2 . Следовательно, эта формула не есть закон логики. Аналогично строятся колонки 4 и 5, только соблюдая условие, что конъюнкция берется по минимуму значений. Формула также не является законом логики.
Теперь посмотрим, является ли законом логики формула (х > (^ у)) >, содержащая две переменные х и у В таблице будет З2 = 9 строк. Распределение значений истинности для х и у показано в первой и второй колонках.
Вывод: так как в последней колонке встречается два раза значение неопределенности (т. е. 1/2), то данная формула не является законом логики.
На основе данных определений отрицания, конъюнкции и дизъюнкции Лукасевича не будут тавтологиями (законами логики) закон непротиворечия и закон исключенного третьего двузначной логики. В системе Лукасевича не являются тавтологиями и отрицания законов непротиворечия и исключенного третьего двузначной логики. Поэтому логика Лукасевича не является отрицанием двузначной логики. В логике Лукасевича тавтологиями являются: правило снятия двойного отрицания, все четыре правила де Моргана и правило контрапозиции: а > b >. Не являются тавтологиями правила приведения к абсурду двузначной логики; (х > ) > и (х> (^ у)) > (т. е. если из х вытекает противоречие, то из этого следует отрицание х). Это было доказано (см. таблицу 3).
Таблица 3
x |
у |
^ y |
x>(^y) |
(x> (^ у)) > |
|||
1 |
1 |
0 |
0 |
0 |
0 |
1 |
|
1 |
1/2 |
0 |
1/2 |
1/2 |
1/2 |
1/2 |
|
1 |
0 |
0 |
1 |
0 |
0 |
1 |
|
1/2 |
1 |
1/2 |
0 |
0 |
1/2 |
1 |
|
1/2 |
1/2 |
1/2 |
1/2 |
1/2 |
1 |
1/2 |
|
1/2 |
0 |
1/2 |
1 |
0 |
0 |
1 |
|
0 |
1 |
1 |
0 |
0 |
1 |
1 |
|
0 |
1/2 |
1 |
1/2 |
1/2 |
1 |
1 |
|
0 |
0 |
1 |
1 |
0 |
1 |
1 |
В системе Лукасевича не являются тавтологиями и некоторые формулы разделительно-категорического силлогизма с нестрогой дизъюнкцией.
Все тавтологии логики Лукасевича являются тавтологиями в двузначной логике, ибо если отбросить значение 1/2, то в логике
Лукасевича и в двузначной логике определение функций конъюнкции, дизъюнкции, импликации и отрицания соответственно совпадут. Но так как в логике Лукасевича имеется третье значение истинности -1/2, то не все тавтологии двузначной логики являются тавтологиями в логике Лукасевича.
5.2 Трехзначная система Гейтинга
В двузначной логике из закона исключенного третьего выводятся: 1) >х; 2) х. Исходя из утверждения, что истинным является лишь второе, нидерландский логик и математик А. Рейтинг (1898-1980) разработал трехзначную пропозициональную логику. В этой логической системе импликация и отрицание отличаются от определений этих операций у Лукасевича лишь в одном случае. “Истина” обозначается 1, “ложь” - 0, “неопределенность” -1/2. Тавтология принимает значение 1.
Импликация Гейтинга
x \ y |
1 |
? |
0 |
|
1 |
1 |
? |
0 |
|
? |
1 |
1 |
0 |
|
0 |
1 |
1 |
1 |
Отрицание Гейтинга
x |
Nx |
|
1 |
0 |
|
? |
0 |
|
0 |
1 |
Конъюнкция и дизъюнкция определяются обычным способом как минимум и максимум значении аргументов.
Если учитывать лишь значения функций 1 и 0, то из матриц системы Гейтинга вычленяются матрицы двузначной логики этой трехзначной логике закон непротиворечия является тавтологией, но ни закон исключенного третьего, ни его отрицание тавтологиями не являются. Оба правильных модуса условно-категорического силлогизма, формула (х у) (), правила де Моргана и закон исключенного четвертого (x)- тавтологии.
Хотя по сравнению с логикой Лукасевича в матрицах отрицания и импликации Рейтингом в его системе были произведены небольшие изменения, результаты оказались значительными: в системе Рейтинга являются тавтологиями многие формулы классического двузначного исчисления высказываний.
5.3 т-значиая система Поста (Рт )1
Система американского математика и логика Э. Л. Поста (1897- 1954) является обобщением двузначной логики, ибо при т = 2 в качестве частного случая мы получаем двузначную логику. Значения истинности суть 1, 2, ..., т (при т 2), где т -конечное число. Тавтологией является формула, которая всегда принимает выделенное значение, лежащее между 1 и т - 1, включая их самих.
Пост вводит два вида отрицания (N 1x и N 2х) соответственно называемые циклическим и симметричным. Они определяются путем матриц и посредством равенств.
Первое отрицание определяется двумя равенствами:
1. [N 1x]=[x]+1 при [х] т-1.
2. [N 1m]=1.
Второе отрицание определяется одним равенством:
[N 2 x]=m-[x]+1
Характерной особенностью двух отрицаний Поста является то, что при т = 2 эти отрицания совпадают между собой и с отрицанием двузначной логики, что подтверждает тезис: многозначная система Поста есть обобщение двузначной логики.
5.4 Этапы развития логики как науки и основные направления современной символической логики
X |
N 1x |
N 2 x |
|
1 |
2 |
m |
|
2 |
3 |
m - 1 |
|
3 |
4 |
m -2 |
|
4 |
5 |
m - 3 |
|
. |
. |
. |
|
. |
. |
. |
|
. |
. |
. |
|
m - 1 |
m |
2 |
|
m |
1 |
1 |
Конъюнкция и дизъюнкция определяются соответственно как максимум и минимум значений аргументов. При указанных определениях отрицания, конъюнкции и дизъюнкции обнаруживается, что при значении для х, большем двух, законы непротиворечия и исключенного третьего, а также отрицание этих законов не являются тавтологиями.
Трехзначная система Р3 Поста имеет следующую указанную в таблицах форму. В этих таблицах приняты обозначения, введенные Постом при m = 3: первое отрицание обозначается через ( ~ 3 р ), второе отрицание - через ( 3 р), конъюнкция через (р.3 р), дизъюнкция - через
рv3 р), импликация - через (р 3 q), эквиваленты - через ( р 3 q ).
р |
~3 p |
?3 p |
|
1 |
2 |
3 |
|
2 |
3 |
2 |
|
3 |
1 |
1 |
|
Пояснения |
Первое отрицание |
Второе отрицание |
Если в качестве значений истинности взяты лишь 1 “истина” и 3 “ложь”, то из таблиц системы Р3 Поста вычленяются таблицы для отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции двузначной логики.
В системе Р3 тавтология принимает значение 1; закон исключенного третьего не является тавтологией ни для первого, ни для второго отрицания Поста, но является тавтологией закон исключенного четвертого для первого отрицания.
5.5 Две бесконечнозначные системы Гетмановой
“Логика истины” и “Логика лжи”
Бесконечнозначная “Логика истины” как обобщение многозначной системы Поста.
Исходя из т-значной системы Э. Л. Поста автор этого учебника А. Д. Гетманова построила бесконечнозначную систему Gxo. J В ней значениями истинности являются: 1 (“истина”), 0 (“ложь”) и все дробные числа в интервале от 1 до 0, построенные в форме (1/2)k и в форме (1/2)k*(2k - 1), где k-целочисленный показатель. Иными словами, значениями истинности являются: 1, 1/2 , 1/4, 3/4 , 1/8, 7/8, 1/16, 15/16,….., (1/2)k, (1/2)k*(2k-1),….,0. Операции: отрицание, дизъюнкция, конъюнкция, импликация и эквиваленция в Gxo- определены следующими равенствами:
1. Отрицание: [х0 р]=1-[p]
2. Дизъюнкция: [р v х0 q ] = max([p], [q]).
3. Конъюнкция: [р х0q] = min([p],[qj).
4. Импликация: [р = х0х0 q] = [х0 p v q].
5. Эквиваленция: [р х0q] = [(р х0q) х0 (q х0 р)]
Отрицание в системе Gxo является обобщением второго (симметричного) отрицания т-значной логики Поста. Посредством именно этого отрицания строятся конъюнкция, импликация и эквиваленция в системе Gхо . Система Gхо , построенная предложенным способом, имеет множество тавтологий. (Тавтология принимает значение 1).
Тавтологии в бесконечнозначной “Логике истины” (т. е. в Gхо) являются тавтологиями в двузначной логике, ибо Gхо является обобщением системы Р Поста, а последняя есть обобщение двузначной логики. Из системы Gхо вычленяются G3 ,G4 .,G5,G6,...,Gn ,т.е. любая конечнозначная “Логика истины”.
Об интерпретации системы Gхо.
В системе Gхо между крайними значениями истинности: 1 (“истина”) и 0 (“ложь”) лежит бесконечное число значений истинности: 1/2,1/4,3/4,1/8, 7/8 и т. д. Процесс познания осуществляется таким образом, что мы идем от незнания к знанию, от неполного, неточного знания к более полному и точному, от относительной истины к абсолютной. Абсолютная истина (в узком смысле) складывается из бесконечной суммы относительных истин. Если значению истинности, равному 1, придать семантический смысл абсолютной истины, а значению 0 - значение лжи (заблуждения, отсутствия знания), то промежуточные значения истинности отразят процесс достижения абсолютной истины как бесконечный процесс, складывающийся из познания относительных истин, значениями которых в системе Gхо являются 1/2,1/4,3/4,1/8, 7/8 и т. д. Чем ближе значение истинности переменных (выражающих суждения) к 1, тем большая степень приближения к абсолютной истине. Так осуществляется процесс познания: от незнания к знанию, от явления к сущности, от сущности первого порядка к сущности второго порядка и т. д. Этот бесконечный процесс познания и отражает бесконечнозначная система Gхо, построенная автором как обобщение двузначной классической логики, характеризующей процесс познания в рамках оперирования лишь предельными значениями истинности - “истина” и “ложь”. Такова семантическая интерпретация системы Gхо (“Логика истины”), вскрывающая ее роль в процессе познания истины.
Методологические проблемы.
Применения многозначных логик для моделирования систем с наличием элемента неопределенности. (О применении многозначных логик в социологии).
Многозначные логики используются при моделировании систем с наличием элемента неопределенности. Простейшим примером применения трехзначной логики является голосование: “за”, “против”, “воздержался” или ответы на вопросы: “да”, “нет”, “затрудняюсь ответить”.
Более сложной методологической проблемой является применение многозначных логик при построении социологических анкет. Обычно дается ряд ответов на один вопрос. Ответы формулируются приблизительно так: “да”, “нет”, “скорее да, чем нет”, “скорее нет, чем да”, “удовлетворен в значительной степени”, “мало удовлетворен” и т. д. Все эти ответы включают значительный элемент неопределенности, что затрудняет выявление мнения людей в ходе социологического опроса (или анкетирования).
Автор считает возможным использовать многозначные логики с различными значениями истинности, т. е., например, 6-ти, или 8-ми, или 9-ти, или 12-значные логики. Составляющий анкету социолог должен предлагать конкретные значения истинности суждений, т. е. предусмотреть точные оценки, которые даст сам человек, работающий с анкетой. Например, в 9-значнои логике значениями истинности будут следующие: 1,15/16,7/8,3/4,1/2 ,1/4 ,1/8, 1/16, 0.
Если человек, например, при ответе на вопрос: “Удовлетворен ли он своим трудом?” им полностью удовлетворен, то в соответствующем разделе он напишет 1, если же он полностью не удовлетворен, то напишет значение 0. Если он почти удовлетворен (согласен), то напишет либо 15/16 либо 7/8; если же он почти не удовлетворен, то напишет 1/16 или 1/8. Если он не знает ответа или думает неопределенно, то напишет 1/2.
При обработке информации на ЭВМ на основе данных числовых характеристик ответов можно получить более точные знания о мнении в репрезентативной выборке любого вида (стихийной, квотной, вероятностной и других, когда применяется неполная индукция) или во всей генеральной совокупности (т. е. при сплошном обследовании, когда применяется полная индукция).
Бесконечнозначная система Fхо - “Логика лжи”.
Аристотель охарактеризовал ложь так: ложное говорит тот, “кто думает обратно тому, как дело обстоит с вещами”'. Ложь может быть не только измышлением о том, чего не было, но и сокрытием или отрицанием того, что было. Ложь бывает непреднамеренной (паралогизм) или преднамеренной (софизм). В мышлении ложь формулируется в виде суждений. Иногда понятие “ложь” употребляется как синоним понятия “заблуждение”. Ведь и ложь, и заблуждение - формы неистинного знания. Причины возникновения заблуждений сходны с теми, которые порождают ложь: ограниченность общественно-исторической практики, абсолютизация отдельных моментов процесса познания, нарушение логических правил доказательств, человеческие эмоции, догматический стиль мышления и др. Однако в отличие от лжи заблуждение выступает как неотъемлемый момент процесса познания, диалектически связанный с истиной.
Существует специфика логического подхода к понятию “ложь”. В двузначной логике отрицание истинного суждения дает ложное суждение и наоборот. Сложнее обстоит дело в многозначных логиках. В трехзначных логиках имеется три значения истинности: “истина”, “ложь”, “неопределенно”; при этом неистинное суждение может быть как ложным суждением, так и неопределенным. В т-значной логике Поста допускается т значений истинности, предельными из которых являются “истина” и “ложь”. В бесконечнозначной “Логике истины” Gхо между 1 и 0 лежит бесконечное число значений истинности.
Автор построила бесконечнозначную систему “Логики лжи” -Fxo (от англ. false - ложь), которая отражает бесконечный процесс познания, идущий от незнания не к истине, а к заблуждению. В результате человек приходит к ложным суждениям - в юридической деятельности (неверно построенные версии в процессе расследования преступления), медицинской практике (постановка ошибочного диагноза), в научном творчестве (выдвижение ложных гипотез) и других сферах человеческой деятельности. Степень заблуждения бывает различной и может доходить до абсурда. Причем процесс возможного заблуждения потенциально бесконечен, что отражено в системе Fхо .
Система Fхо имеет свою интерпретацию. Ее значения истинности отражают степень заблуждения, возникшего в результате либо умышленной дезинформации, либо незнания, либо неправильного истолкования результатов эксперимента, либо допущения логических ошибок, либо по другим причинам.
Значениями истинности в “Логике лжи” являются: - 1 (ложь, заблуждение), 0 (незнание, отсутствие знания) и все дробные числа в интервале от 0 до - 1, построенные по определенной форме. То есть:
- 1, - 1/2, - 1/4 , - 3/4, - 1/8, - 1/16, - 15/16,.... - (1/2)k, - (1/2)k *(2k - 1),..., 0
(где k - натуральное число).
Логические операции в Fхо определены следующими равенствами:
1. Отрицание: [ x0 р]= - 1- [р] = - (1+[p])
2. Дизъюнкция: [px0 q]=max([p],[q]).
3. Конъюнкция: [p& x0 q]=min([p],[q]).
4. Импликация: [р >p x0 q]=[ x0 p x0 q]
5. Эквиваленция: [р x0 q ] = [(p> x0 q )& x0 (q> x0 p)].
Тавтология (закон логики) принимает значение 0. Например, тавтологией является правило снятия двойного отрицания.
Из бесконечнозначной системы Fхо вычленяются конечнозначные системы, F2 ,F3 ,F4 ,….. Fn.
Закон исключенного третьего, закон непротиворечия и их отрицания в трехзначной “Логике лжи” (Fхо) не являются тавтологиями, ибо в колонках, соответствующих этим формулам, присутствуют значения или -1/2 или как -1/2 , так как и - 1, а тавтологией является формула, принимающая лишь значение 0. Если эти законы не являются тавтологиями в трехзначной системе “Логика лжи”, то они не будут тавтологиями и в четырехзначной системе “Логика лжи” (F4) и в F5, и т. д. (т. е. в любой конечнозначной “Логике лжи”) и в бесконечнозначной “Логике лжи” Fхо.
Подобные документы
Возникновение и этапы развития традиционной формальной логики. Аристотель как основатель логики. Создание символической логики, виды логических исчислений, алгебра логики. Метод формализации. Становление диалектической логики, работы И. Канта, Г. Гегеля.
реферат [26,9 K], добавлен 19.01.2009История возникновения и дальнейшего развития логики как науки, а также анализ ее современного значения и содержания. Особенности становления и сравнительная характеристика символической (математической), индуктивной, диалектической и формальной логики.
контрольная работа [33,4 K], добавлен 01.12.2010Причины возникновения и этапы становления традиционной логики. Вклад Аристотеля, Ф. Бэкона, Дж. Милля, Р. Декарта, М. Каринского в развитие логического знания. История создания и основные концепции символической (математической) и диалектической логики.
реферат [32,8 K], добавлен 05.01.2013Сущность и содержание модальной логики, ее отличительные признаки от классической, история становления и развития, применение принципов на современном этапе. Система модальной силлогистики. Основные принципы и сферы применения вероятностной логики.
реферат [16,6 K], добавлен 13.08.2010Сущность и содержание логики как научного направления, предмет и методы ее исследования, основные этапы становления и развития в мире. Этапы создания символической логики и ее отличительные особенности, направления и сферы практического применения.
реферат [12,3 K], добавлен 26.09.2011Логика как самостоятельная наука. Предмет и значение логики. Теоретические проблемы логики. Основные этапы развития логики. Логика и мышление. Предмет формальной логики и ее особенности. Мышление и язык. Основные правила научного исследования.
курс лекций [29,4 K], добавлен 09.10.2008Причины возникновения и этапы развития науки логики. Аристотель как основоположник формальной логики. Дедуктивный метод Декарта. Процедуры противопоставления предикату, противопоставления субъекту. Умозаключения, соответствующие 1 и 2 фигурам силлогизма.
контрольная работа [88,7 K], добавлен 23.06.2017С чего началась наука логика. Формирование логики как самостоятельной науки. Внутренняя структура человеческого мышления. Законы и правила логики. Двухчленные и трехчленные суждения. Закон противоречия с логических позиций. Основные элементы силлогизма.
контрольная работа [22,4 K], добавлен 26.03.2011Зарождение формальной логики и ее развитие в недрах философии. Основные периоды истории развития логики, философские идеи логики Древней Индии и Древнего Китая. Вопросы создания логических систем, представления о формах умозаключений и теории познания.
реферат [25,2 K], добавлен 16.05.2013Сущность мышления в системе познания, способы взаимопонимания, логика объяснения. Предмет и семантические категории традиционной формальной логики. Этапы становления логики как науки. Простое суждение и его логический анализ. Основы теории аргументации.
курс лекций [138,4 K], добавлен 02.03.2011