Развитие учащихся начальной школы в процессе изучения математики
Возможности активного включения в процесс обучения математике различных приемов умственных действий. Анализ и синтез как важнейшие мыслительные операции. Прием сравнения, играющий особую роль в организации продуктивной деятельности младших школьников.
Рубрика | Педагогика |
Вид | реферат |
Язык | русский |
Дата добавления | 22.01.2014 |
Размер файла | 391,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
а) напиши 4 числа, первое из которых равно 1, каждое следующее в 2 раза больше предыдущего;
б) напиши 4 числа, первое из которых 0, второе больше первого на 1 третье больше второго на 2, четвертое больше третьего на 3;
в) напиши 6 чисел: если первое равно 9, второе 1, а каждое следующее равно сумме двух предыдущих.
Наряду со словесными и схематическими предписаниями можно задать алгоритм в виде таблицы.
Например, задание: «Запиши числа от 1 до 6. Каждое увеличь:
а) на 2; б) на 3» можно представить в такой таблице:
Табл. 3
+ |
1 |
2 |
3 |
4 |
5 |
6 |
|
2 |
|||||||
3 |
Таким образом, алгоритмические предписания можно задавать словесным способом, схемой и таблицей.
Действуя с конкретными математическими объектами и обобщениями в виде правил, дети овладевают умением выделять элементарные шаги своих действий и определять их последовательность.
Например, правило проверки сложения можно сформулировать в виде алгоритмического предписания следующим образом. Для того, чтобы проверить сложение вычитанием, нужно:
1) из суммы вычесть одно из слагаемых;
2) сравнить полученный результат с другим слагаемым;
3) если полученный результат равен другому слагаемому, то сложение выполнено, верно;
4) в противном случае ищи ошибку.
* Задание 95. Составьте алгоритмические предписания, которыми младшие школьники смогут пользоваться при: а) сложении однозначных чисел с переходом через разряд; б) сравнении многозначных чисел; в) решении уравнений; г) письменном умножении на однозначное число.
Для формирования умения составлять алгоритмы нужно научить детей: находить общий способ действия; выделять основные, элементарные действия, из которых состоит данное; планировать последовательность выделенных действий; правильно записывать алгоритм.
Рассмотрим задания, цель которых - выявление способа действия:
Даны числа (см. рисунок). Составь выражения и найди их значения. Сколько всего примеров на сложение можно составить? Как нужно рассуждать при этом, чтобы не пропустить ни одного случая?
Рис. 12
При выполнении данного задания ученики осознают необходимость выделения общего способа действий. Например, фиксировать первое слагаемое 31, в качестве второго прибавлять все числа второго столбика, затем в качестве первого слагаемого фиксировать, например, число 41 и опять выбирать все числа из второго столбика, и т. д. Можно фиксировать второе слагаемое и перебирать все числа первого столбика. Важно, чтобы ребенок понял, что, придерживаясь какого-то определенного способа действия, он не упустит ни одного случая и ни один из случаев не запишет дважды.
В зале три люстры и 6 окон. К празднику для украшения от каждой люстры к каждому окну протянули гирлянду. Сколько всего повесили гирлянд? (При решении можно использовать схематический рисунок.)
Рис. 13
Для формирования у учащихся умения выявлять способ действия полезны комбинаторные задания. Их особенность в том, что они имеют не одно, а множество решений, и при их выполнении Необходимо осуществлять перебор в рациональной последовательности. Например:
Сколько различных пятизначных чисел можно записать, используя цифры 55522 (цифру 5 можно повторять три раза, 2 - два раза).
Для решения этой комбинаторной задачи можно воспользоваться построением «дерева». Выписывается сначала одна цифра, с которой можно начать запись числа. Дальнейший алгоритм действий сводится к записи цифр, которые можно поставить после каждой цифры, пока не получим пятизначное число. Следуя данному алгоритму, необходимо комбинировать и подсчитывать, сколько раз повторились цифры 5 и 2.
Рис. 14
Получились «веточки» с различными числами: 55522, 55252, 55225, 52552, 52525, 52255. Затем выписывается цифра 2.
Рис. 15
Записываем числа, двигаясь по «веточкам»: 22555, 25525, 25552, 25255. Ответ: можно записать 10 чисел.
* Задание 96. Подберите комбинаторные задачи, которые вы бы могли предложить ученикам первого, второго и третьего класса при изучении различных понятий начального курса математики.
умственный математика младший школьник
Литература
1. Эльконин Д.Б. Избранные психологические труды - М, Педагогика, 1989, с 251
2. Давыдов В.В. Проблемы развивающего обучения - М, Педагогика, 1986, с 9
3. Якиманская И.С. Развивающее обучение. - М., Педагогика, 1979, с. 70.
4. Микулина Г.Г. Психологические основы усвоения смысла вычитания. Начальная школа, 1982, №9.
5. Лехова В.П. Дедуктивные рассуждения в курсе математики начальных классов. - Начальная школа, 1988, № 5,с. 28-31.
Размещено на Allbest.ru
Подобные документы
Понятие "развивающее обучение". Включение в процесс обучения математике приемов умственных действий: анализ и синтез, сравнение, классификация, аналогия, обобщение. Формирование способности к теоретическому обобщению, обоснования истинности суждений.
реферат [1,0 M], добавлен 23.11.2008Роль, содержание, структура и функции умственного приема сравнения. Методика по развитию и формированию сравнения у младших школьников в процессе изучения математики. Дифференцированные упражнения по математике как средство формирования приёма сравнения.
дипломная работа [118,5 K], добавлен 23.11.2008Определение эффективных приемов для развития умственных действий младших школьников средствами дидактических игр на уроках математики. Основные критерии и показатели, позволяющие оценить уровень сформированности мыслительных операций школьников.
дипломная работа [748,0 K], добавлен 07.11.2014Задачи начального курса математики, ее роль в развитии интеллектуальных и творческих способностей детей. Основные качества математического мышления. Овладение приемами анализа, синтеза, сравнения, классификации, аналогии и обобщения на уроках математики.
реферат [25,2 K], добавлен 06.01.2014Содержание, роль и место внеклассной работы в процессе обучения математике. Методы и приемы развития творческой активности учащихся начальной школы. Изучение влияния внеклассных занятий по математике на развитие творческой активности младших школьников.
курсовая работа [92,5 K], добавлен 28.01.2016Процесс воспитания школьников с трудностями в обучении. Уровни сформированности мышления младших школьников. Коррекция мыслительной деятельности младших школьников на уроках математики. Анализ особенностей и уровней мышления младших школьников.
дипломная работа [654,0 K], добавлен 03.02.2012Общая характеристика внеурочной деятельности, ее направления. Содержание дополнительного образования на начальном этапе. Анализ работы начальной школы по организации внеурочной деятельности. Разработка программы кружка по математике "Умный в квадрате".
курсовая работа [1,6 M], добавлен 31.01.2014Сущность и задачи интерактивного обучения в начальной школе. Реализация комплекса методов и приемов интерактивного обучения младших школьников на уроках математики. Выявление динамики уровня сформированности универсальных учебных действий школьников.
дипломная работа [931,9 K], добавлен 17.02.2015Возможности формирования универсальных учебных действий у младших школьников на уроках математики. Сущность понятия регулятивных УУД, их виды и способы диагностирования уровня развития. Методика изучения основных величин. Опыт учителей начальной школы.
дипломная работа [309,6 K], добавлен 08.09.2014- Развитие пространственного мышления младших школьников в процессе изучения геометрического материала
Психологические характеристики младших школьников. Исследование специфики пространственного мышления. Анализ содержания геометрического материала в учебниках по математике для начальной школы. Формирование представлений об объёмных и плоских фигурах.
дипломная работа [4,0 M], добавлен 07.09.2017