Особенности обучения элементам геометрии в 5-6 классах с позиций пропедевтики изучения геометрии в средней школе

Психолого-педагогические особенности обучения элементам геометрии в 5-6 классах. Возрастная характеристика учащихся. Специфика восприятия геометрического материала. Разработка конспекта темы "Треугольники и четырехугольники". Подходы к пропедевтике.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 19.04.2011
Размер файла 203,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

А.М. Пышкало [30] выделяет следующие аспекты обучения геометрии, актуальные и для учащихся 5-6 классов.

1. Желательно, чтобы обучение геометрии носило развивающий характер, вся методическая система изучения геометрической составляющей курса математики должна подчиняться этой цели.

2. Геометрическую линию курса необходимо строить так, чтобы она составляла нечто целое, законченное и играть самостоятельную роль, обеспечивая формирование системы пространственных представлений и пространственного воображения учащихся.

3. Вся система обучения геометрии должна носить практическую направленность, обеспечивающую более рациональное продвижение в учении и служащую надежным средством для самообразования учащихся.

4. Необходимо, чтобы процесс геометрического развития был непрерывным, равномерным и разнообразным.

5. Ознакомление с геометрическими объектами желательно строить в направлении от формирования качественных геометрических операций к количественным.

6. Ознакомление с двумерной и трехмерной геометрией должно происходить одновременно.

7. Необходимо, чтобы учебные материалы обеспечивали возможность дифференцированного обучения, учета индивидуальных особенностей учащихся.

8. Систематическое внимание должно уделяться изучению терминологии и развитию учащихся.

9. При отборе содержания геометрического материала необходимо заботиться не только о накоплении запаса геометрических представлений и навыков, но и о достижении учащимися соответствующего развития.

Изучению вопросов пропедевтики геометрических знаний в 5-6 классах посвящены труды Г.А. Клековкина. Он отмечал, что имеется целый ряд причин, по которым необходимо введение специального курса, знакомящего учащихся с геометрическими объектами и их свойствами. Вот некоторые из них:

- трудности, которые возникают у учащихся 7-х классов, приступающих к изучению систематического курса геометрии ( от несформированных навыков работы с чертежными и измерительными инструментами до отсутствия потребности в элементарных логических обоснованиях своей деятельности );

- «уплощенность» естественного пространственного опыта у десятиклассников, дождавшихся после трехлетнего изучения планиметрии наконец - то «выхода в пространство»;

- недоучет возрастных особенностей и сензитивных периодов в развитии перцептивных и концептуальных пространственных представлений ребенка [17].

Г.А. Клековкин подчеркивает, что геометрия как никакой другой школьный предмет позволяет в явном виде демонстрировать наиболее адекватное психологической сущности учащихся 5-6 классов единство предметно - практической и умственной деятельности. Восприятие, память и мышление не существуют независимо друг от друга: мышление совершается не только в форме речи, но и в форме образов, функционирующих в нем в качестве носителей смыслового содержания. Поэтому важно, чтобы при первоначальном знакомстве с учебным предметом восприятие было естественным образом слито с речью, а посредством ее с абстрактным мышлением. На этом этапе основным носителем информации является образ, слово же служит закреплению созданного образа в термине, описанию наблюдаемых или найденных в предметно-практической деятельности свойств.

Развивая сказанное, можно говорить о принципе наглядно -теоретического единства изложения геометрии на данном этапе обучения. Первоначально геометрический факт рассматривается в рамках наглядной ситуации с помощью модели или образа - представления. Затем процесс динамических операций или наглядно-образных преобразований вторично считывается на языке геометрических понятий и отношений с помощью символики и логических рассуждений. Тем самым обеспечивается единство внешней (предметной) и внутренней (умственной) деятельности, а во внутреннем плане - единство слова и образа.

В соответствии с классификацией А.М. Пышкало А.Г. Клековкин выделяет пять уровней развития геометрического мышления.

На первом уровне геометрические фигуры воспринимаются детьми как единое целое. Они не видят частей фигуры, отношений между ее элементами; не могут порой сравнивать между собой близкие родственные фигуры. С точки зрения психологии это объясняется тем, что с рождения до младшего школьного возраста у ребенка правое полушарие головного мозга, дающее целостное восприятие предметов, изображений, ситуаций и обеспечивающее функционирование механизмов конкретного образного мышления, является доминирующим. В то же время дети этого возраста достаточно легко узнают знакомые фигуры и сравнительно быстро запоминают их названия. Поэтому генетическая способность детей к восприятию формы и размеров окружающих предметов служит основой формирования начальных геометрических представлений, а в основе познавательной геометрической деятельности лежат наблюдение, рисование, лепка, конструирование.

Достигнув второго уровня, ребенок начинает различать элементы фигур и устанавливать отношения между ними, может указать сходство и определенные видовые различия родственных фигур. Это объясняется тем, что начинается сдвиг асимметрии полушарий мозга в сторону левого полушария, посредством которого воспринимаются отдельные части, детали, элементы и обеспечивается функционирование механизмов абстрактного мышления. Обучение новой, пока еще индуктивной, наглядно-эмпирической геометрической деятельности происходит с помощью наблюдений, вычерчивания и измерения фигур, конструирования и моделирования, в ходе которых начинают формироваться такие приемы умственной деятельности, как сравнение, отождествление, анализ и синтез, классификация, аналогия, обобщение.

На третьем уровне учащиеся начинают устанавливать связи между свойствами фигур и самими фигурами. Осознается возможность определения вида фигуры по ее свойствам, выведения одного свойства из другого; уясняется роль определений. Однако значение индукции в целом учащимися еще не понимается, логический порядок изложения изучаемого материала задается учебником или учителем, и оно носит смешанный наглядно-теоретический и индуктивно-дедуктивный характер. Основная учебная деятельность направляется на формирование устойчивого интереса к изучению геометрии и потребности к логическим обоснованиям.

Учащиеся, достигшие четвертого уровня, понимают значение дедукции как способа построения геометрической теории, т.е. осознают роль и сущность аксиом, определений, теорем, логической структуры доказательств. Обучение геометрии на этом уровне ведется на основе содержательной модели евклидова типа, в которой основным геометрическим понятиям и отношениям придается сформированный ранее конкретно - эмпирический смысл.

Наконец, пятый уровень геометрического мышления характеризуется осознанием возможности построения геометрической теории на основе полуформальной аксиоматики, где развитие теории строится вне всякой конкретной интерпретации [17].

Основываясь на детальном анализе возможностей обучения геометрии школьников 11-13 лет, Г.А. Клековкиным была разработана и успешно внедрена программа экспериментального пропедевтического курса по геометрии для 5-6 классов. Также издан целый ряд методических и учебных пособий, посвященных этой тематике. В своей программе автор выделяет следующие обязательные результаты обучения. Вот некоторые из них:

1. Основные геометрические понятия.

Знания

Умения

Навыки

1.

2.

3.

Понятия: Пространство, точка, геометрическая

Фигура, линия, поверхность, тело, отрезок, луч, прямая; лежать на (в), проходить через, пересекаться в (по), и др.

Основные свойства принадлежности точек, прямых и плоскостей. Расположение точек:

На прямой, на плоскости относительно прямой.

Обозначения: точек, прямых, отрезков, лучей, плоскостей.

Знаки:

Строить с помощью линейки по заданным условиям прямые, лучи, отрезки.

Обозначать знакомые фигуры с помощью букв.

Читать простейшие тексты, в которых встречаются буквенные обозначения знакомых фигур.

Выделять изученные фигуры и отношения в окружающих предметах, на моделях, на готовых чертежах.

Строить линии по описанию (замкнутая, незамкнутая и т.д.)

Работа с линейкой как инструментом построения.

Выяснение равенства (неравенства) фигур с помощью наложения.

Использование буквенных обозначений для изученных фигур и знаков

2. Измерение длин. Расстояние между двумя точками

1.

2.

3.

Понятия: Середина отрезка, длина отрезка, единица измерения длины; ломаная, длина ломаной; треугольник, многоугольник, периметр многоугольника; длина дуги; расстояние между двумя точками.

Свойства измерения длины отрезка.

Соотношения между длинами сторон треугольника.

Сравнивать отрезки различными способами.

Измерять с помощью измерительной линейки и бытовых измерительных инструментов.

Решать задачи: с использованием свойств измерения длины отрезков; на выделение, изображение и измерение новых фигур; на выяснение существования треугольника с заданными сторонами.

Сравнение отрезков с помощью циркуля.

Сравнение отрезков с помощью измерения их длин. Работа с линейкой как инструментом измерения.

Сравнение длин и арифметические действия с ними, выражение заданной величины в различных единицах измерения. Соизмерение реальных размеров объектов с соответствующими единицами измерения.

3. Окружность, круг. Сфера, шар.

1.

2.

3.

Понятия: Окружность и ее элементы (центр, радиус, хорда, диаметр); внутренние и внешние относительно окружности точки; дуга окружности и стягивающая ее хорда; круг; сфера и ее элементы; шар. Равные окружности и равные дуги. Концентрические окружности.

Строить окружность, зная ее центр и радиус (диаметр).

Находить с помощью измерительной линейки радиус (диаметр) окружности, если известен ее центр.

Делить окружность на: 6 равных частей, на 3 равные части.

Работа с циркулем как инструментом для построения окружности (дуги окружности).

Построение окружности: по точкам на клетчатой бумаге, от руки.

4. Углы и их измерение

1.

2.

3.

Понятия: Определение; угол и его элементы (вершина, сторона); развернутый, прямой, острый и тупой углы; плоский угол; двугранный угол и его элементы; внутренний луч угла; смежные углы; биссектриса угла; центральный угол окружности и соответствующая ему дуга; градусная мера угла.

Находить в тексте учебника определения. С помощью угольника определять вид угла. С помощью транспортира: измерять величину угла; строить угол заданной величины; строить угол заной величины; строить биссектрису данного угла; делить угол на равные части.

Находить: величину угла, смежного с данным углом; градусную меру дуги, дополнительной к данной.

Решать задачи с использованием свойств измерения величины углов.

Измерение величины угла с помощью транспортира.

Построение с помощью транспортира угла заданной величины.

Построение с помощью чертежного угольника прямого угла.

5. Треугольник и тетраэдр

1.

2.

3.

Понятия: Разносторонний, равнобедренный, равносторонний, остроугольный, прямоугольный и тупоугольный треугольники; периметр треугольника; боковая сторона и основание равнобедренного треугольника; катет и гипотенуза прямоугольного треугольника; соответственные элементы равных треугольников; биссектриса и медиана треугольников; вертикальные углы; тетраэдр и его элементы; развертка тетраэдра. Теорема и ее структура; теорема- признак.

Теоремы: признаки равенства треугольников; о равенстве вертикальных углов; о свойствах равнобедренного треугольника.

Выделять треугольники в заданной фигуре. С помощью заданного набора инструментов определять вид данного треугольника. Строить треугольники с помощью измерительной линейки и транспортира:

1) по двум сторонам и углу между ними;

2) по стороне и двум прилежащим к ней углам.

Строить с помощью измерительной линейки и циркуля треугольник по трем сторонам.

Применять признаки равенства треугольника при решении простейших задач.

Выделение соответственных элементов в равных треугольниках.

Построение с помощью линейки и циркуля:

1) отрезка, равного данному;

2) угла, равного данному;

3) биссектрисы данного угла.

6. Перпендикулярные и параллельные прямые и плоскости.

1.

2.

3.

Понятия: Перпендикулярные прямые на плоскости; серединный перпендикуляр к отрезку; перпендикуляр и наклонная, опущенные из точки на прямую; расстояние от точки до прямой; окружность: вписанная в треугольник, описанная около треугольника. Параллельные прямые; секущая; накрест лежащие, соответственные и односторонние углы; угол треугольника; диагональ многоугольника.

Элементы четырехугольника; параллелограмм; прямоугольник; квадрат; ромб; трапеция и ее элементы; расстояние между параллельными прямыми. Параллельные прямые в пространстве; скрещивающиеся прямые; параллельные прямая и плоскость; параллельные плоскости и другие.

Строить: перпендикулярные прямые с помощью угольника и линейки; серединный перпендикуляр к отрезку с помощью линейки и циркуля; параллельные прямые с помощью угольника и линейки; высоту треугольника с помощью угольника; перпендикулярные и параллельные прямые с помощью клетчатой бумаги.

Строить четырехугольники: параллелограмм, прямоугольник, квадрат, ромб, трапецию.

Выделять в окружающих предметах, на моделях и готовых чертежах: перпендикулярные, параллельные, скрещивающиеся прямые; параллельные, пересекающиеся и перпендикулярные прямые и плоскости; параллельные и перпендикулярные плоскости.

Находить на готовых чертежах, используя признаки: параллельные прямые; параллельные и перпендикулярные прямые и плоскости; перпендикулярные плоскости.

Построение перпендикулярных и параллельных прямых с использованием: линий клетчатой бумаги, линейки и угольника.

Деление данного отрезка пополам с помощью линейки и циркуля.

Нахождение с помощью угольника и измерительной линейки: расстояния от точки до прямой, расстояния между параллельными прямыми, высоты данного треугольника.

7. Многогранники и круглые тела

1.

2.

3.

Понятия: геометрическое тело; многогранник и его элементы (вершины, ребра, грани, диагонали); выпуклый многогранник.

Пирамида; основание, боковые ребра и грани, высота, развертка пирамиды.

Параллелепипед; основание, боковые ребра и грани, высота, развертка параллелепипеда; Прямоугольный параллелепипед; измерения, развертка. Куб.

Призма; основание, боковые ребра и грани, высота призмы; прямая и наклонная призмы.

Длина окружности.

Цилиндр; основания, радиус, образующая, ось, высота, боковая поверхность, развертка цилиндра.

Конус; основание, вершина, радиус, образующая, ось, высота, боковая поверхность, развертка.

Сфера как фигура вращения.

Основные свойства параллелепипеда, прямоугольного параллелепипеда.

Выделять: модели многогранников и круглых тел в окружающей обстановке, узнавать многогранники и круглые тела по их изображению на чертежах.

Находить и называть нужные элементы многогранников и круглых тел на их моделях и изображениях.

Находить параллельные и перпендикулярные ребра и грани на моделях и изображениях многогранников.

Строить: изображения пирамиды, параллелепипеда, призмы, цилиндра, конуса, шара; развертки многогранника, цилиндра и конуса по заданным условиям.

Обозначать многогранники и круглые тела, их элементы на чертежах.

Изготовлять модели многогранников, цилиндра и конуса.

Изображение пирамиды, параллелепипеда, призмы, цилиндра, конуса, шара.

Построение нужного многогранника по заданным условиям.

Чтение чертежа пространственной фигуры.

Обозначение многогранников и круглых тел, их элементов.

Кроме Г.А. Клековкина есть ряд авторов, которые предлагали свои пропедевтические курсы по геометрии для 5-6 классов. Рассмотрим некоторых из них. Курс наглядной геометрии, предложенный П.А. Карасевым для начальной школы, сохраняющие значение и актуальность для современной школы [17].

В качестве целей изучения курса автор выделяет:

1. Развитие геометрических представлений учащихся посредством рисования геометрических фигур и тел изготовления их моделей.

2. Усвоение начальных приемов черчения с помощью линейки, угольника и циркуля.

3. Ознакомление со способами прямого и косвенного измерения длин, углов, площадей и объемов.

4. Усвоение некоторых элементарных сведений по геометрии, полезных в практической жизни и необходимых при изучении других предметов.

5. Активизация мышления путем постановки и решения геометрических задач.

6. Введение элементов логического мышления в степени и форме, доступных возрасту учащихся.

7. Развитие речи - письменной и устной - в области, относящейся к пространственным представлениям детей.

Автор считает необходимым познакомить учащихся с плоскими фигурами, например, среди них есть трапеция и параллелограмм, с их важнейшими свойствами и с пространными телами. Он не ограничивается лишь измерением длин, площадей и объемов этих геометрических объектов - это одна из линий предлагаемого им курса. Рассматриваются понятия равносоставленности и равновеликости, вычисляются площади трапеции, ромба, треугольника, причем не по выведенному правилу или формуле, а путем перекраивания этих фигур в равновеликие прямоугольники.

В предложенной методике активно и интересно используются свойства клетчатой бумаги для перерисовывания фигур, их построения, перекраивания, измерения длины и площади и др. Помимо построений на клетчатой бумаге, учащиеся знакомятся и с построениями на гладкой бумаге с использованием чертежных инструментов. Одним из основных типов задач здесь является построение фигур путем перегибания листа бумаги.

Отбор содержания и методика его изучения происходят в соответствии со следующими принципами [17].

1. Процесс обучения должен строиться не только в зависимости от содержания самого геометрического материала, но и от психологических особенностей детского возраста, и от общих целей образования.

2. Основными методическими принципами построения курса наглядной геометрии являются наглядность и максимальное количество практических упражнений конструктивного и изобразительного характера.

3. Отказ от дедуктивно-логического метода доказательства геометрических положений. В основу преподавания должен быть положен индуктивный метод, основанный на наглядном и практическом изучении конкретных фактов и последующем их обобщении.

4. Движение - важнейший фактор, как создания геометрических форм, так и уяснения их свойств.

5. Построение курса и метод его преподавания должны идти в развитии геометрического мышления от простого к сложному, от конкретного к отвлеченному.

6. В учебной работе необходимо задействовать все виды памяти: зрительную, моторную, слуховую.

7. Необходимо отказаться от заучивания определений, правил и др. Вместо этого необходимо вводить «живое описание» детьми своих наблюдений, подмеченных геометрических свойств.

К недостаткам рассмотренного подхода можно отнести отсутствие в курсе пространственных геометрических объектов.

Следует отметить, что многие идеи, высказанные П.А. Карасевым, остались нереализованными на том уровне развития теории обучения, так как школа тех лет ориентировалась в основном на репродуктивные методы обучения и не была готова к организации самостоятельной исследовательской деятельности учащихся по изучению геометрических объектов. Переориентация современной методической системы обучения на приоритет развивающей функции обучения потребовала, во-первых, пересмотра содержания геометрического образования и, во-вторых, нового структурирования всей геометрической линии.

Следующий автор - В.А. Гусев. В своей программе автор реализует идею фузионизма. Отличительной чертой данной программы является параллельное изучение планиметрии и стереометрии - плоские фигуры и их свойства чаще всего изучаются не сами по себе, а как части пространственных геометрических фигур. Курс геометрии в 5-6 классах направлен на всестороннее индивидуальное развитие учащихся с учетом их способностей и возможностей. В процессе изучения геометрии целенаправленно реализуется формирование умственного развития учащихся через отработку конкретных приемов мыслительной деятельности: прежде всего синтеза и анализа, затем абстрагирования, сравнения, обобщения и аналогии. Логика выступает как средство подтверждения наглядности и практической значимости. Наглядность в изложении курса является приоритетной. Автор предлагает множество геометрических задач на развитие пространственного воображения, задач творческого и творческо-поискового, исследовательского характера, что должно способствовать развитию геометрического мышления учащихся.

Богатый теоретический и задачный материал по каждой теме курса позволяет формировать у учащихся не только интуитивно-геометрические представления, но и учит серьезному теоретическому обоснованию решений.

И еще один автор, чей подход наиболее интересен, разработанный в отделе математического образования ИОСО РАО (И.Ф. Шарыгин, Г.В. Дорофеев, С.Б. Суворова, Л.В. Кузнецова и др.), который предполагает три основных концентрата изучения геометрии в школе: наглядно-эмпирическая геометрия (1-6 классы), систематический курс планиметрии (7-9 классы), систематический курс стереометрии (10-11 классы). Важным отличием такой структуры школьного геометрического образования от предшествующей является возможность овладения содержанием на двух уровнях - наглядно-эмпирическом (1-6 классы) и систематическом (7-11 классы). В качестве основной цели этапа, связанного с младшим подростковым возрастом, выдвигается развитие пространственных представлений и воображения, геометрическая интуиция, изобразительно-графических навыков, глазомера, изобразительности.

Так, И.Ф. Шарыгин обсуждает цели, задачи, особенности наглядно-эмпирического подхода к изучению геометрии в 5-6 классах и реализует их в пособии «Наглядная геометрия», написанном в соавторстве с Л.Н. Ерганжиевой [40].

По мнению И.Ф. Шарыгина, логикой изложения содержания должно стать сочетание индуктивного подхода, основанного на интеллектуально-практическом опыте учащихся, и начал дедукции.

В такой курс могут быть включены наглядные доказательства. И.Ф. Шарыгин высказывает положение об отличии курса геометрии 5-6 классов от курса 1-4 классов, которое заключается в том, что, несмотря на значимость геометрического материала в начальной школе, он выполняет вспомогательную роль по отношению к арифметическому материалу.

Здесь целью является выработка прочных ассоциативных связей в парах «фигура-число» и «фигура-слово»: учитывается объем изучаемых геометрических объектов и отношений, вводятся различные классификации, увеличивается доля графических упражнений и заданий, выполняемых в визуальном плане, вводятся новые методы исследования.

Одной из отличительных особенностей курса геометрии 5-6 классов является задача заинтересовать, привлечь внимание учащихся к математике, показав многогранность и разнообразие ее проявлений. Это связано с тенденцией к снижению на рубеже перехода в основную школу интереса к учению.

пропедевтика геометрия обучение

2.2 Сравнительный анализ геометрического материала, содержащегося в учебниках

В данном параграфе проведем сравнительный анализ геометрического материала, содержащегося в следующих учебно-методических комплектах по математике:

1. Математика: учебник для 5 класса общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др. - М.: Просвещение, 2007

2. Математика 6 класс: Учебник для общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин и др. - М.: Дрофа, 2000

3. Математика: Учебник для 5 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд - М.: Мнемозина, 1997.

4. Математика: Учебник для 6 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд - М.: Мнемозина, 2007.

Все учебники и по содержанию, и по стилю выстроены так, чтобы обеспечить школьникам достаточно мягкий и безболезненный переход к систематическому изучению в 7 классе курса геометрии. Содержание учебников полностью отвечает требованиям стандарта математического образования 2004 года и опирается на тот минимум содержания, который предлагают учебники для начальной школы, что дает возможность их использования в качестве продолжения любого курса начальной школы, как традиционного, так и развивающего направлений. Остановимся подробно на каждом комплекте.

1. Математика: учебник для 5 класса общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др. - М.: Просвещение, 2007

Учебно-методический комплект: Математика: учебник для 5 класса общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др. - М.: Просвещение, 2007 соответствует современным тенденциям и способствует формированию математического мышления. Каждое пособие, входящее в комплект для 5 класса, имеет свои функции и особенности. Учебник -- центральная книга комплекта. Весь материал в нем разбит на небольшие по объему главы, каждая из которых включает от трех до семи пунктов. В каждом пункте выделяется учебный (объяснительный) текст, в нем содержатся все необходимые понятия и термины, разбираются способы решения задач. Многие пункты написаны достаточно развернуто и содержат материал для чтения, который не требуется ни запоминать, ни воспроизводить. Это, например, исторические фрагменты, объяснение возникновения того или иного термина, обозначения. Это делает текст интересным, повышает привлекательность и доступность материала для детей, способствует возникновению прочных ассоциаций, что, в конечном счете, помогает пониманию и запоминанию собственно математических фактов. Система упражнений по каждому пункту разделена на группы А и Б. Упражнения первой группы направлены в основном на формирование и отработку умений на уровне обязательной подготовки, упражнения второй группы -- на развитие более высоких уровней усвоения. Диапазон сложности самых первых заданий (из группы А) и последних заданий (из группы Б) всегда значителен. Каждая глава учебника завершается двумя самостоятельными разделами. Первый из них -- «Для тех, кому интересно». Это необязательный материал, углубляющий или чаще расширяющий знания учащихся. Его название полностью отражает его назначение. Он содержит небольшой объяснительный текст и интересные задачи, в большинстве своем доступные детям с разными способностями. Предполагается, что этот материал может использоваться самыми разными способами: для индивидуальной работы учащихся в классе и дома, для совместной работы детей с родителями, для фронтальной работы с классом, -- все зависит от конкретных условий и желаний. Второй, завершающий раздел -- «Задания для самопроверки». Он содержит обязательные результаты обучения по данной главе. В конце учебника помещен раздел «Задания для итогового повторения». В нем задания сгруппированы в восемь работ, по две дублирующие, направленные на компактное, эффективное, систематизирующее повторение всего материала за год.

В данном комплекте имеется отдельная рабочая тетрадь с геометрическим материалом - пособие для работы непосредственно на содержащихся в нем заготовках с геометрическими упражнениями. Такое пособие делает разнообразным объем и содержание работы учеников и увеличивает объем их практической деятельности.

Геометрический материал учебника представлен в следующих главах:

Глава 1. Линии

Глава 5. Многоугольники

Глава 7. Треугольники и четырехугольники

Глава 10. Многогранники

В главе «Линии» формируются некоторые общие представления о линии (замкнутость, самопересечение, внутренняя область и др.). Целью главы является обучение учащихся осмысленному, грамотному и адекватному восприятию геометрических объектов. Учащимся предлагаются задания на распознавание линий и их изображение. При этом задачи на изображение подразделяются на два вида: вычерчивание некоторой конфигурации по описанию и воспроизведение заданной конфигурации. Особое внимание уделяется прямой и окружности. Выполняя упражнения, учащиеся встречаются с конфигурациями, содержащими две и более прямых, две и более окружностей, прямые и окружности. В данной главе представления о фигурах, связанных с прямой, дополняются и расширяются после изучения в начальной школе: вводятся понятия «луч» и «ломаная». Теперь учащиеся находят длину ломаной, расстояние между двумя точками, и, кроме того, они встречаются с задачей определения длины кривой.

Цель следующей главы «Многоугольники» - познакомить учащихся с новой геометрической фигурой -- углом и развить представление о многоугольнике.

В этой главе материал содержит два смысловых блока. Первый из них связан с введением новой для учащихся геометрической фигуры, которой является угол, и связанных с ней понятий (виды углов, измерение углов). Одним из важнейших умений, которым они должны овладеть на этой стадии обучения, является сравнение углов. Второй блок содержания связан с многоугольниками и содержит материал, частично знакомый учащимся из начальной школы. Теперь им предстоит расширить свои представления об уже знакомых фигурах, усвоить связанную с ними терминологию (вершина, сторона, угол многоугольника, диагональ), научиться «видеть» их в более сложных конфигурациях.

В главе «Треугольники и четырехугольники» учащиеся углубят свои знания о треугольниках и четырехугольниках: они познакомятся с классификациями треугольников по сторонам и углам, со свойствами равнобедренного треугольника, а также со свойствами прямоугольника. Целью данной главы является развитие представления учащихся о прямоугольнике; сформировать понятие равных фигур, площади фигуры, научить находить площади прямоугольников и фигур, составленных из прямоугольников; познакомить с единицами измерения площадей.

В главе «Многогранники» важнейшей целью изучения данного раздела является развитие пространственного воображения учащихся. В данной главе учащиеся знакомятся с такими геометрическими телами, как цилиндр, конус и шар, объектом же более детального исследования являются многогранники (параллелепипед и пирамида). Кроме того, знакомятся со способами изображения геометрических тел на листе бумаги (рисунок сплошной или прозрачной модели, проекционный чертеж) и учатся «читать» эти изображения, отмечая основные конструктивные особенности геометрического тела: число вершин, ребер, граней, их расположение.

Таким образом, геометрический материал в учебнике для 5 класса общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др. - М.: Просвещение, 2007 может быть охарактеризован как наглядно-деятельностный. Обучение организуется как процесс интеллектуально-практической деятельности, направленной на развитие пространственных представлений, изобразительных умений, расширение геометрического кругозора, в ходе которого учащимися усваиваются важнейшие свойства геометрических фигур, как плоских, так и пространственных.

2. Математика 6 класс: Учебник для общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин и др. - М.: Дрофа, 2000

Учебно-методический комплект Математика 6 класс: Учебник для общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин и др. - М.: Дрофа, 2000 также способствует формированию математического мышления школьников. Он также содержит учебник, рабочие тетради, дидактические материалы. Материал учебника содержит учебный (объяснительный) текст, в нем выделяются все необходимые понятия и термины, разбираются способы решения задач. Имеются также исторические факты, повышающие привлекательность материала, и разделы «Для тех, кому интересно». Система упражнений по каждому пункту разделена на две группы. Упражнения первой группы, как и в учебнике 5 класса, нацелены на формирование и отработку умений на уровне обязательной подготовки, а упражнения второй группы -- на развитие более высокого уровня сложности. Диапазон сложности самых первых заданий (из группы А) и последних заданий (из группы Б) всегда значителен. В конце учебника также имеется раздел «Задания для итогового повторения».

И в этом комплекте представлена отдельная рабочая тетрадь с геометрическим материалом, которая позволяет расширять пространственные представления учащихся о геометрических объектах и увеличивает практическую деятельность учеников.

Геометрический материал учебника дается в следующих главах:

Глава 2. Прямые и окружности.

Глава 4. Симметрия.

Глава 6. Фигуры на плоскости и в пространстве.

Материал главы «Прямые и окружности» знакомит учащихся со всеми случаями взаимного расположения на плоскости двух прямых, прямой и окружности, двух окружностей. Основной целью главы является создание у учащихся зрительного образа основных конфигураций, связанных с взаимным расположением прямых и окружностей. Важно, что при изучении материала данной главы происходит дальнейшее развитие пространственных представлений и воображения учащихся. Учащимся предлагаются упражнения направленные на расширение понятия «расстояние» за счет введения понятия «расстояние от точки до фигуры» и его частного случая - расстояния от точки до прямой, а также расстояния между параллельными прямыми. Кроме того, усложняются задачи, связанные с расстоянием между двумя точками.

В главе «Симметрия» рассматриваются осевая, центральная и зеркальная симметрии. В отдельный пункт выделен вопрос о применении симметрии к решению некоторых геометрических задач, где рассматривается традиционная для занимательной математики задача о пауке и мухе. Цель главы - сформировать представление о симметрии в окружающем мире; познакомить с основными видами симметрии на плоскости и в пространстве; расширить представления об известных фигурах, познакомив со свойствами, связанными с симметрией; также показать возможности использования симметрии при решении различных задач и построениях.

Данная глава «Фигуры на плоскости и в пространстве» является обобщающим, собирательным разделом в геометрической линии курса 5-6 классов. Здесь происходит новый виток в изучении вопросов, рассмотренных ранее. А именно, расширяются представления учащихся о многоугольниках: они знакомятся с новым видом четырехугольников - параллелограммом; знакомятся с новыми свойствами треугольников; приобретают новые графические умения по построению многоугольников и более сложные конструктивные умения. Расширяются представления учащихся о площади - они учатся находить площади различных фигур путем их перекраивания; впервые вводится понятие объема. Целью главы является обобщить и расширить знания о треугольниках и четырехугольниках; познакомить с понятием объема, единицами объема и правилом вычисления объема прямоугольного параллелепипеда.

Таким образом, обучение по комплекту Математика 6 класс: Учебник для общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин и др. - М.: Дрофа, 2000 продолжает, так же как и в комплекте 5 класса, организовываться как процесс интеллектуально-практической деятельности, направленной на развитие пространственных представлений, изобразительных умений, расширение геометрического кругозора, в ходе которого учащимися усваиваются важнейшие свойства геометрических фигур, как плоских, так и пространственных.

После рассмотрения комплектов учебников 5-6 классов под редакцией Г.В. Дорофеев, И.Ф. Шарыгин и др. можно сделать следующие выводы. Структура комплектов, четкая функциональная направленность каждого пособия, компоновка материала удобны для подбора материала и организации урока и в то же время не предполагают жесткой регламентации обучающей схемы. Обеспечивается уровневая дифференциация. Комплект в целом содержит достаточный объем материала для работы с учащимися разного уровня способностей и подготовленности и позволяет учителю строить учебный процесс с учетом реального уровня класса, группы учащихся, конкретного ученика; упражнения разделены на группы А и Б и представлены в широком диапазоне сложности; в учебник и дидактические материалы включается богатый и разнообразный материал, позволяющий выйти за рамки круга обязательных вопросов, применить полученные знания в различных ситуациях.

Методические особенности учебника заключаются в том, что выдвигается приоритет развития в обучении, меняются акценты в преподавании, явно выдвигается задача формирования интеллектуальной восприимчивости, гибкости и независимости мышления.

Введение новых понятий позволяет создать у учащихся запас содержательных представлений, служащих основой для последующей формализации, способствует пониманию, даёт возможность школьникам самостоятельно открывать новые знания. Широко используется диалог и обращение к ученику, опора на опыт учащихся, привлечение современных сюжетов при изложении теоретического материала и в задачах. Содержатся интересные для учащихся формы заданий: задания с выбором ответа, задачи-исследования, задания нестандартной формы, нестандартная форма вопроса. Учебники ориентированы как на сильного ученика, так и на слабого, так как задания по всем темам варьированы по степени трудности.

3. Математика: Учебник для 5 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд - М.: Мнемозина, 1997.

Материал учебника разбит на две главы, каждая из которых содержит по четыре параграфа. Параграфы разбиты на небольшие пункты, посвященные отдельной теме. Материал каждого пункта изложен простым доступным для понимания 5-классников языком. В каждом пункте выделяются основные понятия, правила и теоретические сведения, которые следует либо запомнить, либо выучить наизусть. Кроме того, после объяснительного текста учебника имеются вопросы, позволяющие закрепить пройденный материал как на уроке всем классом, так и самостоятельно каждому ученику дома. Про текст хотелось отметить следующее. Для облегчения работы с объяснительным текстом, в учебнике новые термины не только выделены в тексте, но и продублированы на полях учебника, что дополнительно фиксирует внимание на каждом из этих слов и позволяет в дальнейшем внимание на каждом из этих слов и позволяет в дальнейшем легко находить в тексте новые понятия и их объяснение.

Следует отметить, что упражнения разбиты на рубрики. Отдельно выделены упражнения для работы в классе по теме данного пункта, упражнения для домашней работы. Все упражнения построены по принципу от простого к сложному. Задачи в каждом пункте учебника разбиты на три большие группы: 1-я - для работы в классе; 2-я - для решения дома; 3-я - повторительные упражнения. Для учащихся со средней математической подготовкой число упражнений в учебнике несколько избыточно. Это сделано для того, чтобы дать учителю возможность, исходя из особенностей конкретного класса, выбрать более легкие или, наоборот, более сложные задания, уделять большее внимание тому или иному виду задач, т.е. для успешного усвоения курса нет необходимости стремиться прорешать с детьми все задачи учебника.

Особенности упражнений для классной работы в том, что они расположены по степени их «обязательности», важности для формирования основных знаний и умений.

В упражнениях для домашней работы даны два вида задач: 1) упражнения, непосредственно связанные с изучаемой темой; они, как правило, по трудности соответствуют основным задачам раздела классных упражнений; 2) упражнения для систематического повторения ранее изученных разделов курса математики.

И наиболее сложная и многоцелевая группа задач, предусматривает:

ь задания для устного решения;

ь подготовительные задания для работы над новой темой;

ь задачи для непрерывного повторения ранее изученного;

ь задачи повышенной трудности;

ь упражнения, специально рассчитанные на развитие мышления детей, их памяти, внимания.

В этой же группе помещены задачи, которых сообщаются дополнительные сведения, расширяющие кругозор учащихся, готовящие их к глубокому усвоению курсов алгебры и геометрии в следующих классах, а также позволяющие учителю, «отталкиваясь» от задач, приведенных в учебнике, строить собственную систему внеклассной работы: занятий кружка и т.д.

Также имеются рубрики, включающие рассказы об истории возникновения и развития математики; рубрики, позволяющие учиться говорить правильно; и рубрика, включающая игры и упражнения, нацеленные на то, чтобы изучение математики было успешным, интересным. Следует отметить красочные иллюстрации, яркие цветные плашки, широкие свободные поля, дающие возможность отдохнуть глазам, цветные обрамления, цветной текст в некоторых разделах призваны (на уровне подсознания) создавать радостный настрой, заинтересованность привлекать и располагать к себе детей.

Геометрический материал не выделен в отдельные главы, он представлен отдельными пунктами:

П.2. Отрезок. Длина отрезка. Треугольник

П.3. Плоскость. Прямая. Луч

П.4. Шкалы и координаты

П.18. Площадь. Формула площади прямоугольника

П.19. Единицы измерения площадей

П.20. Прямоугольный параллелепипед

П.21. Объемы. Объем прямоугольного параллелепипеда

П.41. Угол. Прямой и развернутый угол. Чертежный треугольник

П.42. Измерение углов. Транспортир

Второй пункт «Отрезок. Длина отрезка. Треугольник» позволяет учащимся актуализировать свои знания, полученные в начальной школе. А именно, чертить, измерять отрезки, распознавать и показывать на чертежах элементы треугольника. Изучая этот пункт, школьники вспоминают единицы измерения длины.

Пункт «Плоскость. Прямая. Луч» нацелен на введение понятий плоскость, прямая, луч. Упражнения этого пункта содержат задания на распознавание отличий между отрезком, прямой и лучом.

В пункте «Шкалы и координаты» учащиеся знакомятся с понятиями координатного луча, единичного отрезка и координатной точки. Одна из целей данного пункта - это научить учащихся пользоваться различными шкалами, определять и записывать координаты точек, находить место точки на координатном луче по данной координате.

Пункт «Площадь. Формула площади прямоугольника» нацелен на актуализацию учащихся имеющихся знаний из начальной школы о площади. Вводится понятие равных фигур, площадь треугольника.

«Единицы измерения площадей». Данный пункт также не является новым для учащихся. Происходит актуализация знаний учеников о единицах площадей, полученные в начальной школе. Происходит ознакомление с новыми единицами площадей, с соотношениями между ними. Имеются упражнения, предполагающие выражение одних единиц площади через другие.

«Прямоугольный параллелепипед». Целью данного пункта является знакомство с геометрическим телом на примере прямоугольного параллелепипеда; и учить решать задачи на нахождение площади поверхности прямоугольного параллелепипеда. Вводятся такие понятия как: грань параллелепипеда, ребро параллелепипеда, вершина параллелепипеда, куб.

В пункте «Объемы. Объем прямоугольного параллелепипеда» учащиеся знакомятся с понятием объем. Учатся находить объем прямоугольного параллелепипеда.

«Угол. Прямой и развернутый угол». Чертежный треугольник. В данном пункте вводится понятие угла, обозначаются правила чтения и записи углов; вводятся понятия прямого, развернутого угла, тупого, острого угла.

В пункте «Измерение углов. Транспортир» целью является ознакомление учащихся с транспортиром, научить измерять и строить углы.

Таким образом, геометрический материал в учебнике Математика: Учебник для 5 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд - М.: Мнемозина, 1997. может быть охарактеризован как наглядно-образный. Многие понятия даются лишь на ознакомительном уровне. Обучение организуется как образовательный процесс, направленный на знакомство с плоскими и пространственными геометрическими фигурами, в ходе которого учащимися усваиваются важнейшие свойства этих фигур, а также ознакомление с тем, как используются свойства геометрических фигур в практической деятельности.

4. Математика: Учебник для 6 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд - М.: Мнемозина, 2007.

Материал этого учебника также разбит на две главы, каждая из которых содержит параграфы. А параграфы в свою очередь разбиты на небольшие пункты, посвященные отдельной теме. Деление упражнений на рубрики продолжается, и добавляется еще одна рубрика, в которой помещены задачи, помогающие учиться думать, рассуждать, делать наблюдения и выводы, расширяющие круг математических знаний и представлений. Сначала даются простые упражнения, направленные на отработку отдельных умений. Затем уровень сложности повышается.

Геометрический материал в этом учебнике дополняет и расширяет сведения о фигурах, полученные учащимися в 5 классе, и представлен отдельными пунктами:

П.24. Длина окружности и площадь круга.

П.25. Шар.

П.43. Перпендикулярные прямые.

П.44. Параллельные прямые.

В пункте «Длина окружности и площадь круга» школьники знакомятся с новым для них числом как отношением длины окружности к длине ее диаметра. Даются формулы длины окружности и площади круга. Задачи можно условно поделить на два типа: упражнения на измерение элементов окружности и упражнения на вычисление неизвестных компонентов по формулам.

В пункте «Шар» само понятие шара дается образно, связывается с предметами из окружающего мира (мяч, глобус, арбуз). Количество задач весьма ограничено. Они посвящены отношению радиуса и диаметра шара.

Пункт «Перпендикулярные прямые» посвящен усвоению понятия таких прямых. Учащиеся должны научиться строить перпендикулярные прямые с помощью чертежных инструментов, распознавать эти прямые, а также знакомятся с перпендикулярными отрезками и лучами.

Пункт «Параллельные прямые» нацелен на усвоение понятия параллельных прямых и дается ответ на вопрос: сколько прямых, параллельных данной, можно провести через одну точку. Кроме того, показывается, как с помощью треугольника и линейки можно построить прямую, параллельную данной. Задачный материал направлен на отработку умения построить прямую, параллельную заданной.

Итак, обучение по учебнику Математика: Учебник для 6 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд продолжает, так же как и в учебнике для 5 класса, организовываться как образовательный процесс, направленный на развитие плоских геометрических представлений, чертежных умений, расширение пространственных образов. Часть понятий дана на ознакомительном уровне, а для других понятий имеется четкое определение. Хочется отметить, что количество задач и упражнений, направленных на закрепление умений и навыков, связанных с геометрическими объектами, ограничено, что не дает возможности учесть уровневую дифференциацию. Однако имеются задания, связанные с объектами окружающего мира, что позволяет школьникам научиться использовать свойства геометрических фигур в практической деятельности.

Проведя анализ четырех учебно-методических комплектов по математике для 5-6 классов можно сделать следующие выводы:

· Тема «Линии» представлена только в комплекте Г.В. Дорофеева, И.Ф. Шарыгина, достаточно упражнений для закрепления изучаемых понятий, предлагаются контрольно-измерительные задания и содержательная часть этой темы достаточно широко представлена.

· Тема «Углы» в одинаковом объеме представлена во всех учебниках. Разница лишь в том, что в учебнике Дорофеева Г.В. дается понятие биссектрисы угла и предложены упражнения на закрепление данного понятия.

· Тема «Многоугольники» представлена только в комплекте Дорофеева Г.В. К сожалению, авторы предлагают мало упражнений по данной теме.

· Тема «Треугольники и их виды» наиболее полно отражена в учебнике Дорофеева Г.В., а в учебнике Виленкина Н.Я. вводится только понятие, без классификации треугольников.

· Тема «Прямоугольники» одинаково представлена в двух учебниках математики. Предлагается разнообразный дидактический материал по теме.

· Тема «Многогранники» изучается во всех учебниках, с разницей, что в первом изучается такой многогранник, как «Пирамида», а во втором отсутствует такая тема.

· Тема «Симметрия» в большем объеме изучается в УМК Г.В. Дорофеева. Это и изучение понятия осевой и центральной симметрий, и симметричных и центрально-симметричных фигур. В учебнике Виленкина Н.Я. данная тема не представлена совсем.

· Тема «Длина окружности и площадь круга. Шар, сфера» имеет место и в том и другом учебнике.

С позиции пропедевтики элементов геометрии в 5-6 классах геометрическая линия наиболее полно представлена в УМК Г.В. Дорофеева, И.Ф. Шарыгина. Подробнее рассматриваются многие темы. Особенно такие, как: «Линии», «Треугольник», «Симметрия». Изучение происходит не только на ознакомительном уровне. Изучаются свойства фигур. Многие задания имеют практическую направленность, что еще раз подтверждает эффективность курса. Авторы показывают учащимся возможности применения геометрических знаний в реальной жизни.

Особое внимание хочется уделить дидактической составляющей. К каждой теме подобрано достаточно много заданий по изучаемому материалу. Предлагаются задания двух уровней сложности. Задания второго уровня чаще носят исследовательский характер.

Предлагаются задания в рабочих тетрадях. Это задания такого характера как: построить, начертить, измерить, вычислить. Некоторые задание предлагаются для развития глазомера. В дидактических материалах есть обучающие и проверочные задания по всем темам курса. Заметим, что авторы отдельное внимание уделяют интеллектуальному развитию ребенка. На это направлены знания представленные в дополнительных разделах. Авторы, познавательный материал предлагают для дополнительного изучения, тем самым, подталкивая учащегося к самостоятельной деятельности.

Выводы по главе 2.

Анализируя существующие подходы к преподаванию элементов геометрии с позиций пропедевтики дальнейшего обучения курсу геометрии, можно подвести следующие итоги:

1. Имеется ряд причин, по которым необходимо введение специального курса, знакомящего учащихся с геометрическими объектами и их свойствами:

· трудности, возникающие у школьников 7-х классов, приступающих к изучению систематического курса геометрии;

· «уплощенность» естественного пространственного опыта у десятиклассников, дождавшихся после трехлетнего изучения планиметрии наконец-то «выхода в пространство»;

· недоучет возрастных особенностей и сензитивных периодов в развитии перцептивных и концептуальных пространственных представлений ребенка.

2. По мнению Г.А. Клековкина, геометрия как никакой другой школьный предмет позволяет в явном виде демонстрировать наиболее адекватное психологической сущности учащихся 5-6 классов единство предметно-практической и умственной деятельности.

3. При составлении пропедевтического курса геометрии необходимо учитывать:

· чтобы геометрическая линия обеспечивала формирование пространственного воображения учащихся, а также развитие логического и творческого мышления;

· желательно, чтобы система обучения носила практический характер, а также ближе знакомила с предметами окружающего мира;

· чтобы процесс геометрического развития был непрерывным, равномерным и разнообразным;

· более глубокое внимание систематическому изучению терминологии.

4. Сравнительный анализ геометрического материала, содержащегося в четырех учебно-методических комплектах по математике для 5-6 классов, позволяет сделать вывод, что с позиции пропедевтики элементов геометрии геометрическая линия наиболее полно представлена в учебно-методическом комплекте авторов: Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др., так как подробнее рассматриваются темы: «Линии», «Треугольник», «Симметрия»; изучение происходит не только на ознакомительном уровне; многие задания имеют практическую направленность; более подробно изучаются свойства фигур.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.