Методика организации самостоятельной работы по математике
Теоретическое изучение структуры и содержания самостоятельных работ к учебной теме курса математики. Сущность и виды самостоятельной работы при изучении алгебры в средней школе. Особенности организации, анализ работы учителя и методические рекомендации.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.02.2011 |
Размер файла | 319,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Заключение
Одним из важнейших средств систематического и прочного усвоения программного материала по математике, развития творческих сил и воспитания учащихся является самостоятельная работа. В. И. Ленин указывал на то, что «без известного самостоятельного труда ни в одном спорном вопросе истины не найти».
«Нам надо научить подрастающее поколение учиться самостоятельно, овладевать знаниями. Это одна из важнейших проблем, которую должна разрешить наша советская школа», -- говорила Н. К. Крупская.
Привитие учащимся навыков самостоятельной работы всегда являлось одной из главных задач на каждом этапе развития советской школы.
Практика показывает, что при обучении математике необходимо уделять значительное место самостоятельной работе учащихся, организации различных упражнений. Без этого не может быть усвоения программного материала по математике. Только в выполнении различных упражнений закрепляются математические понятия, вырабатываются вычислительные навыки, приобретается умение геометрических построений, развивается пространственное представление учащихся, умение практически применять знания, свой опыт при решении задач и т. д.
В процессе выполнения самостоятельной работы по математике у учащихся развивается внимание, память, стремление обосновывать высказываемое, инициатива. Сама же организация самостоятельной работы в условиях классно-урочной формы обучения воспитывает высоконравственные качества.
Самостоятельная работа была и остается важной неотъемлемой частью учебного процесса. Как известно, наибольший развивающий эффект учебно-познавательной деятельности достигается в том случае, когда она выполняется учеником с максимальной степенью самостоятельности. Лишь тогда, когда ученик сам, без какой-либо помощи со стороны учителя справляется с учебными заданиями, сам находит решение задачи, сам применяет приобретенные знания не только в стандартных, но и в измененных ситуациях, в новых сочетаниях и комбинациях, можно говорить о высокой эффективности учебного процесса. Еще К.Д. Ушинский отмечал, что школа должна так организовывать труд учителя и учеников, чтобы дети, по возможности, трудились самостоятельно, а учитель руководил этим самостоятельным трудом и давал для него материал. Именно самостоятельную учебную работу он считал «единственным прочным основанием всякого плодовитого учения» [2, с.226].
Проблеме самостоятельной работы посвящено множество трудов педагогов, психологов и методистов. Результаты анализа психолого-педагогической литературы показал, что многочисленные попытки раскрытия сущности самостоятельной работы базируются, как правило, на определении наиболее значимых с точки зрения каждого конкретного автора признаков характеризуемого понятия.
В соответствии с тем, на каких именно признаках самостоятельной работы акцентируют свое внимание те или иные исследователи, меняется смысл, вкладываемый в содержание самого понятия.
В качестве методических рекомендаций по организации математических уроков можно выделить следующее:
Взаимосвязь в содержании, формах и методах организации учебной работы и занятий;
Обеспечивать взаимосвязь (по содержанию) уроков и факультативных занятий;
Единство в содержании занятий различных разделов математики;
Активизация самостоятельной работы учащихся;
Построение учебного процесса как совместная исследовательская деятельность учащихся;
Использование наглядных пособий; применение конспект-таблиц на лекциях;
Использование системы ключевых задач по темам на факультативных занятиях;
Использование историко-математического материала на уроках;
Принципы занимательности занятий;
Построение занятий проблемного изучения материала.
Список литературы
1. Азевич Алексей. От Евклида до Петра. Страницы истории на уроках математики //Учительская газета. 1995 №10
2. Актуальные вопросы формирования интереса в обучении //Под ред. Г.И. Щукиной. М.: Просвещение, 1984.
3. Бондаревский В.Б. Воспитание интереса к знаниям и потребности к самообразованию. М., 1985.
4. Волкова С.И. Столярова Н.Н. Развитие познавательных способностей детей на уроках математики // Начальная школа 1990 №7 ,1991 №7, 1992 №7, №8, 1993 №7
5. Волович М.В. Математика без перегрузок М., Просвещение, 1991 г.
6. Выбор методов обучения в средней школе./Под ред. Ю.К. Бабанского. М., 1981.
7. Депман И.Я. и др. За страницами учебника математики «Просвещение» 1989
8. Дидактика средней школы./Под ред. М.Н. Скаткина. 2-е изд. М., 1982. Просвещение, 1991 г.
9. Ивин А.А. Искусство правильно мыслить. М.: Просвещение, 1990..
10. Игнатьев Е.И. Математическая смекалка М 1994
11. Коваленко В.Г. Дедактические игры на уроках математики М., Просвещение, 1990г.
12. Корчемлюк О.М.Задания для развития памяти и внимания на уроках математики// Начальная школа 1994 №8
13. Куписевич Ч. Основы общей дидактики. М., 1986.
14. Лернер И.Я. Дидактические основы методов обучения. М., 1981.
15. Махмутов М.И. Организация проблемного обучения в школе М., Просвещение, 1977 г.
16. Морозова Н.Г. Учителю о познавательном интересе. М.: Знание, серия «Педагогика и психология», 1979. № 2
17. Перли С.С., Перли Б.С. Страницы истории на уроках математики Москва «Педагогика-пресс» 1994
18. Развитие творческой активности школьника/Под ред. А.Н. Матюшкина. М.: Педагогика, 1991.
19. Сорокин П.И. Занимательные задачи по математике в начальных классах М: 1985
20. Труднев В.П.Считай, смекай, отгадывай. Санкт-Петербург 1997
21. Шамова Т.И., Давыденко Т.М. Управление процессом формирования системы качеств знаний учащихся. М., Прометей МГПИ им. Ленина, 1990г
22. Щукина Г.И. Активизация познавательной деятельности учащихся в учебном процессе. М.: Просвещение, 1979.
Приложения
Приложение 1
Приложение 2
Сравнение чисел.
ПЛАН - КОНСПЕКТ УРОКА ПО МАТЕМАТИКЕ В 6 КЛАССЕ.
ТЕМА: Сравнение чисел. (Повторение)
ЦЕЛИ:
1) Упражнять учащихся в сравнении чисел.
2) Закрепить полученные знания в ходе выполнения упражнений.
3) Развивать логическое мышление учащихся.
3) Развивать культуру устной и письменной речи.
4) Развивать умения преодолевать трудности при решении задач.
5) Воспитывать на уроке организованность, дисциплинированность.
ОБОРУДОВАНИЕ:
Учебник «Математика 6 класс», Н.Ю. Виленкин; Дидактические материалы по математике 6 класс, А.С. Чесноков.
ВИД ДОСКИ ПЕРЕД НАЧАЛОМ УРОКА:
С левой стороны - номера упражнений классной и домашней работы.
В центре - название темы, дата, термометр (для устной работы на уроке), диаграмма (для проверки домашнего задания).
С правой стороны - «МЫ рисуем». Учащиеся на перемене могут рисовать, чертить, писать и т.д., таким образом выплескивать излишнюю как негативную, так и позитивную энергию. Считаю, что это развивает творческие способности, снимает психологический стресс, предотвращает боязнь выхода к доске.
Предлагаю не подписывать над номерами упражнений «В классе», «Дома», а предложить ребятам изобразить ассоциативные с домом и школой объекты. Это развивает как все выше перечисленное, так и ответственность, и логическое мышление.
ХОД УРОКА:
1) ОРГАНИЗАЦИОННЫЙ МОМЕНТ. (1 минута)
Доброе утро ребята. Садитесь. Сегодня на уроке мы проанализируем с помощью диаграммы самостоятельную работу, написанную на предыдущем занятии. Закрепим ваши знания по теме «Сравнение чисел». Ответим на вопросы по этой теме, решим упражнения, дабы в самостоятельной работе, которую напишем в конце урока, у вас было меньше ошибок, и чтобы каждый из вас положил в копилку «Мои знания» новую монету с названием «Сравнение чисел». А стоимость этой монеты будет зависеть от вас самих, от того насколько вы будете внимательны и трудолюбивы. Вам решать будет ли она номиналом «5 балов» или «2 бала».
2) ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ.
На предыдущем уроке вы писали проверочную работу. Вам надо было дома составить по ее результатам диаграмму и посчитать, сколько процентов составляет та или иная оценка. (На предыдущем уроке проводилась самостоятельная работа с самопроверкой.)
(Вызывается ученик к доске и строит диаграмму.)
Ответьте на вопросы:
- Как узнать какую часть от числа писавших работу, составляет оценка «5»?
- Как вычислить, сколько процентов учащихся класса составили «двоечники»? (Надо число учащихся написавших на оценку «2», разделить на число всех учеников и умножить на 100).
Есть ли у кого, замечания по поводу построенной диаграммы?
3) АКТУАЛИЗАЦИЯ ЗНАНИЙ. (3 минуты) В то время когда ученик готовит диаграмму на доске, провожу устный опрос.
Цель: Сделать актуальными в сознании ребенка знания, полученные на предыдущем уроке, знания касающиеся темы «Сравнение чисел», чтобы исключить в дальнейшей работе ошибки и затрачивание излишнего времени.
Вопросы:
- Ребята, вспомним правила сравнения чисел. Даны два числа, положительное и отрицательное, какое из них больше? Почему? (Положительное. Потому что любое положительное число больше отрицательного.)
- Даны два отрицательных числа, какое из чисел меньше? (Из двух отрицательных чисел меньше то модуль которого больше.)
- Что вы можете сказать о нуле? (Нуль больше любого отрицательного числа, но меньше любого положительного.)
- Как расположены на координатной прямой точки А(а) и В(b), если а<b, если b<0?
( 1) Точка B лежит правее точки А т.к. координата т.B больше координаты т.А 2) т.В лежит правее или левее т.А, но точно известно, что т.B расположена левее нуля.)
- Молодцы ребята!
(проверка домашнего задания по диаграмме приготовленной учеником на доске. Вопросы см. выше.)
4) УСТНАЯ РАБОТА.
№ 967. (3 минуты) На улице температура , а в квартире . Насколько градусов температура в квартире выше, чем на улице? Решите задачу при а) а=12 b=20 б) а=-11 b=19
Цель: развитие логического мышления, навыка работы с числами, представленными буквенными выражениями. Закрепить новую тему. Для преподавателя: через проблемную ситуацию подвести учащихся к теме «Сложение отрицательных и положительных чисел» (ситуация возникает в пункте б) 19-(-11)). Использую метод перекрестного опроса.
Задаю вопросы, в то же время отмечаю значения температуры на заранее приготовленном на доске термометре. Также при возникновении трудностей, разъясняю ошибку, наглядно демонстрируя решение.
Вопросы:
а) - Какова температура на улице?
- Какова температура в квартире?
- Каким способом можно найти насколько температура в квартире выше чем на улице. (Вычтем из значения температуры в квартире значение температуры на улице.)
- Сколько получим? (20-12=8)
- Ответили ли мы на вопрос задачи? (Да. Мы нашли насколько температура на улице ниже чем квартире.)
- Как на градуснике можно определить разность температур? (Подсчитать количество делений между значениями температур.)
б) Подсчитываем разность температур, используя термометр.
№ 971 (3 минуты) При каких значениях а верно равенство: , при каких неверно.
Цель: развитие логического мышления, повторение пройденного материала. Метод: перекрестный опрос.
Вопросы:
- Какие значения может принимать а? (Может быть положительным отрицательным и равным нулю)
- Если а положительное число, верно ли равенство? (Нет. Т.к. а+а=2а)
- Если а отрицательное число? (Да. Т.к. сумма двух противоположных чисел равна нулю)
- Если а=0 (Да. 0+0=0)
5) ПИСЬМЕННАЯ РАБОТА.
- Хорошо. С устными заданиями справились. Теперь преступим к выполнению упражнений письменно. Открываем тетради, записываем: число, классная работа.
№ 963 (в,г,д) (5 минут) Между какими целыми числами заключено число в) -063
г) 0,87 д)
Цель: закрепление нового материала.
(Учащиеся выполняют упражнение в тетрадях. Один ученик выполняет на доске комментируя решение)
Вопросы:
- Какие числа называют целыми? (Натуральные числа, противоположные им числа и нуль)
- Какие числа лежат правее числа -0,63? / больше -0,63?
- Какое наименьшее целое число лежит правее -0,63? (Наименьшее целое число лежащие правее -0,63 есть 0)
- Какие числа лежат левее числа -0,63? / меньше -0,63?
- Какое наибольшее целое число лежит левее -0.63? (Наибольшее целое число лежащие левее -0,63 есть -1)
Аналогично г), д).
№ 960(г,д,ж,з) (5 минут) Поставьте вместо * знак < или знак > так, чтобы получилось верное равенство.
г) -5,5 * -7,2
д) -96,9 * -90,3
ж) *
з) *
(Ученики самостоятельно выполняют в тетрадях. Двое учащихся на обороте доски. Далее проверка результатов.)
ФИЗКУЛЬТМИНУТКА: (3 минуты)
Глазами: 1. поводить вокруг;
2. изобразить воображаемый треугольник, круг, квадрат, звезду.
Вытянуть правую руку вперед, следить глазами, не поворачивая головы, замедленными движениями указательного пальца, повторить 4-5 раз;
Посмотреть на указательный палец вытянутой руки, на счет 1-4 раз, потом перевести взор на счет 5-8 вдаль, повторить 4-5 раз.
- Итак, ребята, отдохнули. Продолжаем заниматься решением упражнений. И тем самым пополнять копилку знаний.
№ 976 (3минуты) Найдите неизвестный член пропорции. 6,8:2,5=x:1,5
Цель: Вспомнить и повторить материал по теме «Пропорция».
(Учащиеся выполняют в тетрадях. Один ученик у доски)
Вопросы:
- Что называют пропорцией? (Равенство двух отношений)
- В представленной пропорции, какие члены являются крайними? Средними?
- Какое свойство пропорции вы знаете? Основное свойство пропорции? (произведение крайних членов равно произведению средних)
- Итак, используя основное свойство пропорции, найдем x, какое выражение получим?
(при решении задачи используем аналитический метод)
№ 973(а) (4 минуты) Найдите значение , если x=-64,1 y=-7,6
Цель: повторение темы «Модуль числа»
(Учащиеся выполняют в тетрадях. Один ученик у доски)
Вопросы:
- Чему равен модуль положительного числа?
- Чему равен модуль отрицательного числа?
Ответ: 56,5
5) САМОСТОЯТЕЛЬНАЯ РАБОТА. (5 минут)
- В тетрадях записываем «Самостоятельная работа». Открываем дидактические материалы на странице 18
1 вариант: № 218(в,д), 219(а,б)
2 вариант: № 218(г,е), 219(в,г)
Цель: контроль усвоения знаний по теме «Сравнение чисел» и «Модуль числа»
-упражнять учащихся в сравнении чисел и нахождении модуля числа
-развивать самостоятельность учащихся
-развивать умения преодолевать трудности при решении задач
1 ВАРИАНТ
№ 218 Сравните:
в)-0,02 и -0,2
д) и
№ 219 Найдите модуль числа
а) б)
2 ВАРИАНТ
№ 218 Сравните:
г) и
е) и
№ 219 Найдите модуль числа
в) г)
6) ПОДВЕДЕНИЕ ИТОГОВ УРОКА (3 минуты)
- Сегодня на уроке мы закрепили свои знания по темам «Сравнение чисел» «Модуль числа» «Пропорция» Решили упражнения. Написали самостоятельную работу. Теперь минуту подумайте, оцените свою работу на уроке. На счет три дружно и громко скажите мне каждый монету какого номинала вы заработали сегодня.
Со всеми заданиями, которые были запланированы, мы справились и даже немного покричали на уроке. Молодцы!
Выставление отметок за урок.
Запишем домашнее задание
№ 980(г, д, е) № 984(г, д, е)
Творческое: составить кроссворд по известным математическим понятиям.
ДОМАШНЕЕ ЗАДАНИЕ
№980 (г, д, е) Какие цифры можно подставить вместо звездочек, чтобы получилось верное равенство.
Цель:
-Закрепление материала по теме «Сравнение чисел»
-Развитие логического мышления
- Развитие навыка самостоятельной работы
г) -999,* > -999,1
(*=0)
д) <
(*=4,3,2,1,0)
е) >
>
(*=5,4,3,2,1,0)
№ 984 Вычислите:
Цель:
- Развитие умений и навыков в оперировании числами
(0,4)
Примечание.
Учащимся которые быстро справлялись с заданиями, выдавались дополнительные задания на карточках. За выполнение которых выставлялась отметка.
Приложение 3
Конспект урока по теме:
"Действия с положительными и отрицательными числами"
Математика - 6
Из опыта работы учителя математики средней общеобразовательной школы № 95 г. Караганды Смирновой Е.Ю.
Тема урока:
Все действия с положительными и отрицательными числами.
Учебно-воспитательные цели урока:
1. Обобщение учебного материала по теме: «Положительные и отрицательные числа».
2. Развитие познавательного интереса к урокам математики через игровые моменты.
3. Совершенствование вычислительных навыков учащихся.
Оборудование урока:
мел, доска, учебник «Положительные и отрицательные числа в театре Буратино», карточки для индивидуальной работы, карточки для групповой работы, магнитные знаки, игра «Поле чудес», плакат «Блиц-викторина».
Ход урока:
1. Организационный момент.
2. Сообщение «Из истории отрицательных чисел» (домашнее задание).
3. Игра «Поле чудес».
4. Блиц-викторина.
5. Конкурс на лучшего счетчика.
6. «Найдите ошибки».
7. Игра «Кодировщики».
8. Выполнение упражнений на все действия с положительными и отрицательными числами.
9. Итог урока.
I. Организационный момент.
II. Сообщение «Из истории отрицательных чисел» (домашнее задание).
III. Игра «Поле чудес».
Ответы: плюс, минус, число, модуль, координата, расстояние, направление. Выигрывает тот, кто не только отгадает слово, но и расскажет о его использовании.
Подсказка: все слова можно отгадать, если «умно» читать рисунок:
Что это нарисовано? Чего не хватает в этом чертеже?
Ответ: выбранного направления, обозначения единичного отрезка.
IV. Блиц-викторина (участвуют 2 команды).
1. Может ли сумма двух отрицательных чисел быть числом натуральным?
2. Можно ли утверждать, что разность двух натуральных чисел является натуральным числом?
3. Может ли разность двух отрицательных чисел быть целым положительным числом?
4. Может ли произведение двух отрицательных чисел быть числом отрицательным?
5. Может ли разность двух целых чисел быть равной одному из них?
6. Может ли сумма двух целых положительных чисел быть равной 0?
7. Может ли произведение двух целых положительных чисел быть равным 0?
8. Может ли произведение двух целых чисел быть равным 0?
9. Для каких значений а верно неравенство: 11а>а, а для каких неверно?
10. При каких операциях над натуральными числами всегда получается натуральное число?
11. Какой знак имеет произведение всех целых чисел от -20 до 20?
12. Может ли сумма двух отрицательных чисел быть больше их частного?
13. Как изменится:
а) произведение двух положительных чисел, если каждый множитель разделить на (-5)?
б) частное двух отрицательных чисел, если делимое разделить на (-5), а делитель разделить на (-10)?
14. Чему равны выражения ?
а) | х | : х,
б) | х -1 | : ( х - 1) + 2,
в) - х : | х |.
V. Конкурс на лучшего счетчика.
Индивидуальные задания по карточкам.
Сдайте решенные задания. А теперь проверьте себя: произведение и сумма полученных результатов равны.
VI. Найти ошибки.
Задания на доске |
Ответы |
|
-23 : (- 2) = -11,5 |
Знак «+» в ответе |
|
20503 : (-290) = - 7,7 |
- 70,7 |
|
-348 : 120 = - 29 |
- 2,9 |
|
2807: (-14) = - 205 |
- 200,5 |
|
34 : 0 = 0 |
На 0 делить нельзя |
VII. Игра «Кодировщики».
Индивидуальные задания по карточкам.
Решить уравнения и расшифровать слова.
VIII. Два ученика решают уравнения на откидных досках.
Приложение 4
Урок математики в 6-м классе по теме: "Смежные углы"
Цели урока
Образовательная: обработка теоретических знаний по текущему материалу и ранее пройденному. Научить обсуждать задачу в целом и в деталях; возможности моделирования её условия или замены имеющейся модели более простой и наглядной; выдвигать и доказывать гипотезу.
Развивающая: развивать устную и письменную математическую речь учащихся; умение пользоваться инструкциями и алгоритмами.
Воспитательная: воспитание у учащихся устойчивого интереса к изучению математики; эстетическая направленность.
Оборудование: циркуль, линейка, плакаты с чертежами и высказываниями, раздаточный материал.
Ход урока
1. Организационный момент
Приветствие.
Целью урока является решение проблем связанных со смежными углами; закрепление умения выдвигать гипотезу и научиться доказывать её.
2. Повторение теоретического материала
Сформулируйте определение угла.
Какой угол называют развернутым?
Назовите градусную меру развернутого угла.
Какие углы называются смежными?
Могут ли оба смежных угла быть острыми? тупыми? прямыми?
3. Постановка проблем и их решение
Сегодня нам предстоит решить ряд проблем. (Названия проблем вывешиваются на доске и выделяются цветом).
Проблема 1. Как уравнения помогают решать геометрические задачи?
По Рисунку 1составьте задачу, в которой требуется найти величины смежных углов.
Рисунок 1
Один из смежных углов больше другого на 40 градусов (меньше другого на 40 градусов). Найдите эти углы.
У Вас на партах находится памятка (смотри приложение), которая поможет при решении. В памятку входит:
алгоритм решения задач с помощью уравнений;
словарик;
формула красивой задачи.
Рассмотрим задачу №1.
Дано: ABC и CBD - смежные,
ABC - CBD = 20.
Найдите: ABC и CBD.
Проанализируем краткую запись и сформулируем её устно. Даны два смежных угла ABC и CBD. CBD на 20 градусов меньше ABC (или ABC на 20 градусов больше CBD). Найдите эти углы.
Необходимо решить задачу с полным оформлением и проверкой.
Пусть CBD - х градусов, тогда ABC = х+20. Так как сумма смежных углов равна 180 градусов, то составляем уравнение:
х+х+20 = 180
2х+20 = 180
2х = 160
х = 80
CBD = 80 градусов;
ABC = 80+20 = 100 градусов.
Проверка: 90+100 = 180.
Рассмотрим задачу №3.
Дано: PQR и RQS - смежные,
RQS = 0,8 PQR.
Найдите: PQR и RQS.
Проанализируем краткую запись и сформулируем её устно. Даны два смежных угла PQR и RQS. RQS в 0,8 раза больше PQR. Найдите эти углы.
Необходимо решить задачу с полным оформлением и проверкой.
Пусть PQR = х, тогда RQS = 0,8х. Так как сумма смежных углов равна 180 градусов, то составляем уравнение:
х+0,8х = 180
1,8х = 180
х = 180:1,8
х = 100
PQR = 100 градусов;
RQS = 0,8*100 = 80 градусов.
Проблема 2. Выяснить, как вычисления и построения помогают выдвинуть некоторую гипотезу?
а) Посмотрите на рисунок 2a и скопируйте его к себе в тетрадь.
Рисунок 2а
б) Постройте с помощью циркуля биссектрисы данных углов.
в) Выделите их другим цветом. (Рисунок 2b).
Рисунок 2б
А теперь давайте попробуем сформулировать гипотезу, предварительно повторив основные понятия по словарю из памятки.
Гипотеза. Если у смежных углов провести биссектрисы, то они будут образовывать прямой угол.
Доказательство:
1)L / 2;
2) (180 - L) / 2;
3) L / 2 + (180 - L) / 2 = 90
(L + 180 - L) / 2 = 90
180 / 2 = 90
90 = 90
Проблема 3. Всегда ли выручает аналогия?
Задача. Один из смежных углов больше другого на 60 градусов или в 2 раза.
Проанализируйте задачу. Нет ли в ней лишних данных?
Рассмотрим задачу №4.
Дано: (ab) и (bc) - смежные,
(bc) : (ab) = 4 : 5
Найдите: (ab) и (bc).
Проанализируем краткую запись и сформулируем её устно. Даны два смежных угла. (bc)относится к (ab) как 4 к 5. Найдите эти углы.
Каким способом будем решать эту задачу? (Задача решается по действиям, а не через уравнение).
4+5 = 9 - частей всего;
180 : 9 = 20 - градусов одна часть;
20 · 4 = 80 (bc)
20 · 5 = 100 (ab)
Мы убедились, что не все задания можно решить по аналогии.
Я думаю, что параллельно мы с Вами доказали и формулу красивой задачи:
Красивая задача = непредсказуемость + непредполагаемость + неожиданность +удивительная простота + простота + фантазия + революционный шаг + удивление + оптимизм + труд +...
В.Г. Болтянский.
4. Итог урока
(Оценки выставляются по ходу урока).
Мы трудились при решении задач, если решали правильно, то появлялся оптимизм, при выдвижении гипотезы мы проявили фантазию, а при её доказательстве революционный шаг и это было для нас неожиданностью, и не предполагали, что доказательство будет удивительно простым.
Формула заканчивается многоточием, и это говорит о том, что мы её ещё сможем продолжить.
5. Домашнее задание
Задача №2 из карточки.
Дано: KLM и MLN - смежные,
KLM = 3MLN.
Найдите: KLM и MLN.
Размещено на Allbest.ru
Подобные документы
Научно-методические основы самостоятельной работы учащихся. Виды и типы самостоятельных работ, основные формы их организации. Психологические особенности учеников среднего школьного возраста. Организация самостоятельной работы тематического контроля.
дипломная работа [89,7 K], добавлен 23.04.2011Организация самостоятельной учебной работы. Понятие о самостоятельной работе ученика. Уровни самостоятельной деятельности школьников. Требования к организации самостоятельной деятельности учащихся на уроке. Виды самостоятельных работ в обучении.
контрольная работа [24,3 K], добавлен 17.11.2011Понятие самостоятельной работы в дидактике. Виды самостоятельной работы учащихся по физике. Дидактические принципы построения системы самостоятельных работ учащихся и руководство ей. Индивидуальные учебные задания по физике и самостояельная работа.
курсовая работа [2,5 M], добавлен 24.07.2010Организация самостоятельной работы учащихся в процессе обучения как педагогическая проблема. Классификация видов самостоятельной работы. Методические аспекты и приемы организации самостоятельной работы в процессе изучения информатики в 3 классе.
дипломная работа [1,2 M], добавлен 04.06.2015Исследование основных требований к организации самостоятельной деятельности учащихся на уроке. Виды самостоятельных работ в обучении. Характеристика порядка и приемов выполнения работы. Уровни самостоятельной учебно-познавательной деятельности школьников.
реферат [27,5 K], добавлен 13.06.2014Понятие и значение самостоятельной работы студентов педагогических колледжей при изучении курса "Методика физического воспитания и развитие детей дошкольного возраста". Изучение и анализ опыта работы преподавателя Клинцовского педагогического училища.
дипломная работа [71,4 K], добавлен 26.05.2008Сущность самостоятельной работы. Особенности и классификация самостоятельных работ учеников по химии. Самостоятельная работа учеников в технологии проблемной и модульно-рейтинговой учебы. Условия эффективного применения самостоятельной работы на уроках.
курсовая работа [164,0 K], добавлен 26.08.2013Самостоятельная работа студентов как форма их учебной деятельности. Виды организации работы студентов начального профессионального образования. Методика организации самостоятельной работы на уроках информатики с использованием инструкционных карт.
курсовая работа [92,9 K], добавлен 10.09.2014Педагогические условия и принципы формирования самостоятельности учащихся посредством организации самостоятельной работы в процессе обучения. Программа и методические рекомендации по организации работы на уроках технологии "Ручное ковроделие" в 7 классе.
дипломная работа [2,0 M], добавлен 20.06.2013Цели, содержание и условия самостоятельной работы студентов в среднем профессиональном образовании. Разработка методических рекомендаций для преподавателей и студентов педагогического колледжа по изучению курса организации самостоятельной работы.
курсовая работа [44,6 K], добавлен 11.11.2014