Методика применения ИТО в процессе изучения темы: электромагнитные колебания
Информационные технологии обучения. Использование компьютерных моделей на уроках. Дидактические принципы изучения темы "Электромагнитные колебания" в школьном курсе физики. Компьютерное моделирование электромагнитных колебаний, методики применения.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 09.02.2009 |
Размер файла | 3,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Давайте сделаем в тетрадях чертеж схематичного изображения колебательного контура.
Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор зарядится, то электрическое поле будет сосредоточено между его пластинами.
(Давайте проследим процесс зарядки конденсатора и остановим процесс, когда зарядка будет завершена).
Итак, конденсатор заряжен, его энергия равна
, но ,
поэтому , следовательно,
.
Так как после зарядки конденсатор будет иметь максимальный заряд (обратите внимание на пластины конденсатора, на них расположены противоположные по знаку заряды), то при q=qmax энергия электрического поля конденсатора будет максимальна и равна
.
В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. (Давайте теперь замкнем на нашей модели конденсатор на катушку). При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле. Силовые линии этого магнитного поля направлены по правилу буравчика.
При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.
Когда разрядный ток достигает своего максимального значения энергия магнитного поля максимальна и равна:
,
а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.
(Давайте понаблюдаем процесс разрядки конденсатора на динамической модели. Обращаю ваше внимание на то, что такой способ представления процессов зарядки и разрядки конденсатора в виде потока перебегающих частиц, является условным и выбран для удобства восприятия. Вы прекрасно знаете, что скорость движения электронов очень мала (порядка нескольких сантиметров в секунду). Итак, вы видите, как, при уменьшении заряда на конденсаторе изменяется сила тока в цепи, как изменяются энергии магнитного и электрического полей, какая между этими изменениями существует связь. Так как контур является идеальным, то потерь энергии нет, поэтому общая энергия контура остается постоянной).
С началом перезарядки конденсатора разрядный ток будет уменьшаться до нуля не сразу, а постепенно. Это происходит опять же из-за возникновения противо э. д. с. и индукционного тока противоположной направленности. Этот ток противодействует уменьшению разрядного тока, как ранее противодействовал его увеличению. Сейчас он будет поддерживать основной ток. Энергия магнитного поля будет уменьшаться, энергия электрического - увеличиваться, конденсатор будет перезаряжаться.
Таким образом, полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей
Колебания, при которых происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки, называются ЭЛЕКТРОМАГНИТНЫМИ колебаниями. Так как эти колебания происходят за счет первоначального запаса энергии и без внешних воздействий, то они являются СВОБОДНЫМИ.
Урок №2.
Тема урока: Аналогия между механическими и электромагнитными колебаниями.
Объяснение нового материала.
Цель урока: объяснение сути и доказательство аналогии между электромагнитными колебаниями и колебаниями пружинного маятника с использованием динамической колебательной модели ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.
Материал для повторения:
понятие колебательного контура;
понятие идеального колебательного контура;
условия возникновения колебаний в к/к;
понятия магнитного и электрического полей;
колебания как процесс периодического изменения энергий;
энергия контура в произвольный момент времени;
понятие (свободных) электромагнитных колебаний.
(Для повторения и закрепления учащимся еще раз демонстрируется динамическая модель идеального колебательного контура).
На этом уроке мы рассмотрим аналогию между механическими и электромагнитными колебаниями. В качестве механической колебательной системы будем рассматривать пружинный маятник.
(На экране вы видите динамическую модель, которая демонстрирует аналогию между механическими и электромагнитными колебаниями. Она поможет нам разобраться в колебательных процессах, как в механической системе, так и в электромагнитной).
Итак, в пружинном маятнике упругодеформированная пружина сообщает скорость прикрепленному к ней грузу. Деформированная пружина обладает потенциальной энергией упругодеформированного тела
,
движущийся груз обладает кинетической энергией
.
Превращение потенциальной энергии пружины в кинетическую энергию колеблющегося тела является механической аналогией превращения энергии электрического поля конденсатора в энергию магнитного поля катушки. При этом аналогом механической потенциальной энергии пружины является энергия электрического поля конденсатора, а аналогом механической кинетической энергии груза является энергия магнитного поля, которая связана с движением зарядов. Зарядке конденсатора от батареи соответствует сообщение пружине потенциальной энергии (например, смещение рукой).
Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.
ПРУЖИНА КОНДЕНСАТОР
ГРУЗ КАТУШКА
Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.
Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие).
Далее при перезарядке конденсатора тело будет смещаться влево от положения равновесия. Через промежуток времени, равный t=T/2, конденсатор полностью перезарядится и сила тока в цепи станет равной нулю.
Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система), где каждая частица совершает колебания около положения равновесия.
Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени - это не что иное, как сила тока, а изменение координаты в единицу времени - скорость, то есть q'= I, а x'= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.
Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.
Таблица соответствия между механическими и электрическими величинами при колебательных процессах.
Урок №3.
Тема урока: Уравнение свободных гармонических колебаний в контуре.
Объяснение нового материала.
Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.
Материал для повторения:
понятие электромагнитных колебаний;
понятие энергии колебательного контура;
соответствие электрических величин механическим величинам при колебательных процессах.
(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).
На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.
Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур - идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:
, то есть .
Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.
Вычисляя производные, получим
.
Но , поэтому
и -
мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х''=ах на q'', k на 1/C, m на L, то получим уравнение
,
описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.
Как вы видели на демонстрационной модели, заряд на конденсаторе меняется периодически. Необходимо найти зависимость заряда от времени.
Из девятого класса вам знакомы периодические функции синус и косинус. Эти функции обладают следующим свойством: вторая производная синуса и косинуса пропорциональна самим функциям, взятым с противоположным знаком. Кроме этих двух, никакие другие функции этим свойством не обладают. А теперь вернемся к электрическому заряду. Можно смело утверждать, что электрический заряд, а значит и сила тока, при свободных колебаниях меняются с течением времени по закону косинуса или синуса, т. е. совершают гармонические колебания. Пружинный маятник также совершают гармонические колебания (ускорение пропорционально смещению, взятому со знаком минус).
Итак, чтобы найти явную зависимость заряда, силы тока и напряжения от времени, необходимо решить уравнение
,
учитывая гармонический характер изменения этих величин.
Если в качестве решения взять выражение типа q = qm cos t , то, при подстановке этого решения в исходное уравнение, получим q''=-qmcos t=-q.
Поэтому, в качестве решения необходимо взять выражение вида
q=qmcos?ot,
где qm - амплитуда колебаний заряда (модуль наибольшего значения колеблющейся величины),
?o = - циклическая или круговая частота. Её физический смысл -
число колебаний за один период, т. е. за 2? с.
Период электромагнитных колебаний - промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание. Для гармонических колебаний Т=2? с (наименьший период косинуса).
Частота колебаний - число колебаний в единицу времени - определяется так: ? = .
Частоту свободных колебаний называют собственной частотой колебательной системы.
Так как ?o= 2? ?=2?/Т, то Т= .
Циклическую частоту мы определили как ?o = , значит для периода можно записать
Т= = - формула Томсона для периода электромагнитных колебаний.
Тогда выражение для собственной частоты колебаний примет вид
.
Нам осталось получить уравнения колебаний силы тока в цепи и напряжения на конденсаторе.
Так как , то при q = qm cos ?o t получим U=Umcos?ot. Значит, напряжение тоже меняется по гармоническому закону. Найдем теперь закон, по которому меняется сила тока в цепи.
По определению , но q=qmcos?t, поэтому
,
где ?/2 - сдвиг фаз между силой тока и зарядом (напряжением). Итак, мы выяснили, что сила тока при электромагнитных колебаниях тоже меняется по гармоническому закону.
Мы рассматривали идеальный колебательный контур, в котором нет потерь энергии и свободные колебания могут продолжаться бесконечно долго за счет энергии, однажды полученной от внешнего источника. В реальном контуре часть энергии идет на нагревание соединительных проводов и нагревание катушки. Поэтому свободные колебания в колебательном контуре являются затухающими.
Заключение.
В данной дипломной работе была разработана методика изучения электроколебательных процессов с помощью компьютера. Подводя итог можно сделать ряд выводов.
1. В процессе изучения темы “Электромагнитные колебания” рассматриваются свободные электромагнитные колебания и автоколебания в колебательных контурах, а также вынужденные колебания в электрических цепях под действием синусоидальной ЭДС. Все эти вопросы имеют очень большое значение, так как на их основе затем изучаются электромагнитные волны с их научно-практическими приложениями.
При изложении данной темы в курсе физики средней школы учитель должен опираться на следующие основные положения:
использование аналогий механических и электромагнитных колебаний;
изучение и объяснение явлений и процессов на основе знаний об электрическом и магнитном полях и электромагнитной индукции, полученных в X классе;
широкое применение физического эксперимента.
2.Чтобы сделать средство обучения наглядным, необходимо выделить основные свойства изучаемого явления, т. е. превратить его в модель, правильно отразить в модели эти свойства и обеспечить доступность этой модели для учащихся. Особое внимание должно уделяться статическим и динамическим моделям. Динамическое компьютерное моделирование обладает большой достоверностью и убедительностью, прекрасно передает динамику различных физических процессов.
3.Разработанная нами методика изучения электроколебательных процессов с помощью компьютера позволяет: индивидуализировать учебный процесс по содержанию, объему и темпам усвоения учебного материала, активизировать учащихся при усвоении учебной информации, повысить эффективность использования учебного времени, изменить характер труда преподавателя.
Список литературы
Апатова Н.В. Информационные технологии в школьном образовании. // М., 1994.
Ю.А.Воронин, Р.М.Чудинский. Компьютеризированные системы средств обучения для проведения учебного физического эксперимента. // Физика в школе,2006, №4.
Гомулина Н. Н. Компьютерные обучающие и демонстрационные программы. // «Физика», 1999, № 12.
Гончарова С.В. Повышение эффективности наглядности обучения при использовании динамических компьютерных моделей на уроках физики.
Дунин СМ. Компьютеризация учебного процесса. // Физика в школе. - 2004. - №2.
Захарова И.Г. Информационные технологии в образовании. // М.: Академия, 2003.
Использование компьютерных моделей для развития творчества учащихся // Развитие творческой активности учащихся в процессе обучения и профессиональной подготовки студентов. - Екатеринбург. : УрГПУ, 1995. -78 с.
Костко О.К. Электромагнитные колебания и волны. Теория относительности.
Кудрявцев А.В. Методика использования ЭВМ для индивидуализации обучения физике.
Кулакова М.Я. Создание компьютерной обучающей среды для учебной исследовательской работы на занятиях по физике.
Мамедов Т.М.О. Использование современных достижений научнотехнического прогресса, как фактор повышения качества преподавания школьного курса физики (Автореферат)
.Машбиц Е.И. Психолого-педагогические проблемы компьютеризации обучения. // М.: Педагогика, 1988.
Методические материалы к компьютерной лаборатории «L - микро».
Методические указания к электронному изданию «Физика 7 - 11». //
Физикон.
Повышение эффективности наглядности при использовании динамических компьютерных моделей // Теоретические проблемы физического образования. - С.-Петербург. : Образование, 1996. - 87с.
Роберт И.В. Современные информационные технологии в образовании: дидактические проблемы, перспективы использования. // М.: Школа-Пресс, 1994.
Салимова Л.Ч., Салимов B.C., Брегеда И.Д. Информационные технологии
в обучении физики в школе. // Материалы X Всероссийской научно-
методической конференции "Телематика'2003", 2003.
Стариченко Б.Е. Компьютерные технологии в образовании. Инструментальные системы педагогического назначения.
Старовиков М.И. Формирование учебной исследовательской деятельности школьников в условиях информатизации процесса обучения (на материале курса физики) // Автореферат дис. д-ра физ.-мат. Наук. - Челябинск 2007.
Степанова Г.Н. Сборник вопросов и задач по физике для 10_11 классов общеобразовательной школы. - СПб.:”Специальная литература”, 1997. - 384с.
Теория и методика обучения физике в школе. Общие вопросы. Под ред. С.Е.Каменецкого, Н.С.Пурышевой. // М.: Академия, 2000.
Теория и методика обучения физике в школе. Частные вопросы. Под ред. С.Е.Каменецкого. //М.: Академия, 2000.
http://www.corbina.net/~snark/
http://l-micro.ru/
Подобные документы
Информационные технологии обучения. Дидактические принципы изучения темы "Электромагнитные колебания" в курсе физики. Компьютерное моделирование электромагнитных колебаний. Повышение наглядности обучения при использовании компьютерных моделей на уроках.
курсовая работа [840,9 K], добавлен 21.03.2009Дидактические основы исследовательского метода обучения, его принципы и особенности применения. Содержание темы "Информационное моделирование" в школьном курсе информатики. Разработка уроков с использованием поисковой и проблемной исследовательских задач.
дипломная работа [1,3 M], добавлен 12.04.2012Концепция современного образования. Использование информационных технологий при изучении физики. Мотивация к изучению физики у учащихся. Структура учебной деятельности при компьютерном обучении. Дидактические принципы в условиях компьютерного обучения.
дипломная работа [1,5 M], добавлен 30.07.2012Роль и место темы "Многоугольники" в школьном курсе геометрии, методика изучения данной темы. Понятия и признаки треугольника, прямоугольника, ромба, квадрата, трапеции. Выпуклые и правильные многоугольники: доказательство теорем и решение задач.
дипломная работа [2,9 M], добавлен 16.02.2012Основы изучения темы "Объемы многогранников" в курсе геометрии 10-11 классов. Развитие пространственных представлений и логического мышления. Методика изучения темы "Объем. Объемы призмы. Объемы прямоугольного параллелепипеда". Цели изучения темы.
дипломная работа [275,4 K], добавлен 24.06.2009Из истории возникновения раздела о движениях в школьном курсе геометрии. Психолого-педагогические основы изучения движений в школьном курсе геометрии. Мультимедийное пособие по теме "Движения на уроках геометрии" и методика его применения в обучении.
дипломная работа [3,4 M], добавлен 23.04.2011Роль, место и мировоззренческая функция темы "Многоугольники" в школьном курсе геометрии, анализ ее содержания в учебниках по геометрии и методика изучения. Организация обобщающего повторения темы в курсе геометрии 9 класса и материалах ЕГЭ по математике.
дипломная работа [2,7 M], добавлен 09.03.2012Виды и функции корней, типы корневых систем. Содержание темы "Корень" в школьном курсе биологии, структура ознакомительного урока, полученные учащимися знания и навыки. Методические разработки уроков по темам, игровые задания и дидактические карточки.
курсовая работа [697,7 K], добавлен 15.06.2010Педагогическая технология развития у учащихся направленности на диалогическое общения при групповой форме обучения на уроках физики. Научно-методический анализ и практическая разработка методики изучения темы "Основы электродинамики" на уроках физики.
дипломная работа [1,2 M], добавлен 28.09.2008Логико-математический анализ и понятийный аппарат темы "Параллельность прямых и плоскостей" в курсе геометрии. Описание методики обучения учащихся, тематическое планирование. Методика обучения базовому теоретическому материалу и решению задач по теме.
курсовая работа [617,2 K], добавлен 01.03.2013