Variants of uric acid metabolism and their immune and microbiota accompaniments in patients with neuroendocrine-immune complex dysfunction
The object of observation - men and women aged 24-70 years, who arrived in the resort of Truskavets for rehabilitation treatment of chronic pyelonephritis combined with cholecystitis, in remission. The level of uric acid in serum and daily urine.
Рубрика | Медицина |
Вид | статья |
Язык | английский |
Дата добавления | 30.09.2021 |
Размер файла | 519,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Variants of uric acid metabolism and their immune and microbiota accompaniments in patients with neuroendocrine-immune complex dysfunction
Smagliy1 V.S.,
Gozhenko1 A.I.,
Korda 21.V.,
Badiuk1 N.S.,
Zukow3 W.,
Kovbasnyuk4 M.M.,
Popovych1,4 I.L.
Ukrainian Scientific Research Institute of Medicine for Transport, Odessa
2IYHorbachevs'kyi National Medical University, Ternopil', 3Nicolaus Copernicus University, Torun, Poland 4OO Bohomolets' Institute of Physiology, Kyiv
Summary/Резюме
Background. Previously, we found a wide range of uric acid exchange parameters and functional relationships of uricemia and uricosuria with the parameters of immunity in healthy rats analyzed. We continued our research along the same lines in the clinical observation of patients, who came to the Truskavets' spa for the rehabilitation treatment. Relationships between uricemia and uricosuria, on the one hand, and immunity and microbiota parameters, on the other hand, have been identified. The purpose of this study is to further explore these relationships using the cluster and discriminant analyses. Material and Methods. The object of observation were 34 men and 10 women aged 24-70 years old, who came to the Truskavets' spa for the rehabilitation treatment of chronic pyelonephritis combined with cholecystitis in remission. The serum and daily urine levels of the uric acid by uricase method were determined. Immune status evaluated on a set of I and II levels recommended by the WHO. The condition of microbiota is evaluated on the results of sowing of feces and urine. Results. Cluster analysis revealed 4 variants of uric acid metabolism by deviating uricosuria and uricemia from the norm in Z-scores. In 34% of individuals, moderate hypouricosuria (0,97±0,11 Z) is combined with a lower borderline uricemia (-0,53±0,20 Z). In 25% of patients, lower-border uricemia (-0,70±0,22 Z) is accompanied by marked hyperuricosuria (+3,87±0,25 Z). In 24% of people, moderately elevated uricosuria (+1,26±0,14 Z) is combined with completely normal uricemia (+0,09±0,16 Z). Finally, in 17%, a similar level of uricosuria (+1,17±0,19 Z) is combined with marked hypouricemia (-1,89±0,14 Z). Discriminant analysis revealed 12 parameters of immunity and 5 parameters of microbiota, by which the clusters of uric acid metabolism are identified with 94,3 %% accuracy.
Conclusion. Endogenous uric acid has a modulating overall beneficial effect on a number of immune and microbiota parameters in both healthy rats and people with neuroendocrine-immune complex dysfunction on background of chronic inflammatory diseases. Keywords: Uricemia, Uricosuria, Immunity, Microbiota, Relationships, Humans.
ВАРІАНТИ МЕТАБОЛІЗМУ СЕЧОВОЇ КИСЛОТИ ТА ЇХ ІМУННІ Й МІКРОБІОТНІ ЗВ'ЯЗКИ У ПАЦІЄНТІВ З НЕЙРОЕНДОКРИННО-ІМУННОЮ КОМПЛЕКСНОЮ ДИСФУНКЦІЄЮ
Смаглій 1 В.С., Гоженко 1 A.L, Koрда 2 І.В., Бадюк 1 Н.С.,
Жуков 3 В.А., вбаснюк 4 M.M., Попович 1,4 І.Л.
Український НДІ медицини транспорту, Oдеса
2Національний медичний університет ім. І. Я. Горбачевського, Тєрнопіль
Університет Миколи Коперника, Toрунь, Польща
4Інститут фізіології ім. О.О. Богомольця НАН України, Київ
Передумови. Раніше ми виявили широкий діапазон параметрів обміну сечової кислоти та проаналізували функціональні зв'язки урикемії і урикозурії з параметрами імунітету у здорових щурів. Ми продовжували наше дослідження за тими ж напрямками у клінічному спостереженні за пацієнтами, які прибували на курорт Трускавець на реабілітаційне лікування. Було виявлено зв'язки між урикемією та урикозурією, з одного боку, і імунітетом та параметрами мікробіоти, з іншого. Метою цього дослідження є подальше вивчення цих зв'язків за допомогою кластерного та дискримінантного аналізів. Матеріал та методи. Об'єктом спостереження були 34 чоловіки та 10 жінок у віці 24-70 років, які прибули на курорт Трускавець на реабілітаційне лікування хронічного пієлонефриту, поєднаного з холециститом, у стадії ремісії. Визначали рівень сечової кислоти в сироватці та добовій сечі уриказним методом. Імунний статус оцінювали за набором тестів I та II рівнів, рекомендованих ВООЗ. Стан мікробіоти оцінено за результатами посіву калу та сечі уніфікованими методами. Результати. Кластерний аналіз виявив 4 варіанти метаболізму сечової кислоти за відхиленнями урикозурії та урикемії від норми у Z-одиницях. У 34% осіб помірна гіпоурикозурія (-0,97±0,11 Z) поєднується з нижньопограничною урикемією (-0,53±0,20 Z). У 25% пацієнтів нижньо- погранична урикемія (-0,70±0,22 Z) супроводжується вираженою гіперурикозурією (+3,87±0,25 Z). У 24% людей помірно підвищена урикозурія (+1,26±0,14 Z) поєднується з цілком нормальною урикемією (+0,09±0,16 Z). Нарешті, у 17% осіб аналогічний рівень урикозурії (+1,17±0,19 Z) поєднується із вираженою гіпоурикемією (-1,89±0,14 Z). Дис- кримінантний аналіз виявив 12 параметрів імунітету та 5 параметрів мікробіоти, за сукупністю яких кластери метаболізму сечової кислоти ідентифікуються з точністю 94,3%. Висновок. Ендогенна сечова кислота чинить модулюючий загалом сприятливий вплив на ряд параметрів імунітету та мікробіоти як у здорових щурів, так і у людей з дисфункцією нейроендокринно-імунного комплексу на тлі хронічних запальних захворювань.
Ключові слова: урикемія, урикозурія, імунітет, мікробіота, кореляції, люди. rehabilitation pyelonephritis cholecystitis
ВАРИАНТЫ МЕТАБОЛИЗМА МОЧЕВОЙ КИСЛОТЫ И ИХ ИММУННЫЕ И МИКРОБИОТНЫЕ СВЯЗИ У ПАЦИЕНТОВ С НЕЙРОЭНДОКРИННО-ИММУННОЙ КОМПЛЕКСНОЙ ДИСФУНКЦИЕЙ
Смаглий 1 В.С., Гоженко 1 A.И., Koрда 2 И.В., Бадюк 1 Н.С.,
Жуков 3 В.А., вбаснюк 4 M.M., Попович 1,4 И.Л.
Украинский НИИ медицины транспорта, Oдесса
2Национальный медицинский университет им. И.Я. Горбачевского,
Teрнополь
3Университет Николая Коперника, Toрунь, Польша
4Институт физиологии им. А.А. Богомольца НАН Украины, Киев
Предпосылки. Ранее мы выявили широкий диапазон параметров обмена мочевой кислоты и проанализировали функциональные связи урикемии и урикозурии с параметрами иммунитета у здоровых крыс. Мы продолжили наши исследования в том же направлении в клинических исследованиях за пациентами, которые прибывали на курорт Трускавец для реабилитационного лечения. Были выявлены связи между урикемией и урикозурией, с одной стороны, и иммунитетом и параметрами микробиоты, с другой. Целью исследования было дальнейшее изучение этих связей с использованием кластерного и дискриминантного анализов. Материал и методы. Объектом наблюдения были 34 мужчины и 10 женщин в возрасте 24-70 лет, которые прибыли на курорт Трускавец для реабилитационного лечения хронического пиелонефрита в сочетании с холециститом, в стадии ремиссии. Определили уровень мочевой кислоты в сиворотке и суточной моче уриказным методом. Иммунный статус оценивали наборами тестов I и II уровней, рекомендованных ВОЗ. Состояние микробиоты оценили по результатам посева кала и мочи унифицированными методами. Результаты. По результатам кластерного анализа выявили 4 варианта метаболизма мочевой кислоты по отклонениям урикозурии и урикемии от нормы в Z-единицах. У 34% пациентов умеренная гипоурикозурия (-0,97±0,11 Z) сочетается с нижнепограничной урикемией (-0,53±0,20 Z). У 25% пациентов нижнепограничная урикемия (-0,70±0,22 Z) сопровождается выраженной гиперурикозурией (+3,87±0,25 Z). У 24% людей умеренно подвышена урикозурия (+1,26±0,14 Z) сочетается с вполне нормальной урикемией (+0,09±0,16 Z). Наконец, у 17% пациентов аналогичный уровень урикозурии (+1,17±0,19 Z) сочетается с выраженной гипоурикемией (-1,89±0,14 Z). Дискриминантный анализ выявил 12 параметров иммунитета и 5 параметров микробиоты, по совокупности которых кластеры метаболизма мочевой кислоты идентифицируются с точностью 94,3%. Вывод. Эндогенная мочевая кислота оказывает модулирующее в целом благоприятное влияние на ряд параметров иммунитета и микробиоты как у здоровых крыс, так и у людей с дисфункцией нейроэндокринно-иммунного комплекса на фоне хронических воспалительных заболеваний.
Ключевые слова: урикемия, урикозурия, иммунитет, микробиота, корреляции, люди.
Introduction
Previously, we found a wide range of uric acid metabolism parameters grouped into four clusters [5] and functional relationships of uricemia and uricosuria with the parameters of immunity in female rats analyzed [6,7]. We continued our research along the same lines in the clinical observation of patients, who came to the Truskavets' spa for the rehabilitation treatment. The canonical correlation analysis revealed that raw urice- mia determines by 28% nine parameters of immunity (relative blood content of pan-lymphocytes and their CD4+-, CD56+-, 0-populations, relative content of polymorphonuclear neutrophils, intensity and completeness of their phagocytosis Staph. aureus and their bactericidal capacity, saliva content of IgG) as well as bacteriuria and content in E. coli feces. Uricemia, normalized by sex and age, determines by 25% another constellation of immunity parameters (relative CD8+ Т-lym- phocytes content, CIC, E. coli phagocytosis intensity and completeness, Staph. aureus phagocytosis activity and completeness) as well as content in E. coli feces with impaired enzymatic activity and Klebsiela&Proteus. Instead, uricosuria determines only four parameters of immunity and only by 11,5% [8].
The purpose of this study is to further explore the relationship between uric acid metabolism and immunity parameters, as well as microbiota parameters, which in turn are closely linked to immunity [23].
Material and methods
The object of observation were 34 men and 10 women aged 24-70 years old, with neuroendocrine-immune complex dysfunction on the background of chronic pyelonephritis combined with cholecystitis in remission, documented in a previous study [18,19]. The survey was conducted twice, before and after ten-day balneotherapy (drinking Naftussya bioactive water three times a day, ozokerite applications, mineral baths every other day) [10].
The serum and daily urine levels of the Uric acid by uricase method were determined. The analyzes were carried out according to the instructions described in the manual [4]. The analyzers "Pointe-180" ("Scientific", USA) were used with appropriate sets.
In portion of capillary blood we counted up Leukocytogram (LCG) (Eosinophils, Stub and Segmentonucleary Neutrophils, Lymphocytes and Monocytes) and calculated two variants of Adaptation Index as well as two variants of Strain Index by IL Popovych [2,16].
Strain Index-1 = [(Eo/3,5-1)2 + (SN/3,5-1)2 + (Mon/5,5-1)2 + (Leu/6-1)2]/4 Strain Index-2 = [(Eo/2,75-1)2 + (SN/4,25- 1)2 + (Mon/6-1)2 + (Leu/5-1)2]/4
Immune status evaluated on a set of I and II levels recommended by the WHO as described in the manuals [11,14]. For phe- notyping subpopulations of lymphocytes used the methods of rosette formation with sheep erythrocytes on which adsorbed monoclonal antibodies against receptors CD3, CD4, CD8, CD22 and CD56 from company "Granum" (Kharkiv) with visualization under light microscope with immersion system. Subpopulation of T cells with receptors high affinity determined by test of "active" rosette formation. The state of humoral immunity judged by the concentration in serum circulating immune complexes (by polyethylene glycol precipitation method) and Immunoglobulins classes M, G, A (ELISA analyser "Im- munochem", USA). In addition, the saliva level of secretory IgA, IgA and IgG was determined as well as lysozime (by bacteriolysis of Micrococcus lysodeikticus).
We calculated also the Entropy (h) of Immunocytogram (ICG) and Leukocytogram (LCG) using formulas [17,20,24], adapted from classical CE Shannon's formula [22]:
hICG= - [CD44og2 CD4 + CD8-log2 CD8 + CD22 4og2 CD22 + CD56-log2 CD56]/log2 4hLCG= - [L4og2 L + M4og2 M + E4og2 E + SNN 4og2 SNN + StubN * log2 StubN]/log2 5
Parameters of phagocytic function of neutrophils estimated as described by SD Douglas and PG Quie [3] with moderately modification by MM Kovbasnyuk [13,21]. The objects of phagocytosis served daily cultures of Staphylococcus aureus (ATCC N 25423 F49) as typical specimen for Grampositive Bacteria and Escherichia coli (O55 K59) as typical representative of Gram-negative Bacteria. Both cultures obtained from Laboratory of Hydro-Geological Regime- Operational Station JSC "Truskavets'kurort". Take into account the following parameters of Phagocytosis: activity (percentage of neutrophils, in which found microbes - Hamburger's Phagocytic Index PhI), intensity (number of microbes absorbed one phagocytes - Microbial Count MC or Right's Index) and completeness (percentage of dead microbes - Killing Index KI). On the basis of the recorded partial parameters of Phagocytosis, taking into account the Neutrophils (N) content of 1 L blood, we calculated the integral parameter - Bactericidal Capacity of Neutrophils (BCCN) by the formula [10]: BCCN (109 Bact/L) = N (109/L)-Phi (%)-MC (Bact/Phag) KI (%)-10-4
In addition, the blood level of cytokines IL-1, IL-6 and TNF-б was determined (by the ELISA with the use of analyzer "RT-2100C" and corresponding sets of reagents from "Diactone", France). The condition of Microbiota is evaluated on the results of sowing of feces and urine.
Norms are borrowed from the Instructions and Database of the Truskavets' Scientific School of Balneology.
Results processed by methods of cluster [1] and discriminant [12] analyses, using the software package "Statistica 5.5".
Results and Discussion
Preliminary examination revealed a prompted us to re-apply cluster analysis (k- mean clustering method [1]).
Table 1
Cluster |
Cluster |
Cluster |
Cluster |
||
No. 1 (21) |
No. 2 (15) |
No. 3 (30) |
No. 4 (22) |
||
Uric Acid Serum, Z |
+0,09 |
-1,89 |
-0,53 |
-0,70 |
|
Uric Acid Excretion, Z |
+1,26 |
+1,17 |
-0,97 |
+3,87 |
|
No. 1 |
0,00 |
1,95 |
2,68 |
3,71 |
|
No. 2 |
1,40 |
0,00 |
3,21 |
4,34 |
|
No. 3 |
1,64 |
1,79 |
0,00 |
11,72 |
|
No. 4 |
1,93 |
2,08 |
3,42 |
0,00 |
Members of Clusters and Distances from Respective Cluster Center Cluster Number 1 contains 21 cases
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
||
C 22 |
C 26 |
C 29 |
C 31 |
C 34 |
C 36 |
C 40 |
C 50 |
C 51 |
C 54 |
C 58 |
C 59 |
C 73 |
C 78 |
C 79 |
C 80 |
||
Distance |
0,58 |
0,81 |
1,18 |
0,97 |
0,22 |
0,38 |
0,57 |
0,31 |
0,8 |
0,79 |
0,51 |
0,76 |
0,91 |
0,69 |
0,52 |
0,81 |
|
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
|||||||||||||
C_7 |
C_10 |
C_13 |
C_15 |
C_17 |
|||||||||||||
Distance |
0,52 |
0,78 |
0,46 |
0,4 |
0,49 |
Cluster Number 2 contains 15 cases
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
||
C 2 |
C 3 |
C 21 |
C 24 |
C 27 |
C 30 |
C 39 |
C 43 |
C 46 |
C 47 |
C 56 |
C 65 |
C 72 |
C 85 |
C 87 |
||
Distance |
0,53 |
0,32 |
1,04 |
0,66 |
0,48 |
0,95 |
0,68 |
0,64 |
0,51 |
0,31 |
0,69 |
0,49 |
0,73 |
0,4 |
0,64 |
Cluster Number 3 contains 30 cases
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
||
C 52 |
C 53 |
C 60 |
C 62 |
C 63 |
C 64 |
C 66 |
C 74 |
C 75 |
C 76 |
C 77 |
C 81 |
C 82 |
C 83 |
C 84 |
||
Distance |
0,67 |
0,86 |
0,42 |
0,52 |
0,67 |
0,64 |
0,33 |
0,97 |
0,78 |
0,62 |
0,41 |
0,92 |
0,69 |
0,49 |
1,11 |
|
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
||
C 4 |
C 6 |
C 8 |
C 9 |
C 12 |
C 16 |
C 18 |
C 19 |
C 23 |
C 32 |
C 33 |
C 38 |
C 41 |
C 42 |
C 48 |
||
Distance |
1,15 |
0,61 |
0,78 |
2,19 |
0,38 |
1,3 |
0,9 |
0,74 |
0,67 |
0,57 |
0,08 |
1,01 |
0,91 |
0,81 |
1,3 |
Cluster Number 4 contains 22 cases
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
Case No. |
||||
C 1 |
C 5 |
C 11 |
C 14 |
C 20 |
C 25 |
C 28 |
C |
35 |
C 37 |
C 44 |
C 45 |
C 49 |
C 55 |
C 57 |
C 61 |
|||
Distance |
0,92 |
0,88 |
0,75 |
0,61 |
0,92 |
0,73 |
0,72 |
0,6 |
1,03 |
2,15 |
1,17 |
0,33 |
0,8 |
1,5 |
2,02 |
|||
Case |
Case |
Case |
Case |
Case |
Case |
Case |
||||||||||||
No. |
No. |
No. |
No. |
No. |
No. |
No. |
||||||||||||
C 67 |
C 68 |
C 69 |
C 70 |
C 71 |
C 86 |
C 88 |
||||||||||||
Distance |
0,85 |
0,58 |
0,56 |
0,81 |
0,65 |
0,88 |
1,77 |
7 |
As a result, four groups of persons were created, significantly different from each other in parameters of Uric Acid exchange (Table 1), while the differences between the members of each group were much smaller (Table 2).
The location of the members of the four clusters on the plane of uricemia and uricosuria is visualized in Fig. 1.
In 34% of individuals (20 males and 10 females), moderate hypouricosuria is combined with lower-grade uricemia, which is Variables of Humoral Immunity, currently not in the modelmen and 1 woman), a similar level of urico- suria is combined with marked hypouricemia (S2-E+ cluster).
Variables |
Clusters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
|||||||||
S±E-III (30) |
S2-E+ II (15) |
S±E+ I (21) |
S-E2+ IV (22) |
Wilks Л |
Par tial Л |
F-re- move (3,7) |
p- e-vel |
Toler an-cy |
Norm Cv/a (30) |
||
CD22+ B-Lymphocytes, % |
22,7 |
23,9 |
23,8 |
24,5 |
0,0047 |
0,991 |
0,2 |
0,9 |
0,363 |
20,0 0,175 |
|
Circulating Immune Complexes, units |
35 |
33 |
40 |
35 |
0,0047 |
0,986 |
0,32 |
0,81 |
0,729 |
45 0,389 |
|
IgA Serum, g/L |
1,85 |
1,64 |
1,85 |
1,67 |
0,0047 |
0,977 |
0,51 |
0,67 |
0,485 |
1,875 0,167 |
|
IgM Serum, g/L |
1,50 |
1,40 |
1,47 |
1,40 |
0,0047 |
0,976 |
0,52 |
0,67 |
0,718 |
1,15 0,239 |
|
Secretory IgA Saliva, mg/L |
496 |
496 |
503 |
472 |
0,0047 |
0,978 |
0,49 |
0,69 |
0,189 |
622 0,153 |
|
IgG Saliva, mg/L |
42,2 |
42,8 |
41,6 |
41,3 |
0,0046 |
0,967 |
0,73 |
0,54 |
0,227 |
36 0,222 |
Table Discriminant Function Analysis Summary for Variables of Uric Acid Exchange, Immunity and Microbiota
Step 21, N of vars in model: 19; Grouping: 4 grps; Wilks' Л: 0,00478; approx F(57)=17,3; p<10-6
Variables currently in the model |
Clusters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
|||||||||
S±E-III (30) |
S2-E+ II (15) |
S±E+ I (21) |
S-E2+ IV (22) |
Wilks Л |
Par tial Л |
F-re- move (3,7) |
p- le-vel |
Toler an-cy |
Norm Cv/o (30) |
||
Serum Uric Acid, mM/L Z |
0,322 -0,53 |
0,249 -1,89 |
0,371 +0,09 |
0,316 -0,70 |
0,0063 |
0,758 |
7 |
10-3 |
0,658 |
0,365 0,116 |
|
Uric Acid Excr, mM/24 h Z |
2,27 -0,97 |
3,88 +1,17 |
3,94 + 1,26 |
5,94 +3,87 |
0,039 |
0,123 |
157 |
10-6 |
0,647 |
3,00 0,250 |
|
Popovych's Strain Index-1, points |
0,13 |
0,16 |
0,25 |
0,13 |
0,005 |
0,953 |
1,1 |
0,362 |
0,754 |
0,067 0,722 |
|
Killing Index vs Staph. aureus, % |
47,9 |
47,9 |
53,0 |
49,5 |
0,0049 |
0,98 |
0,4 |
0,72 |
0,312 |
58,9 0,142 |
|
Lysozime Saliva, mg/L |
171 |
171 |
172 |
167 |
0,0059 |
0,804 |
5,4 |
0,002 |
0,249 |
180 0,168 |
|
Phagocytose Index vs Staph. aureus, % |
98,96 |
99,00 |
99,00 |
98,54 |
0,0057 |
0,843 |
4,1 |
0,01 |
0,318 |
98,3 0,018 |
|
P an -Lym p hocytes of Blood, % |
33,9 |
35,8 |
31,7 |
34,6 |
0,0055 |
0,868 |
3,3 |
0,025 |
0,306 |
32,0 0,174 |
|
Phagocytose Index vs E. coli, % |
99,43 |
98,80 |
99,13 |
98,40 |
0,0057 |
0,845 |
4 |
0,011 |
0,295 |
98,3 0,012 |
|
Erythrocyturia, poi nts |
0,12 |
0,08 |
0,07 |
0,12 |
0,0051 |
0,935 |
1,5 |
0,212 |
0,662 |
0 0,10 |
|
IgA Saliva, mg/L |
144 |
142 |
135 |
118 |
0,0054 |
0,887 |
2,8 |
0,047 |
0,215 |
415 0,241 |
|
Bifidobacterium faeces, lg CFU/g |
5,66 |
5,40 |
5,49 |
5,74 |
0,0055 |
0,867 |
3,4 |
0,023 |
0,016 |
6,94 0,011 |
|
Lactobacillus faeces, lg CFU/g |
6,38 |
6,14 |
6,31 |
6,48 |
0,0053 |
0,902 |
2,4 |
0,078 |
0,015 |
8,10 0,015 |
|
Leukocyturia, lg/mL |
3,44 |
3,19 |
3,26 |
3,44 |
0,0056 |
0,855 |
3,7 |
0,015 |
0,237 |
3,00 0,070 |
|
IgG Serum, g/L |
15,6 |
14,5 |
15,1 |
14,4 |
0,0053 |
0,911 |
2,2 |
0,101 |
0,694 |
12,75 0,206 |
|
Bacteriuria, poi nts |
0,27 |
0,43 |
0,22 |
0,28 |
0,0054 |
0,881 |
3 |
0,037 |
0,243 |
0 0,24 |
|
Bactericidity vs Staph. aureus, 109 Bacteria/L |
94,5 |
90,6 |
103,0 |
93,8 |
0,0055 |
0,877 |
3,1 |
0,034 |
0,233 |
105,7 0,100 |
|
Entropy of Immunocytogram |
0,956 |
0,964 |
0,967 |
0,967 |
0,0052 |
0,927 |
1,7 |
0,171 |
0,459 |
0,960 0,059 |
|
Interleukin-6, ng/L |
5,49 |
5,27 |
5,20 |
5,44 |
0,0051 |
0,929 |
1,7 |
0,182 |
0,202 |
4,25 0,324 |
|
Microbial Count vs E. coli, Bacteria/Phagocyte |
64,6 |
62,8 |
65,3 |
63,5 |
0,0051 |
0,938 |
1,5 |
0,233 |
0,32 |
54,7 0,194 |
Table 6
Variables of Cellular Immunity, currently not in the model
Cl usters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
||||||||||
Variables |
S±E-III |
S2-E+ |
S±E+ |
S-E2+ |
Wilks |
Par- |
F-re- |
p- |
Toler |
Norm |
|
(30) |
II (15) |
(21) |
IV (22) |
Л |
tial Л |
move (3,7) |
level |
ancy |
Cv/a (30) |
||
CD4+CD3+ T-helper Lymphocytes, % |
32,6 |
32,3 |
30,0 |
28,3 |
0,0046 |
0,967 |
0,73 |
0,54 |
0,001 |
39,5 0,082 |
|
CD8+CD3+ T-cytolytic Lymphocytes, % |
23,3 |
21,2 |
23,4 |
23,7 |
0,0047 |
0,983 |
0,37 |
0,78 |
0,613 |
23,5 0,138 |
|
CD3+ T -active Lymphocytes, % |
29,0 |
29,7 |
28,4 |
28,6 |
0,0047 |
0,978 |
0,5 |
0,69 |
0,648 |
30,0 0,167 |
|
CD56+ Natural Killer Lymphocytes, % |
18,9 |
20,7 |
20,4 |
21,2 |
0,0047 |
0,982 |
0,4 |
0,76 |
0,24 |
17,0 0,172 |
|
0-Lymphocytes of Blood, % |
2,5 |
1,8 |
2,4 |
2,3 |
0,0048 |
0,996 |
0,09 |
0,97 |
0,295 |
0 5,56 |
Table 7
Cl usters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
||||||||||
Variables |
S±E-III |
S2-E+ |
S±E+ |
S-E2+ |
Wilks |
Par- |
F-re- |
p- |
Toler |
Norm |
|
(30) |
II |
IV |
Л |
tial |
move |
level |
ancy |
Cv/a |
|||
(15) |
(21) |
(22) |
Л |
(3,7) |
(30) |
||||||
Interleukin-1, ng/L |
4,58 |
5,34 |
4,74 |
4,81 |
0,005 |
0,975 |
0,560 |
0,650 |
0,522 |
4,51 0,173 |
|
Tumor Necrosis Factor-a, ng/L |
6,21 |
5,87 |
5,76 |
6,13 |
0,005 |
1,000 |
0,000 |
1,000 |
0,648 |
4,90 0,326 |
|
C-Reactive Protein, ng/L |
2,60 |
2,46 |
2,41 |
2,57 |
0,005 |
1,000 |
0,000 |
1,000 |
0,485 |
2,18 0,324 |
Table 8
Cl usters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
||||||||||
Variables |
S±E-III |
S2-E+ |
S±E+ |
S-E2+ |
Wilks |
Par- |
F-re- |
p- |
Toler |
Norm |
|
(30) |
II |
IV |
Л |
tial |
move |
level |
ancy |
Cv/a |
|||
(15) |
(21) |
(22) |
Л |
(3,7) |
(30) |
||||||
Entropy of Leukocytogram |
0,647 |
0,653 |
0,651 |
0,660 |
0,0048 |
0,997 |
0,07 |
0,98 |
0,659 |
0,681 0,070 |
|
Popovych's Strain Index-2, points |
0,18 |
0,21 |
0,39 |
0,18 |
0,0047 |
0,978 |
0,5 |
0,69 |
0,088 |
0,065 0,618 |
|
Popovych's Adaptation Index-1, points |
1,17 |
1,16 |
1,07 |
1,06 |
0,0047 |
0,98 |
0,45 |
0,72 |
0,469 |
1,70 0,147 |
|
Popovych's Adaptation Index-2, points |
0,84 |
0,82 |
0,81 |
0,77 |
0,0046 |
0,971 |
0,64 |
0,59 |
0,524 |
1,70 0,147 |
|
Variables |
Cl usters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
|||||||||
S±E-III (30) |
S2-E+ II (15) |
S±E+ (21) |
S-E2+ IV (22) |
Wilks Л |
Par tial Л |
-re move (3,7) |
p- e-vel |
Toler an-cy |
Norm Cv/o (30) |
||
Leukocytes of Blood, 109/L |
5,67 |
5,48 |
5,55 |
5,91 |
0,0048 |
0,993 |
0,14 |
0,93 |
0,257 |
5,00 0,100 |
|
Polymorphonucleary Neutrophiles of Blood, % |
54,6 |
52,7 |
55,8 |
53,2 |
0,0048 |
0,995 |
0,1 |
0,96 |
0,073 |
55,0 0,100 |
|
Stu bnucleary Neutrophiles of Blood, % |
2,78 |
2,56 |
2,54 |
2,69 |
0,0047 |
0,987 |
0,29 |
0,83 |
0,469 |
4,25 0,147 |
|
Eosi nophiles of Blood, % |
3,30 |
2,97 |
3,80 |
3,25 |
0,0046 |
0,972 |
0,63 |
0,6 |
0,624 |
2,75 0,318 |
|
Monocytes of Blood, % |
5,40 |
6,00 |
6,18 |
6,32 |
0,0047 |
0,99 |
0,23 |
0,88 |
0,689 |
6,0 0,083 |
|
Microbial Count vs Staph. aur, Bact/Phagoc. |
62,0 |
64,0 |
63,1 |
60,7 |
0,0048 |
0,994 |
0,14 |
0,94 |
0,275 |
61,6 0,160 |
|
Killing Index vs E. coli, % |
45,9 |
44,0 |
51,0 |
48,8 |
0,0048 |
0,996 |
0,09 |
0,96 |
0,114 |
62,0 0,156 |
|
Bactericidity vs E. coli, 109 Bacteria/L |
94 |
80 |
100 |
97 |
0,0048 |
0,997 |
0,06 |
0,98 |
0,075 |
99 0,100 |
Variables of Microbiota, currently not in the model
Variables |
Clusters of Uric Acid Exchange (n) |
Parameters of Wilks' Statistics |
|||||||||
S±E-III (30) |
S2-E+ II (15) |
3 !+ *--* m + |
S-E2+ IV (22) |
Wilks л |
Par tial л |
=-re- move (3,7) |
P- e-vel |
Toler an-cy |
Norm Cv/o (30) |
||
E. coli faeces, lg CFU/g |
8,28 |
8,28 |
8,23 |
8,28 |
0,005 |
1,000 |
0,000 |
1,000 |
0,613 |
8,66 0,030 |
|
Attenuated E. coli faeces, % |
60 |
66 |
53 |
56 |
0,005 |
0,997 |
0,080 |
0,970 |
0,110 |
17,4 1,0 |
|
Hemolytic E. coli faeces, % |
13 |
26 |
20 |
10 |
0,005 |
0,976 |
0,520 |
0,670 |
0,432 |
0 25 |
|
Klebsiela&Proteus faeces, % |
11,2 |
8,8 |
18,2 |
13,1 |
0,005 |
0,982 |
0,400 |
0,750 |
0,146 |
10 0,500 |
|
Bacteriuria, lg CFU/mL |
1,19 |
1,79 |
1,05 |
1,21 |
0,005 |
0,976 |
0,530 |
0,670 |
0,077 |
0 0,98 |
|
Leukocyturia, points |
0,15 |
0,10 |
0,15 |
0,19 |
0,005 |
0,977 |
0,500 |
0,680 |
0,162 |
0 0,15 |
|
Erhytrocyturia, lg/mL |
3,09 |
3,01 |
2,94 |
3,13 |
0,005 |
0,982 |
0,400 |
0,750 |
0,172 |
2,70 0,095 |
Discriminant analysis (forward stepwise [12]) was conducted to identify exactly the parameters of immunity and microbiota, which together described four clusters differ from each other. The program included in the discriminant model, in addition, by definition, uricemia and urico- suria, 8 immune parameters of blood, 2 of saliva, 2 so-called informative parameters, 2 parameters of feces microbiota and 3 parameters of urine that characterize chronic pyelonephritis (Table 3).
Outside the model appeared 8 variables of Leukocy- togram and Phagocytosis (Table 4), 6 of Humoral Immunity (Table 5), 5 of Cellular Immunity (Table 6), 3 Proinflammatory factors (Table 7), 4 Informative variables (Table 8), as well as 6 variables of feces and urine Microbiota (Table 9).
The discriminant variables are ranked by criterion Lambda (Table 10).
Next, the 19-dimensional space of discriminant variables transforms into 3-dimensional space of canonical roots. The canonical correlation coefficient is for Root 1 0,950 (Wilks' Л=0,030; f(57)=264; p<10-6), for Root
2 0,678 (Wilks' Л=0,312; x2(36)=88; p<10-5) and for Root
3 0,650 (Wilks' Л=0,577; x2(17)=41; p=0,0008). The major root contains 85,4% of discriminative properties, the second 8,0% and the third 6,6%.
Table 10
Summary of Stepwise Analysis for Variables of Uric Acid Exchange, Immunity and Microbiota
Variables currently in the model |
F to enter |
p-level |
л |
F-va- lue |
P- level |
|
Uric Acid excretion, Z-score |
154 |
10-6 |
0,154 |
154 |
10-6 |
|
Serum Uric Acid level, Z-score |
13,5 |
10-6 |
0,104 |
58,3 |
10-6 |
|
Popovych's Strain Index-1, points |
2,3 |
0,079 |
0,095 |
36,1 |
10-6 |
|
Killing Index vs Staphylococcus aureus, % |
2,1 |
0,108 |
0,089 |
26,8 |
10-6 |
|
Lvsozime Saliva, mg/L |
2,2 |
0,096 |
0,082 |
21,8 |
10-6 |
|
Phagocytose Index vs Staphylococcus aureus, % |
2,3 |
0,084 |
0,075 |
18,6 |
10-6 |
|
Pan-Lymphocytes of Blood, % |
2,2 |
0,09 |
0,069 |
16,4 |
10-6 |
|
Phagocytose Index vs Escherichia coli, % |
2,0 |
0,119 |
0,064 |
14,7 |
10-6 |
|
Erythrocyturia, points |
2,2 |
0,096 |
0,059 |
13,5 |
10-6 |
|
IgA Saliva, mg/L |
1,6 |
0,208 |
0,056 |
12,3 |
10-6 |
|
Bifidobacterium faeces, lg CFU/g |
1,7 |
0,167 |
0,052 |
11,5 |
10-6 |
|
Lactobacillus faeces, lg CFU/g |
1,6 |
0,194 |
0,049 |
10,7 |
10-6 |
|
Leukocyturia, lg/L |
1,4 |
0,254 |
0,046 |
10,0 |
10-6 |
|
IgG Serum, g/L |
1,3 |
0,29 |
0,044 |
9,4 |
10-6 |
|
Bacteriuria, points |
1,8 |
0,161 |
0,041 |
9,0 |
10-6 |
|
Bactericidity vs Staphyl. aureus, 109 Bacteria/L |
2,8 |
0,046 |
0,036 |
8,8 |
10-6 |
|
Entropy of Immunocytogram |
1,1 |
0,338 |
0,005 |
19,0 |
10-6 |
|
Interleukin-6, ng/L |
1,5 |
0,21 |
0,005 |
18,1 |
10-6 |
|
Microbial Count vs E. coli, Bacteria/Phagocyte |
1,5 |
0,233 |
0,005 |
17,3 |
10-6 |
Table 11
Standardized and Raw Coefficients and Constants for Variables of Uric Acid exchange, Immunity and Microbiota
Coefficients |
Standardized |
Raw |
|||||
Variables |
Root |
Root 2 |
Root 3 |
Root |
Root 2 |
Root 3 |
|
Jric Acid excretion, Z-score |
1,223 |
0,017 |
0,043 |
1,523 |
0,021 |
0,054 |
|
Serum Uric Acid level, Z-score |
0,083 |
-0,832 |
-0,123 |
0,088 |
-0,889 |
-0,131 |
|
Popovych's Strain Index-1, points |
0,002 |
-0,242 |
-0,28 |
0,012 |
-1,292 |
-1,493 |
|
Killing Index vs Staph. aureus, % |
0,062 |
-0,356 |
-0,074 |
0,007 |
-0,042 |
-0,009 |
|
Lysozime Saliva, mg/L |
0,204 |
-0,14 |
-1,296 |
0,03 |
-0,021 |
-0,193 |
|
Phaaocytose Index vs Staph. aur,, % |
0,563 |
0,247 |
-0,683 |
0,478 |
0,21 |
-0,58 |
|
Pan-Lymphocytes of Blood, % |
-0,661 |
0,239 |
0,188 |
-0,086 |
0,031 |
0,025 |
|
Phagocytose Index vs E. coli, % |
-0,327 |
-0,061 |
0,931 |
-0,247 |
-0,046 |
0,703 |
|
Erythrocyturia, points |
-0,049 |
-0,148 |
0,455 |
-0,493 |
-1,506 |
4,621 |
|
gA Saliva, mg/L |
-0,704 |
0,399 |
0,06 |
-0,02 |
0,012 |
0,002 |
|
Bifidobacterium faeces, lg CFU/g |
-1,357 |
0,214 |
4,01 |
-1,165 |
0,184 |
3,443 |
|
Lactobacillus faeces, lg CFU/g |
1,355 |
-0,15 |
-3,68 |
0,949 |
-0,105 |
-2,577 |
|
Leukocyturia, lg/L |
-0,381 |
-0,056 |
0,987 |
-0,571 |
-0,084 |
1,479 |
|
gG Serum, g/L |
-0,301 |
-0,203 |
0,238 |
-0,081 |
-0,055 |
0,064 |
|
Bacteriuria, points |
-0,051 |
0,937 |
-0,463 |
-0,21 |
3,855 |
-1,903 |
|
Bactericidity vs Staph. aur, 109 Bac/L |
-0,279 |
0,689 |
-0,766 |
-0,011 |
0,028 |
-0,031 |
|
Entropy of Immu nocytogram |
-0,344 |
0,274 |
-0,095 |
-12,89 |
10,26 |
-3,568 |
|
nterleukin-6, ng/L |
-0,475 |
0,365 |
0,522 |
-1,808 |
1,389 |
1,986 |
|
Microbial Count vs E. coli, Bact/Phag |
0,072 |
0,091 |
0,654 |
0,008 |
0,011 |
0,077 |
|
Constants |
7,317 |
-38,510 |
-3,494 |
||||
Eigenvalues |
9,266 |
0,850 |
0,732 |
||||
Cumulative Prop |
0,854 |
0,933 |
1,000 |
Table 11 presents standardized (normalized) and raw (actual) coefficients for discriminant variables. The calculation of the discriminant root values for each person as the sum of the products of raw coefficients to the individual values of discriminant variables together with the constant enables the visualization of each patient in the information space of the roots.
Table 12 shows the correlation coefficients of discriminant variables with canonical discriminant Roots, the cluster centroids of Roots, and the normalized values of the discriminant variables as well as variables currently not in the model but worth the attention. As we can see, the major root is uniquely interpreted as uricosuria Together with it, the root condenses information on the entropy of the immunocytogram (ICG) and, in the reverse way, the intensity of ph-agocytosis by neutrophils of both bacteria, the content of IgA and lysozyme in saliva and IgG in serum. Such uricous-immune relation ships are visualized (Fig. 2) by the localization of members of the S±E- cluster in the negative zone of the root axis, reflecting the combination of hypou- ricosuria with a slight neg-entropy of ICG, on the one hand, and maximally for sampling increased phagocytosis activity against E. coli and IgG content in serum while minimally for sampling reduced IgA content in saliva, on the other hand.
Table 12
Correlations Variables-Canonical Roots, Means of Roots and Z-scores of Variables of Uric Acid exchange, Immunity and Microbiota
Variables |
Correlations Variables-Roots |
S±E-III (30) |
S2-E + II (15) |
S±E+ I (21) |
S-E2+ IV (22) |
|||
Root 1 (85,4%) |
R 1 |
R 2 |
R 3 |
-3,51 |
-0,09 |
+0,61 |
4,27 |
|
Uric Acid excretion |
0,768 |
0,13 |
0,161 |
-0,97 |
+1,17 |
+1,26 |
+3,87 |
|
Entropy of Immunocvtogram |
0,057 |
-0,013 |
-0,099 |
-0,07 |
+0,07 |
+0,13 |
+0,13 |
|
Monocytes |
currently |
not in model |
-1,22 |
0,00 |
+0,36 |
+0,65 |
||
Phagocvtose Index vs E. coli |
-0,097 |
-0,106 |
-0,048 |
+0,96 |
+0,42 |
+0,70 |
+0,09 |
|
IgA Saliva |
-0,095 |
0,061 |
-0,108 |
-2,71 |
-2,73 |
-2,80 |
-2,97 |
|
Lysozime Saliva |
-0,073 |
-0,042 |
-0,18 |
-0,28 |
-0,31 |
-0,27 |
-0,42 |
|
Phagocytose Index vs Staph. aureus |
-0,043 |
0,009 |
-0,121 |
+0,37 |
+0,40 |
+0,39 |
+0,14 |
|
IgG Serum |
-0,041 |
-0,075 |
0,023 |
+1,10 |
+0,65 |
+0,89 |
+0,64 |
|
CD4+CD3+ T-helper Lymphocytes |
currently not in model |
-2,12 |
-2,21 |
-2,93 |
-3,47 |
|||
Root 2 (8,0%) |
R 1 |
R 2 |
R 3 |
-0,18 |
+1,82 |
-0,99 |
-0,04 |
|
Uric Acid Serum |
-0,008 |
-0,743 |
-0,05 |
-0,53 |
-1,89 |
+0,09 |
-0,70 |
|
Killing Index vs Staph. aureus |
0,033 |
-0,181 |
-0,186 |
-1,25 |
-1,32 |
-0,70 |
-1,12 |
|
Bactericidity vs Staph. aureus |
0,003 |
-0,163 |
-0,118 |
-1,06 |
-1,43 |
-0,25 |
-1,12 |
|
Bactericidity vs E. coli |
currently not in model |
-0,50 |
-1,92 |
+0,14 |
-0,20 |
|||
CD8+CD3+ T-cytolytic Lymphocytes |
currently not in model |
-0,06 |
-0,71 |
-0,04 |
+0,06 |
|||
Microbial Count vs E. coli |
-0,014 |
-0,103 |
-0,026 |
+0,94 |
+0,76 |
+0,99 |
+0,83 |
|
Leukocyturia, lg |
-0,004 |
-0,061 |
0,177 |
+0,89 |
+0,39 |
+0,51 |
+0,88 |
|
Lactobacillus faeces |
0,008 |
-0,05 |
0,069 |
-1,19 |
-1,35 |
-1,24 |
-1,12 |
|
Bifidobacterium faeces |
0,002 |
-0,043 |
0,106 |
-1,13 |
-1,35 |
-1,27 |
-1,09 |
|
Bacteriuria, points |
0,003 |
0,308 |
-0,033 |
+1,11 |
+1,75 |
+0,93 |
+1,17 |
|
Bacteriuria, lg |
currently not in model |
+1,21 |
+1,82 |
+1,07 |
+1,23 |
|||
Attenuated E. coli faeces |
currently not in model |
+2,47 |
+2,79 |
+2,07 |
+2,21 |
|||
Intedeukin-1 |
currently not in model |
+0,09 |
+1,06 |
+0,29 |
+0,38 |
|||
Pan-Lymphocytes |
0,005 |
0,175 |
0,095 |
+0,34 |
+0,68 |
-0,05 |
+0,40 |
|
Root 3 (6,6%) |
R 1 |
R 2 |
R 3 |
+0,59 |
-0,74 |
-1,16 |
+0,81 |
|
Popovych's Strain Index-1 |
0,01 |
-0,135 |
-0,287 |
+1,29 |
+1,87 |
+3,83 |
+1,28 |
|
Klebsiela&Proteus faeces |
currently not in model |
+0,23 |
-0,24 |
+1,64 |
+0,62 |
|||
Erythrocyturia, points |
-0,006 |
-0,023 |
0,271 |
+1,22 |
+0,80 |
+0,75 |
+1,23 |
|
Intedeukin-6 |
0,014 |
-0,061 |
0,112 |
+0,90 |
+0,74 |
+0,69 |
+0,86 |
|
Tumor Necrosis Factor-a |
currently not in model |
+0,82 |
+0,62 |
+0,54 |
+0,77 |
|||
C-Reactive Protein |
currently not in model |
+0,60 |
+0,39 |
+0,32 |
+0,55 |
Table 13
Clusters |
S±E+ I |
S2-E+ II |
S-E2+ IV |
S±E-III |
|
S±E+ I (21) |
0 |
9,1 |
19,5 |
21,7 |
|
S2-E+ II (15) |
3,1 10-3 |
0 |
26,2 |
18,3 |
|
S-E2+ IV (22) |
8,3 10-6 |
9,1 10-6 |
0 |
63,7 |
|
S±E- |
10,6 |
7,1 |
32,1 |
0 |
Table 14
Clusters |
S±E+ |
S2-E+ |
S-E2+ |
S±E- |
|
I |
II |
IV |
III |
||
Variables |
p=0,239 |
p=0,170 |
p=0,250 |
p=0,341 |
|
Uric Acid excretion, Z-score |
-5,524 |
-6,483 |
0,233 |
-11,67 |
|
Serum Uric Acid level, Z-score |
-66,14 |
-68,88 |
-67,14 |
-67,53 |
|
Popovych's Strain Index-1, points |
-67,95 |
-72,32 |
-72,26 |
-71,73 |
|
Killing Index vs Staph. aureus, % |
6,538 |
6,41 |
6,506 |
6,458 |
|
Lysozime Saliva, mg/L |
-0,192 |
-0,363 |
-0,499 |
-0,678 |
|
Phagocytose Index vs Staph. aureus, % |
118,4 |
118,5 |
119,3 |
115,7 |
|
Pan-Lymphocytes of Blood, % |
-5,873 |
-5,732 |
-6,143 |
-5,459 |
|
Phagocytose Index vs E. coli, % |
69,08 |
69,51 |
69,67 |
71,34 |
|
En/throcyturia, points |
-150,3 |
-152,2 |
-144,3 |
-141,3 |
|
IgA Saliva, mg/L |
-1,631 |
-1,588 |
-1,699 |
-1,537 |
|
Bifidobacterium faeces, lg CFU/g |
-12,09 |
-9,259 |
-9,291 |
-1,077 |
|
Lactobacillus faeces, lg CFU/g |
-13,36 |
-15,21 |
-14,74 |
-21,76 |
|
Leukocyturia, lg/L |
238,1 |
239 |
239,1 |
243 |
|
IgG Serum, g/L |
0,326 |
0,271 |
0,129 |
0,739 |
|
Bacteriuria, points |
138,8 |
149,4 |
138,7 |
139,7 |
|
Bactericidity vs Staph. aureus, 109 Bacteria/L |
-1,871 |
-1,796 |
-1,948 |
-1,856 |
|
Entropy of Immunocytogram |
3605 |
3637 |
3552 |
3658 |
|
Interleukin-6, ng/L |
580,9 |
586,6 |
579,1 |
592,8 |
|
Microbial Count vs E. coli, Bacter/Phagocyte |
-6,096 |
-6,036 |
-5,897 |
-5,985 |
|
Constants |
-13393 |
-13514 |
-13427 |
-13468 |
Instead, in the positive zone of the axis localized members of the cluster S-E2+, in which hyperuricosuria is accompanied by a slightly increased ICG entropy, minimal for the sample increase in serum IgG, lack of activation of phagocytosis and maximum for the sample decrease in IgA and lysozyme saliva content.
The members of the other two clusters with equally moderate hyperuricosuria occupy an intermediate quasi-zero zone of the axis, reflecting the intermediate state of these immune parameters.
By adding monocytes and T-helper cells not included in the model, we obtain immuno-enhancing and immuno-suppres- sive patterns for uricosuria (Fig. 3).
The separation of the last two clusters occurs along the axis of the second root, which represents inverted uricemia The upper position of the members of the S2-E+ cluster reflects a combination of hypourice- mia in them with a maximum for sampling inhibition of the completion of Staph. aureus phagocytosis, a minimum of Leukocyturia and activation of the intensity of E. coli phagocytosis, as well as maximum reduction in the microbiota of beneficial Lactobacillus and Bifidobacterium, which are inversely related to the root. Instead, panlymphocytes and bac- teriuria (estimated on a one-point scale [10]) levels, which are directly related to the root, are maximal for sampling.
The lower position of the S±E+ cluster members reflects a combination of normal uricemia with normal or less reduced/ elevated levels of the listed immunity parameters and microbiota negatively/positively associated with the second root.
Classification Matrix for Clusters
Rows: Observed classifications; Columns: Predicted classifications
Percent correct |
S±E+ I |
S2-E+ II |
S-E2+ IV |
S±E- III |
||
Clusters |
p=0,239 |
p=0,170 |
p=0,250 |
p=0,341 |
||
I |
90,5 |
19 |
2 |
0 |
0 |
|
II |
86,7 |
1 |
13 |
0 |
1 |
|
IV |
95,5 |
1 |
0 |
21 |
0 |
|
III |
100 |
0 |
0 |
0 |
30 |
|
Total |
94,3 |
21 |
15 |
21 |
31 |
Taking into account not included in the model T-cytolytic lymphocytes, bacteri- condensed in the second Root cidal activity against E. coli, row bacteriuria, relative content of E. coli with impaired enzymatic activity in the microbiota and plasma IL-1 level, we have formed immuno-enhanc-
We express sincere gratitude to administration JSC "Truskavets'kurort" and "Truskavets' SPA" as well as clinical sanatorium "Moldova" for help in conducting this investigation.
Accordance to ethics standards
Tests in patients are conducted in accordance with positions of Helsinki Declaration 1975, revised and complemented in 2002, and directive of National Committee on ethics of scientific researches. During realization of tests from all participants the informed consent is got and used all measures for providing of anonymity of participants.
References
1. Aldenderfer MS, Blashfield RK. Cluster analysis (Second printing, 1985) [trans. from English in Russian]. In: Factor, Discriminant and Cluster Analysis. Moskva. Finansy i Statistika; 1989: 139-214.
2. Barylyak LG,
Malyuchkova RV, Tolstanov OB, Tymochko OB, Hryvnak RF, Uhryn MR. Comparative estimation of informativeness of leucocytary index of adaptation by Garkavi and by Popovych. Medical Hydrology and Rehabilitation. 2013; 11(1): 520.
3. Douglas SD, Quie PG. Investigation of Phagocytes in
Disease. Churchil; 1981: 110 p.
4. Goryachkovskiy АМ. Clinical Biochemistry [in Russian]. Odesa. Astroprint; 1998: 608 p.
5. Gozhenko AI, Smagliy VS, Korda IV, Zukow W, Popovych IL. Cluster analysis of uric acid exchange parameters in female rats. Journal of Education, Health and Sport. 2019; 9(11): 277-286.
6. Gozhenko AI, Smagliy SS, Korda
IV, Badiuk NS, Zukow W, Popovych IL. Functional relationships between parameters of uric acid exchange and immunity in female rats. Actual problems of transport medicine. 2019; 4 (54): 123-131.
7. Gozhenko AI, Smagliy VS, Korda
IV, Badiuk NS, Zukow W, Popovych IL. Features of immune status in different states of uric acid metabolism in female rats. Journal of Education, Health and Sport. 2019; 9(12): 167-180.
8. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Kovbasnyuk MM, Popovych IL. relationships between parameters of uric acid exchange and immunity as well as microbiota in patients with neuroendocrine- immune complex dysfunction. Journal of Education, Health and Sport. 2020; 10(1): 165-175.
9. Gozhenko AI, Smagliy VS, Korda IV, Badiuk NS, Zukow W, Popovych IL. Functional relationships between parameters of uric acid exchange and immunity in female rats. In: Rehabilitation Medicine and Health- Resort Institutions Development. Proceedings of the 19th International Applied Research Conference (Kyiv, 11-12 December 2019). Edited by O. Gozhenko, W. Zukow. Toruc, Kyiv. 2019: 23-24.
10. Ivassivka SV, Popovych IL, Aksentiychuk BI, Flyunt IS. Physiological Activity of Uric Acid and its Role in the Mechanism of Action of Naftussya Water [in Ukrainian]. Kyiv. Computerpress; 2004: 163 p.
11. Khaitov RM, Pinegin BV, Istamov KhI. Ecological Immunology [in Russian]. Moskva: VNIRO; 1995: 219 p.
12. Klecka WR. Discriminant Analysis [trans. from English in Russian] (Seventh Printing, 1986). In: Factor, Discriminant and Cluster Analysis. Moskva. Finansy i Statistika; 1989: 78-138.
13. Kul'chyns'kyi AB, Kovbasnyuk MM, Kyjenko VM., Zukow W, Popovych IL. Neuro-immune relationships at patients with chronic pyelonephrite and cholecystite. Communication 2. Correlations between parameters EEG, HRV and Phagocytosis. Journal of Education, Health and Sport. 2016; 6(10): 377-401.
14. Lapovets' LY, Lutsyk BD. Handbook of Laboratory Immunology [in Ukrainian]. Lviv; 2002: 173 p.
15. Perederiy VG, Zemskov AM, Bychkova NG, Zemskov VM. Immune status, principles of its evaluation and correction of immune disorders [in Russian]. Kyiv. Zdorovya; 1995: 211 p.
16. Petsyukh SV, Petsyukh MS, Kovbasnyuk MM, Barylyak LG, Zukow W. Relationships between Popovych's Adaptation Index and parameters of ongoiging HRV and EEG in patients with chronic pyelonephrite and cholecystite in remission. Journal of Education, Health and Sport. 2016; 6(2): 99110.
17. Popadynets' OO, Gozhenko AI, Zukow W, Popovych IL. Relationships between the entropies of EEG, HRV, immunocytogram
18. and leukocytogram. Journal of Education, Health and Sport. 2019; 9(5): 651-666.
19. Popovych AI. Features of the immunotropic effects of partial components of the balneotherapeutic complex of spa Truskavets'. Journal of Education, Health and Sport. 2018; 8(12): 919-935.
20. Popovych AI. Features of the neurotropic effects of partial components of the balneotherapeutic complex of spa Truskavets'. Journal of Education, Health and Sport. 2019; 9(1): 396-409.
21. Popovych IL. Information effects of bioactive water Naftyssya in rats: modulation entropic, prevention desynchronizing and limitation of disharmonizing actions water immersion stress for information components of neuroendocrine-immune system and metabolism, which correlates with gastroprotective effect [in Ukrainian]. Medical Hydrology and Rehabilitation. 2007; 5(3): 50-70.
22. Popovych IL, Kul'chyns'kyi AB, Gozhenko AI, Zukow W, Kovbasnyuk MM, Korolyshyn TA Interrelations between changes in parameters of HRV, EEG and phagocytosis at patients with chronic pyelonephritis and cholecystitis. Journal of Education, Health and Sport. 2018; 8(2): 135-156.
23. Shannon CE. Works on the theory of informatics and cybernetics [transl. from English to Russian]. Moskva: Inostrannaya literatura; 1963: 329 p.
24. Struk ZD, Mel'nyk OI, Zukow W, Popovych IL. The diversity of immune reactions to balneotherapy and their accompaniments. Journal of Education, Health and Sport. 2019; 9(11): 349-373.
25. Yushkovs'ka OG. Using information theory to study adaptive responses in the body athletes [in Ukrainian]. Medical Rehabilitation, Kurortology, Physiotherapy. 2001; 1(25): 40-43.
Размещено на Allbest.ru
Подобные документы
The complement system - part of the immune system as a set of complex proteins. History of the concept. Its biological functions, regulation, role in diseases. Stages of activation: the alternative and lectin pathway. Mannose-binding Lectin deficiency.
презентация [932,7 K], добавлен 17.03.2017Causes of ischemic stroke. Assessment of individual risk for cardiovascular disease in humans. The development in patients of hypertension and coronary heart disease. Treatment in a modern hospital disorders biomarkers of coagulation and fibrinolysis.
статья [14,8 K], добавлен 18.04.2015The etiology of bronchitis is an inflammation or swelling of the bronchial tubes (bronchi), the air passages between the nose and the lungs. Signs and symptoms for both acute and chronic bronchitis. Tests and diagnosis, treatment and prevention disease.
презентация [1,8 M], добавлен 18.11.2015Etiology and pathogenesis, types, treatment of pulpits. Inflammation of dental pulp. An infection (microorganisms) which penetrats in the cavity of pulp chamber. Test of healthy pulp. Tapping of tooth directly. Root canal treatment. Tooth extraction.
презентация [851,9 K], добавлен 31.05.2016The pathological process Acute Respiratory Distress Syndrome (ARDS). Specific challenges in mechanical ventilation of patients with ARDS. Causes of ARDS, and differential diagnosis. Treatment strategies and evidence behind them. Most common causes ARDS.
презентация [2,6 M], добавлен 21.05.2015Body Water Compartments. The main general physico-chemical laws. Disorders of water and electrolyte balance. Methods bodies of water in the body, and clinical manifestations. Planning and implementation of treatment fluid and electrolyte disorders.
презентация [1,1 M], добавлен 11.09.2014Agranulocytosis - pathologic condition, which is characterized by a greatly decreased number of circulating neutrophils. Epidemiology and pathophysiology of this disease. Hereditary disease due to genetic mutations. Signs and symptoms, treatment.
презентация [1,8 M], добавлен 25.02.2014Pneumonia is an inflammatory condition of the lung—affecting primarily the microscopic air sacs known as alveoli. The bacterium Streptococcus pneumoniae is a common cause of pneumonia. Symptoms, diagnostics, treatment and prevention of this disease.
презентация [279,8 K], добавлен 12.11.2013Concept and characteristics of focal pneumonia, her clinical picture and background. The approaches to the diagnosis and treatment of this disease, used drugs and techniques. Recent advances in the study of focal pneumonia. The forecast for recovery.
презентация [1,5 M], добавлен 10.11.2015Principles and types of screening. Medical equipment used in screening. identify The possible presence of an as-yet-undiagnosed disease in individuals without signs or symptoms. Facilities for diagnosis and treatment. Common screening programmes.
презентация [921,2 K], добавлен 21.02.2016